4,039
Views
119
CrossRef citations to date
0
Altmetric
Original Articles

Lipid Oxidation in Low-moisture Food: A Review

&

REFERENCES

  • Abbas, K. A., Lasekan, O. and Khalil, S. K. (2010). The significance of glass transition temperature in processing of selected fried food products: A review. Mod. Appl. Sci. 4:3–21.
  • Ahmad, S. and Augustin, M. A. (1985). Effect of tertiarybutylhydroquinone on lipid oxidation in fish crackers. J. Sci. Food Agric. 36:393–401.
  • Alamed, J., Chaiyasit, W., McClements, D. J. and Decker, E. A. (2009). Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 57:2969–2976.
  • Almasi, E. (1978). Dependence of the amount of bound water of foods on temperature. Acta Aliment. 8:41–56.
  • Andersen, A. B., Risbo, J., Andersen, M. L. and Skibsted, L. H. (2000). Oxygen permeation through an oil-encapsulating glassy food matrix studied by ESR line broadening using a nitroxyl spin probe. Food Chem. 70:499–508.
  • Andersen, M. L. and Skibsted, L. H. (2002). Detection of early events in lipid oxidation by electron spin resonance spectroscopy. Eur. J. Lipid Sci. Technol. 104:65–68.
  • Anderson, J. M. and Shive, M. S. (1997). Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24.
  • Aragao, G. M. F., Corradini, M. G. and Peleg, M. (2008). A phenomenological model of the peroxide value's rise and fall during lipid oxidation. J. Am. Oil Chem. Soc. 85:1143–1153.
  • Artharn, A., Prodpran, T. and Benjakul, S. (2009). Round scad protein-based film: Storage stability and its effectiveness for shelf-life extension of dried fish powder. LWT-Food Sci. Technol. 42:1238–1244.
  • Baesso, M. L., Correa Da Silva, E. C., Vargas, H., Cortez, J. G. and Pelzl, J. (1990). Use of electron spin resonance for the determination of staling of roast coffee in polyethylene bag packs. Z. Lebensm-Unters. Forsch. A 191:24–27.
  • Barriuso, B., Astiasarán, I. and Ansorena, D. 2013. A review of analytical methods measuring lipid oxidation status in foods: A challenging task. Eur. Food Res. Technol. 236:1–15.
  • Bassette, R. and Keeney, M. (1960). Identification of some volatile carbonyl compounds from nonfat dry milk. J. Dairy Sci. 43:1744–1750.
  • Bell, L. N. and Hageman, M. J. (1994). Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: Aspartame degradation. J. Agric. Food Chem. 42:2398–2401.
  • Berenzon, S. and Saguy, I. (1998). Oxygen absorbers for extension of crackers shelf-life. LWT-Food Sci. Technol. 31:1–5.
  • Berton-Carabin, C. C., Coupland, J. N. and Elias, R. J. (2013). Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surf., A 431:9–17.
  • Bolland, J. L. (1948). Kinetic studies in the chemistry of rubber and related materials. VI. The benzoyl peroxide-catalysed oxidation of ethyl linoleate. Trans. Faraday Soc. 44:669–677.
  • Borrelli, R. C., Mennella, C., Barba, F., Russo, M., Russo, G. L., Krome, K., Erbersdobler, H. F., Faist, V. and Fogliano, V. (2003). Characterization of coloured compounds obtained by enzymatic extraction of bakery products. Food Chem. Toxicol. 41:1367–1374.
  • Bressa, F., Tesson, N., Dalla Rosa, M., Sensidoni, A. and Tubaro, F. (1996). Antioxidant effect of Maillard reaction products: Application to a butter cookie of a competition kinetics analysis. J. Agric. Food Chem. 44:692–695.
  • Buttery, R. G., Hendel, C. E. and Boggs, M. M. (1961). Off-flavors in potato products, autoxidation of potato granules. J. Agric. Food Chem. 9:245–252.
  • Caponio, F., Summo, C., Pasqualone, A. and Bilancia, M. T. (2008). Effect of kneading and baking on the degradation of the lipid fraction of biscuits. J. Cereal Sci. 48:407–412.
  • Chen, H. E., Lee, D. J. and Schanus, E. G. (1992). The inhibitory effect of water on the Co2+ and Cu2+ catalyzed decomposition of methyl linoleate hydroperoxides. Lipids 27:234–239.
  • Chou, H., Acott, K. M. and Labuza, T. P. (1973). Sorption hysteresis and chemical reactivity: Lipid oxidation. J. Food Sci. 38:316–319.
  • Clark, J. P. (2004). Coating is critical to many foods. Food Technol. 58:82–83.
  • Coles, R. and Kirwan, M. J. (2011). Food and Beverage Packaging Technology, 2nd ed., Wiley-Blackwell, Hoboken, NJ.
  • Colzato, M., Scramin, J. A., Forato, L. A., Colnago, L. A. and Assis, O. B. G. (2011). 1H NMR investigation of oil oxidation in macadamia nuts coated with zein-based films. J. Food Process. Preserv. 35:790–796.
  • Coupland, J. N. and McClements, D. J. (1996). Lipid oxidation in food emulsions. Trends Food Sci. Technol. 7:83–91.
  • Decker, E. and McClements, J. (2001). Transition metal and hydroperoxide interactions. J. Am. Oil Chem. Soc. 12:251–262.
  • Del Nobile, M. A. (2001). Packaging design for potato chips. J. Food Eng. 47:211–215.
  • Desobry, S. A., Netto, F. M. and Labuza, T. P. (1997). Comparison of spray-drying, drum-drying and freeze-drying for beta-carotene encapsulation and preservation. J. Food Sci. 62:1158–1162.
  • Desobry, S. A., Netto, F. M. and Labuza, T. P. (1999). Influence of maltodextrin systems at an equivalent 25DE on encapsulated beta-carotene loss during storage. J. Food Process. Preserv. 23:39–55.
  • Dopico-García, M. S., López-Vilariñó, J. M. and Gonzalez-Rodríguez, M. V. (2007). Antioxidant content of and migration from commercial polyethylene, polypropylene, and polyvinyl chloride packages. J. Agric. Food Chem. 55:3225–3231.
  • Drummen, G. P. C., van Liebergen, L. C. M., Op den Kamp, J. A. F. and Post, J. A. (2002). C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (Micro)spectroscopic characterization and validation of methodology. Free Radical Biol. Med. 33:473–490.
  • Drusch, S., Rätzke, K., Shaikh, M. Q., Serfert, Y., Steckel, H., Scampicchio, M., Voigt, I., Schwarz, K. and Mannino, S. (2009). Differences in free volume elements of the carrier matrix affect the stability of microencapsulated lipophilic food ingredients. Food Biophys. 4:42–48.
  • Dueik, V. and Bouchon, P. (2011). Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends. J. Food Sci. 76:188–195.
  • EFSA (European Food Safety Authority). (2007). Development of Food-Based Dietary Guidelines. European Food Safety Authority, Parma, Italy.
  • Elias, R. J., Andersen, M. L., Skibsted, L. H. and Waterhouse, A. L. (2009). Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping. J. Agric. Food Chem. 57:4359–4365.
  • Ergun, R., Lietha, R. and Hartel, R. W. (2010). Moisture and shelf life in sugar confections. Crit. Rev. Food Sci. Nutr. 50:162–192.
  • Frankel, E. N. (2005). Lipid Oxidation, 2nd ed., The Oily Press, Bridgwater, England.
  • Girardet, N. and Webster, F. H. (2011). Oat milling: Specifications, storage, and processing. In: Oats: Chemistry and Technology, 2nd ed., pp. 301–316. Webster, F. H. and Wood, P. J., Eds., AACC International, St. Paul, Minnesota.
  • Goddard, J. M., Mcclements, D. J. and Decker, E. A. (2012). Innovative technologies in the control of lipid oxidation. Lipid Technol. 24:275–277.
  • Gray, D. A., Bowen, S. E., Hill, S. E. and Farhat, I. (2008). Lipid oxidation in glassy and rubbery-state starch extrudates. Food Chem. 106:227–234.
  • Han, S., Lee, J. and Lee, K. (1973). Non-enzymatic browning reactions in dried anchovy when stored at different water activities. Bull. Korean Fish. Soc. 6:37–43.
  • Haynes, C. L., McFarland, A. D. and Van Duyne, R. P. (2005). Surface-enhanced Raman Spectroscopy. Anal Chem. 77:338a–346a.
  • Hill, P. E. and Rizvi, S. S. H. (1982). Thermodynamic parameters and storage stability of drum dried peanut flakes. LWT-Food Sci. Technol. 15:185–190.
  • Hix, D. K., Klopfenstein, C. F. and Walker, C. E. (1997). Physical and chemical attributes and consumer acceptance of sugar-snap cookies containing naturally occurring antioxidants. Cereal Chem. 74:281–283.
  • Holman, R. T. and Elmer, O. C. (1947). The rates of oxidation of unsaturated fatty acids and esters. J. Am. Oil Chem. Soc. 24:127–129.
  • Homma, S. and Fujimaki, M. (1982). Studies on the browning of Kori-tofu. IV. Effect of water activity on lipid oxidation and browning of Kori-tofu. Agric. Biol. Chem. 46:301–304.
  • Hutchinson, J. M. (2009). Determination of the glass transition temperature. J. Therm. Anal. Calorim. 98:579–589.
  • Iglesias, H. A. and Chirife, J. (1976). B.E.T. monolayer values in dehydrated foods and food components. LWT-Food Sci. Technol. 9:9107–9113.
  • Iñiguez-Franco, F., Soto-Valdez, H., Peralta, E., Ayala-Zavala, J. F., Auras, R. and Gámez-Meza, N. (2012). Antioxidant activity and diffusion of catechin and epicatechin from antioxidant active films made of poly(l-lactic acid). J. Agric. Food Chem. 60:6515–6523.
  • Itoh, N., Cao, J., Chen, Z. H., Yoshida, Y. and Niki, E. (2007). Advantages and limitation of BODIPY as a probe for the evaluation of lipid peroxidation and its inhibition by antioxidants in plasma. Bioorg. Med. Chem. Lett. 17:2059–2063.
  • Jacob, K. T., Mallya, R. M. and Mallya, R. M. (2010). Resolution of conflicting views on thermodynamics of glass transition: A unified model. Bull. Mater. Sci. 33:603–609.
  • Jensen, P. N. and Risbo, J. (2007). Oxidative stability of snack and cereal products in relation to moisture sorption. Food Chem. 103:717–724.
  • Kamal-Eldin, A. (2003). Lipid Oxidation Pathways. AOCS Press, Champaign, IL.
  • Karagül-Yüceer, Y., Cadwallader, K. R. and Drake, M. A. (2002). Volatile flavor components of stored nonfat dry milk. J. Agric. Food Chem. 50:305–312.
  • Karel, M. and Heidelbaugh, M. D. (1973). Recent research and development in the field of low-moisture and intermediate-moisture foods. Crit. Rev. Food Sci. Nutr. 3:329–373.
  • Kasapis, S. (2005). Glass transition phenomena in dehydrated model systems and foods: A review. Drying Technol. 23:731–757.
  • King, V. A. E. and Chen, J. F. (1998). Oxidation of controlled low-temperature vacuum dehydrated and freeze-dried beef and pork. Meat Sci. 48:11–19.
  • Klensporf, D. and Jelen, H. H. (2008). Influence of the addition of raspberry seed extract on changes in the volatile pattern of stored model breakfast cereal. J. Agric. Food Chem. 56:3268–3272.
  • Kong, J., Perkins, L. B., Dougherty, M. P. and Camire, M. E. (2011). Control of lipid oxidation in extruded salmon jerky snacks. J. Food Sci. 76:8–13.
  • Kwok, K., Mauer, L. J. and Taylor, L. S. (2010). Kinetics of moisture-induced hydrolysis in powder blends stored at and below the deliquescence relative humidity: Investigation of sucrose–citric acid mixtures. J. Agric. Food Chem. 58:11716–11724.
  • Labuza, T. P. and Bergquist, S. (1983). Kinetics of oxidation of potato chips under constant temperature and sine wave temperature conditions. J. Food Sci. 48:712–715.
  • Labuza, T. P. and Dugan, Jr., L. R. (1971). Kinetics of lipid oxidation in foods. Crit. Rev. Food Sci. Nutr. 2:355–405.
  • Labuza, T. P., McNally, L., Gallagher, D., Hawkes, J. and Hurtado, F. (1972). Stability of intermediate moisture foods. 1. Lipid oxidation. J. Food Sci. 37:154–159.
  • Labuza, T. P., Tannenbaum, S. R. and Karel, M. (1970). Water content and stability of low-moisture and intermediate-moisture foods. Food Technol. 24:543–550.
  • Li, W., Zhao, C., Tan, J., Jiang, J., Xu, J. and Sun, D. (2013). Roles of methyl orange in preparation of emulsions stabilized by layered double hydroxide particles. Colloidal Surf., A 421:173–180.
  • Lin, S., Hsieh, F., Huff, H. E. (1998). Effects of lipids and processing conditions on lipid oxidation of extruded dry pet food during storage. Anim. Feed Sci. Technol. 71(3):285–296.
  • Lin, S-Y. and Krochta, J. M. (2006). Whey protein coating efficiency on mechanically roughened hydrophobic peanut surfaces. J. Food Sci. 71:E270–E275.
  • Lopez-Rubio, A., Almenar, E., Hernandez-Munoz, P., Lagaron, J., Catala, R. and Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Rev. Int. 20:357–387.
  • Lou, H., Yuan, H., Ma, B., Ren, D., Ji, M. and Oka, S. (2004). Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 65:2391–2399.
  • MacDonald, M. L., Murray, I. V. J. and Axelsen, P. H. (2007). Mass spectrometric analysis demonstrates that BODIPY 581/591 C11 overestimates and inhibits oxidative lipid damage. Free Radical Biol. Med. 42:1392–1397.
  • Madhavi, D. L., Deshpande, S. S. and Salunkhe, D. K. (1996). Food Antioxidants: Technological, Toxicological, and Health Perspectives. Marcel Dekker, New York, NY.
  • Maisuthisakul, P., Gordon, M. H., Pongsawatmanit, R. and Suttajit, M. (2007). Enhancing the oxidative stability of rice crackers by addition of the ethanolic extract of phytochemicals from Cratoxylum formosum Dyer. Asia Pac. J. Clin. Nutr. 16(Suppl 1):37–42.
  • Maloney, J. F., Labuza, T. P., Wallace, D. H. and Karel, M. (1966). Autoxidation of methyl linoleate in freeze-dried model systems. I. Effect of water on the autocatalyzed oxidation. J. Food Sci. 31:878–884.
  • Manzanarez-López, F., Soto-Valdez, H., Auras, R. and Peralta, E. (2011). Release of alpha-tocopherol from poly(lactic acid) films, and its effect on the oxidative stability of soybean oil. J. Food Eng. 104:508–517.
  • Marcos, B., Esteban, M. A., Lopez, P., Alcala, M., Gomez, R., Espejo, J. and Marcos, A. (1997). Monolayer values at 30C of various spices as computed by the BET and GAB models. Z. Lebensm-Unters. Forsch. A 204:109–112.
  • Marmesat, S., Velasco, J., Ruiz-Méndez, M. V. and Dobarganes, M. C. (2006). Oxidative quality of commercial fried nuts: Evaluation of a surface and an internal lipid fraction. Grasas Aceites 57:276–283.
  • Márquez-Castillo, A. and Vidal-Quintanar, R. L. (2011). Improvements in the shelf life of commercial corn dry masa flour (CMF) by reducing lipid oxidation. J. Food Sci. 76:C236–C241.
  • Martinez, F. and Labuza, T. P. (1968). Rate of deterioration of freeze-dried salmon as a function of relative humidity. J. Food Sci. 33:241–247.
  • Martínez-Tomé, M., Murcia, M. A., Frega, N., Ruggieri, S., Jiménez, A. M., Roses, F. and Parras, P. (2004). Evaluation of antioxidant capacity of cereal brans. J. Agric. Food Chem. 52:4690–4699.
  • McClements, D. J. and Decker, E. A. (2008). Lipids. In: Fennema's Food Chemistry, 4th ed., pp. 155–216. Srinivasan, D., Parkin, K. L. and Fennema, O. R., Eds., CRC Press/Taylor & Francis, Boca Raton, FL.
  • Mestrallet, M. G., Nepote, V., Quiroga, P. R. and Grosso, N. R. (2009). Effect of prickly pear (Opuntia Ficus-Indica) and algarrobo (Prosopis Spp.) pod syrup coatings on the sensory and chemical stability in roasted peanut products. J. Food Qual. 32:334–351.
  • Miltz, J., Hoojjat, P., Han, J. K., Giacin, J. R., Harte, B. R. and Gray, I. J. (1988). Loss of antioxidants from high-density polyethylene. In: Food and Packaging Interactions, pp. 83–93. Hotchkiss, J. H., Ed., American Chemical Society, Washington, DC.
  • Mosca, M., Cuomo, F., Lopez, F. and Ceglie, A. (2013). Role of emulsifier layer, antioxidants and radical initiators in the oxidation of olive oil-in-water emulsions. Food Res. Int. 50:377–383.
  • Naguib, Y. M. A. (1998). A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal. Biochem. 265:290–298.
  • Nanditha, B. and Prabhasankar, P. (2009). Antioxidants in bakery products: A review. Crit. Rev. Food Sci. Nutr. 49:1–27.
  • Norajit, K., Gu, B. and Ryu, G. (2011). Effects of the addition of hemp powder on the physicochemical properties and energy bar qualities of extruded rice. Food Chem. 129:1919–1925.
  • National Cancer Institute. (2010a). Mean Intake of Solid Fats & Percentage Contribution (kcal) of Various Foods Among US Children & Adolescents, by Age, NHANES 2003–04 [Internet]. National Cancer Institute, Bethesda, MD. Available from http://riskfactor.cancer.gov/diet/foodsources/solid_fats/table1a.html. Accessed July 12, 2012.
  • National Cancer Institute. (2010b). Top Food Sources of Saturated Fat Among US Population, 2005–2006 NHANES [Internet]. National Cancer Institute, Bethesda, MD. Available from http://riskfactor.cancer.gov/diet/foodsources/sat_fat/sf.html. Accessed July 12, 2012.
  • Orlien, V., Andersen, A. B., Sinkko, T. and Skibsted, L. H. (2000). Hydroperoxide formation in rapeseed oil encapsulated in a glassy food model as influenced by hydrophilic and lipophilic radicals. Food Chem. 68:191–199.
  • Ortiz-Vazquez, H., Shin, J., Soto-Valdez, H. and Auras, R. (2011). Release of butylated hydroxytoluene (BHT) from poly(lactic acid) films. Polym. Test. 30:463–471.
  • Ortolá, M. D., Gutiérrez, C. L., Chiralt, A. and Fito, P. (1998). Kinetic study of lipid oxidation in roasted coffee. Food Sci. Technol. Int. 4:67–73.
  • Paik, J. S., Shint, J. I., Kimt, J. I. and Choit, P. K. (1994). Effect of nitrogen flushing on shelf-life of packaged potato chips. Packag. Technol. Sci. 7:81–85.
  • Panya, A., Laguerre, M., Bayrasy, C., Lecomte, J., Villeneuve, P., McClements, D. J. and Decker, E. A. (2012). An investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in oil-in-water emulsions. J. Agric. Food Chem. 60:2692–2700.
  • Pap, E. W. H., Drummen, G. P. C., Winter, V. J., Kooij, T. W. A., Rijken, P., Wirtz, K. W. A., Op den Kamp, J. A. F., Hage, W. J. and Post, J. A. (1999). Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591. FEBS Lett. 453:278–282.
  • Paraman, I., Wagner, M. E. and Rizvi, S. S. (2012). Micronutrient and protein-fortified whole grain puffed rice made by supercritical fluid extrusion. J. Agric. Food Chem. 60:11188–11194.
  • Peleg, M. (1992). On the use of the WLF model in polymers and foods. Crit. Rev. Food Sci. Nutr. 32:59–66.
  • Peleg, M. (1996). On modeling changes in food and biosolids at and around their glass transition temperature range. Crit. Rev. Food Sci. Nutr. 36:49–67.
  • Pinheiro do Prado, A. C., Monalise Aragão, A., Fett, R. and Block, J. M. (2009). Antioxidant properties of pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion. Grasas Aceites 60:330–335.
  • Ponginebbi, L., Nawar, W. W. and Chinachoti, P. (2000). Effect of relative humidity on lipid oxidation in freeze-dried emulsions. Grasas Aceites 51:348–354.
  • Poole, P. L. and Finney, J. L. (1983). Sequential hydration of a dry globular protein. Biopolymers 22:255–260.
  • Prabhakar, J. V. and Amla, B. L. (1978). Influence of water activity on the formation of monocarbonyl compounds in oxidizing walnut oil. J. Food Sci. 43:1839–1843.
  • Rababah, T. M., Yücel, S., Khalil, I. E., Alhamad, M. N., Al-Mahasneh, M. A., Yang, W., Muhammad, A. H. and Ismaeal, K. (2011). Effect of grape seed extracts on the physicochemical and sensory properties of corn chips during storage. J. Am. Oil Chem. Soc. 88:631–637.
  • Ragnarsson, J. O., Leick, D. and Labuza, T. P. (1977). Accelerated temperature study of antioxidants. J. Food Sci. 42:1536–1539.
  • Rahman, M. S. (2009). Food stability beyond water activity and glass transition: Macro-micro region concept in the state diagram. Int. J. Food Prop. 12:726–740.
  • Rahman, M. S., Al-Belushi, R. M., Guizani, N., Al-Saidi, G. S. and Soussi, B. (2009). Fat oxidation in freeze-dried grouper during storage at different temperatures and moisture contents. Food Chem. 114:1257–1264.
  • Ramesh, M. N., Wolf, W., Tevini, D. and Jung, G. (1999). Studies on inert gas processing of vegetables. J. Food Eng. 40:199–205.
  • Reed, K. A., Sims, C. A., Gorbet, D. W. and O’Keefe, S. F. (2002). Storage water activity affects flavor fade in high and normal oleic peanuts. Food Res. Int. 35:769–774.
  • Rhee, K. S., Cho, S.H. and Pradahn, A. M. (1999). Composition, storage stability and sensory properties of expanded extrudates from blends of corn starch and goat meat, lamb, mutton, spent fowl meat, or beef. Meat Sci. 52:135–141.
  • Rodrigues, F. H. A., Feitosa, J. P. A., Ricardo, N. M. P. S., de Franca, F. C. F. and Carioca, J. O. B. (2006). Antioxidant activity of cashew nut shell liquid (CNSL) derivatives on the thermal oxidation of synthetic cis-1,4-polyisoprene. J. Brazil Chem. Soc. 17:265–271.
  • Roos, Y. and Karel, M. (1991). Applying state diagrams to food processing and development. Food Technol. 45:68–71.
  • Roos, Y. H. (1993). Water activity and physical state effects on amorphous food stability. J. Food Process. Pres. 16:433–447.
  • Rosario, Z. and Francisco, H. (2005). Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 45:45–59.
  • Sablani, S. S. and Kasapis, S. (2006). Glass transition and water activity of freeze-dried shark. Drying Technol. 24:1003–1009.
  • Sablani, S. S., Kasapis, S., Rahman, M. S., Al-Jabri, A. and Al-Habsi, N. (2004). Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Res. Int. 37:915–924.
  • Sanchez-Bel, P., Egea, I., Flores, F. B., Romojaro, F., Martinez-Madrid, M. C. and Pretel, M. T. (2011). Roasting and packaging in nitrogen atmosphere protect almond var. Guara against lipid oxidation. Food Sci. Technol. Int. 17:529–540.
  • Sargis, R. M. and Subbaiah, P. V. (2003). Trans unsaturated fatty acids are less oxidizable than cis unsaturated fatty acids and protect endogenous lipids from oxidation in lipoproteins and lipid bilayers. Biochemistry 42:11533–11543.
  • Scussel, V. M., Giordano, B. N., Simao, V., Manfio, D., Galvao, S. and Rodrigues, M. N. F. (2011). Effect of oxygen-reducing atmospheres on the safety of packaged shelled Brazil nuts during storage. Int. J. Anal. Chem. 2011:1–9.
  • Sharma, G. K., Semwal, A. D., Narasimha Murthy, M. C. and Arya, S. S. (1997). Suitability of antioxygenic salts for stabilization of fried snacks. Food Chem. 60:19–24.
  • Shin, H.-S. and Lee, Y. (2003). Antioxidant-impregnated food packaging materials for inhibition of lipid oxidation. Food Sci. Biotechnol. 12:737–746.
  • Slade, L. and Levine, H. (1991). Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30:115–360.
  • Soto-Valdez, H. (2011). Fabrication of poly (lactic acid) films with resveratrol and the diffusion of resveratrol into ethanol. J. Appl. Polym. Sci. 121:970–978.
  • Stapelfeldt, H., Nielsen, B. R. and Skibsted, L. H. (1997). Towards use of electron spin resonance spectrometry in quality control of milk powder. Correlation between sensory score of instant whole milk powders and concentration of free radicals and 2-thiobarbituric acid reactive substances. Milchwissenschaft 52:682–685.
  • Sullivan, J. C, Budge, S. M. and St-Onge, M. (2011). Modeling the primary oxidation in commercial fish oil preparations. Lipids 46:87–93.
  • Sun, Q., Senecal, A., Chinachoti, P. and Faustman, C. (2002). Lipid oxidation and protein solubility in freeze-dried beef during storage. Food Chem. Toxicol. 67:2512–2516.
  • Sun, W. Q., Leopold, A. C., Crowe, L. M. and Crowe, J. H. (1996). Stability of dry liposomes in sugar glasses. Biophys. J. 70:1769–1776.
  • Tazi, S., Plantevin, F., Di Falco, C., Puigserver, A. and Ajandouz, E. H. (2009). Effects of light, temperature and water activity on the kinetics of lipoxidation in almond-based products. Food Chem. 115:958–964.
  • Thomsen, M. K., Lauridsen, L., Skibsted, L. H. and Risbo, J. (2005). Temperature effect on lactose crystallization, Maillard reactions, and lipid oxidation in whole milk powder. J. Agric. Food Chem. 53:7082–7090.
  • Tian, F., Decker, E. A. and Goddard, J. M. (2012). Control of lipid oxidation by nonmigratory active packaging films prepared by photoinitiated graft polymerization. J. Agric. Food Chem. 60:7710–7718.
  • Tikekar, R. V., Johnson, R. A. and Nitin, N. (2011a). Real-time measurement of oxygen transport across an oil–water emulsion interface. J. Food Eng. 103:14–20.
  • Tikekar, R. V., Johnson, R. A. and Nitin, N. (2011b). Fluorescence imaging and spectroscopy for real-time, in-situ characterization of interactions of free radicals with oil-in-water emulsions. Food Res. Int. 44:139–145.
  • Tikekar, R. V. and Nitin, N. (2011). Effect of physical state (solid vs. liquid) of lipid core on the rate of transport of oxygen and free radicals in solid lipid nanoparticles and emulsion. Soft Matter 7:8149–8157.
  • U.S. Dept. of Health and Human Services, United States Dept. of Agriculture, United States. Dietary Guidelines Advisory Committee. (2010). Dietary Guidelines for Americans, 2010. U.S. Dept. of Health and Human Services, U.S. Dept. of Agriculture, Washington, DC.
  • van Aardt, M., Duncan, S. E., Marcy, J. E., Long, T. E., O’Keefe, S. F. and Sims, S. R. (2007). Release of antioxidants from poly(lactide-co-glycolide) films into dry milk products and food simulating liquids. Int. J. Food Sci. Tech. 42:1327–13237.
  • Vega, C. and Roos, Y. H. (2006). Invited review: Spray-dried dairy and dairy-like emulsions–compositional considerations. J. Dairy Sci. 89:383–401.
  • Viscidi, K. A., Dougherty, M. P., Briggs, J. and Camire, M. E. (2004). Complex phenolic compounds reduce lipid oxidation in extruded oat cereals. LWT-Food Sci. Technol. 37:789–796.
  • Wambura, P. and Yang, W. W. (2010). Ultrasonication and edible coating effects on lipid oxidation of roasted peanuts. Food Bioprocess. Technol. 3:620–628.
  • Waraho, T., McClements, D. J. and Decker, E. A. (2011). Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Technol. 22:3–13.
  • Waterman, K. C., Gerst, P. and MacDonald, B. C. (2012). Relative humidity hysteresis in solid-state chemical reactivity: A pharmaceutical case study. J. Pharm. Sci. 101:610–615.
  • Wessling, C. (2001). Antioxidant ability of BHT- and alpha-tocopherol-impregnated LDPE film in packaging of oatmeal. J. Sci. Food Agric. 81:194–201.
  • Westermann, S., Brüggemann, D. A., Olsen, K. and Skibsted, L. H. (2009). Light-induced formation of free radicals in cream cheese. Food Chem. 116:974–981.
  • WHO (World Health Organization) Europe. (2003). Food based dietary guidelines in the WHO European region [Internet]. Available from http://www.euro.who.int/__data/assets/pdf_file/0017/150083/E79832.pdf. Accessed Sept 15, 2012.
  • Zhang, D., Haputhanthri, R., Ansar, S., Vangala, K., De Silva, H., Sygula, A., Saebo, S. and Pittman, Jr., C. U. (2010). Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 398:3193–3201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.