5,145
Views
124
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review

, , &

REFERENCES

  • Alaejos, M. S. and Afonso, A. M. (2011). Factors that affect the content of heterocyclic aromatic amines in foods. CRFSFS 10:52–108.
  • Alaejos, M. S., González, V. and Afonso, A. M. (2007). Exposure to heterocyclic aromatic amines from the consumption of cooked red meat and its effect on human cancer risk: A review. Food Addit. Contam. Part A 25:2–24.
  • Alexander, J., Benford, D., Cockburn, A., Cravedi, J. P., Dogliotti, E., Di Domenico, A., Fernandez-Cruz, M. L., Flink-Gremmels, J., Fürst, P., Galli, C., Grandjean, P., Gzyl, J., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J., van Leeuwen, R., Van Peteghem, C. and Verger, P. (2008). Polycyclic aromatic hydrocarbons in food - Scientific opinion of the panel on contaminants in the food chain (Question N° EFSA-Q-2007–136). The EFSA Journal 724:1–114.
  • Alexander, D. D., Cushing, C. A., Lowe, K. A., Sceurman, B. and Roberts, M. A. (2009). Meta-analysis of animal fat or animal protein intake and colorectal cancer. Am. J. Clin. Nutr. 89:1402–1409.
  • Al-Sohaily, S., Biankin, A., Leong, R., Kohonen-Corish, M. and Warusavitarne, J. (2012). Molecular pathways in colorectal cancer. J. Gastroen. Hepatol. 27:1423–1431.
  • Angeli, J. P., Garcia, C. C., Sena, F., Freitas, F. P., Miyamoto, S., Medeiros, M. H. and Di, M. P. (2011). Lipid hydroperoxide-induced and hemoglobin-enhanced oxidative damage to colon cancer cells. Free Radic. Biol. Med. 51:503–515.
  • Augustsson, K., Skog, K., Jägerstad, M. and Teineck, G. (1997). Assessment of the human exposure to heterocyclic amines. Carcinogenesis 18:1931–1935.
  • Baradat, M., Jouanin, I., Dalleau, S., Taché, S., Gieules, M., Debrauwer, L., Canlet, C., Huc, L., Dupuy, J., Pierre, F. H. F. and Guéraud, F. (2011). 4-Hydroxy-2(E)-nonenal metabolism differs in Apc(+/+) cells and in Apc(Min/+) cells: It may explain colon cancer promotion by heme iron. Chem. Res. Toxicol. 24:1984–1993.
  • Baron, C. P. and Andersen, H. J. (2002). Myoglobin-induced lipid oxidation. A review. J. Agric. Food Chem. 50:3887–3897.
  • Bartsch, H. and Nair, J. (2004). Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect. Prev. 28:385–391.
  • Bastide, N. M., Pierre, F. H. F. and Corpet, D. E. (2011). Heme iron from meat and risk of colorectal cancer: A meta-analysis and a review of the mechanisms involved. CAPR 4:177–184.
  • Basu, A. K. and Marnett, L. J. (1983). Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis 4:331–333.
  • Boland, C. R. (2010). Chronic inflammation, colorectal cancer and gene polymorphisms. Dig. Dis. 28:590–595.
  • Boland, C. R. and Goel, A. (2010). Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087.
  • Boleij, A. and Tjalsma, H. (2012). Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol. Rev. 87:701–730.
  • Bos, J. L. (1989). Ras oncogenes in human cancer: A review. Cancer Res. 49:4682–4689.
  • Boyle, P., Boffetta, P. and Autier, P. (2008). Diet, nutrition and cancer: Public, media and scientific confusion. Ann. Oncol. 19:1665–1667.
  • Boyle, P., Zaridze, D. and Smans, M. (1985). Descriptive epidemiology of colorectal cancer. Int. J. Cancer 36:9–18.
  • Bruce, W. R. (1987). Recent hypotheses for the origin of colon cancer. Cancer Res. 47:4237–4242.
  • Byres, E., Paton, A. W., Paton, J. C., Lofling, J. C., Smith, D. F., Wilce, M. C. J., Talbot, U. M., Chong, D. C., Yu, H., Huang, S., Chen, X., Varki, N. M., Varki, A., Rossjohn, J. and Beddoe, T. (2008). Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456:648–652.
  • Calle, E. E. and Kaaks, R. (2004). Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4:579–591.
  • Carlsen, C. U., Moller, J. K. S. and Skibsted, L. H. (2005). Heme-iron in lipid oxidation. Coord. Chem. Rev. 249(3-4):485–498.
  • Castellarin, M., Warren, R. L., Freeman, J. D., Dreolini, L., Krzywinski, M., Strauss, J., Barnes, R., Watson, P., Allen-Vercoe, E., Moore, R. A. and Holt, R. A. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22:299–306.
  • CFR. (2012). 21 CFR: Food and Drugs. Available from http://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol3/pdf/CFR-2012-title21-vol3.pdf. Accessed October 21, 2013.
  • Chan, D. S. M., Lau, R., Aune, D., Vieira, R., Greenwood, D. C., Kampman, E. and Norat, T. (2011). Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS ONE 6:e20456.
  • Chenni, F. Z., Taché, S., Naud, N., Guéraud, F., Hobbs, D. A., Kunhle, G. G. C., Pierre, F. H. and Corpet, D. E. (2013). Heme-induced biomarkers associated with red meat promotion of colon cancer are not modulated by the intake of nitrite. Nutr. Cancer 65:227–233.
  • Cirillo, T., Montuori, P., Mainardi, P., Russo, I., Fasano, E., Triassi, M. and Amodio-Cocchieri, R. (2010). Assessment of the dietary habits and polycyclic aromatic hydrocarbon exposure in primary school children. Food Addit. Contam. Part A 27:1025–1039.
  • Clarke, D. B., Startin, J. R., Hasnip, S. K., Crews, C., Lloyd, A. S. and Dennis, M. J. (2011). Progress towards the characterisation of faecal N-nitroso compounds. Anal. Methods 3:544–551.
  • Clark, E. M., Mahoney, A. W. and Carpenter, C. E. (1997). Heme and total iron in ready-to-eat chicken. J. Agric. Food Chem. 45:124–126.
  • Corpet, D. E. (2011). Red meat and colon cancer: Should we become vegetarians, or can we make meat safer? Meat Sci. 89:310–316.
  • Corpet, D. E., Yin, Y., Zhang, X. M., Remesy, C., Stamp, D., Medline, A., Thompson, L., Bruce, W. R. and Archer, M. C. (1995). Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein. Nutr. Cancer 23:271–281.
  • Coussens, L. M. and Werb, Z. (2002). Inflammation and cancer. Nature 420:860–867.
  • Cross, A. J., Ferrucci, L. M., Risch, A., Graubard, B. I., Ward, M. H., Park, Y., Hollenbeck, A. R., Schatzkin, A. and Sinha, R. (2010). A large prospective study of meat consumption and colorectal cancer risk: An investigation of potential mechanisms underlying this association. Cancer Res. 70:2406–2414.
  • Cross, A. J., Greetham, H. L., Pollock, J. R. A., Rowland, I. R. and Bingham, S. A. (2006). Variability in fecal water genotoxicity, determined using the Comet assay, is independent of endogenous N-Nitroso compound formation attributed to red meat consumption. Environ. Mol. Mutagen. 47:179–184.
  • Cross, A. J. and Sinha, R. (2004). Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ. Mol. Mutagen. 44:44–55.
  • Dannenberger, D., Reichardt, W., Danier, J., Numberg, G. and Ender, K. (2007). Investigations on selected essential micronutrients in muscle of german pure and crossbred pigs. Fleischwirtschaft 87:90–93.
  • Davis, M. E., Lisowyj, M. P., Zhou, L., Wisecarver, J. L., Gulizia, J. M., Shostrom, V. K., Naud, N., Corpet, D. E. and Mirvish, S. S. (2012). Induction of colonic aberrant crypts in mice by feeding apparent N-nitroso compounds derived from hot dogs. Nutr. Cancer 64:342–349.
  • de Kok, T. M. C. M. and van Maanen, J. M. S. (2000). Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat. Res-Rev. Mutat. 463:53–101.
  • Demeyer, D. and De Smet, S. (2011). Relative importance and profile of processed meat intake in relation to colon cancer death rates in Europe. In: Proceedings of the 57th International Congress of Meat Science Technology (57th ICoMST), 7–12 August 2011, Ghent, Belgium. pp. 7–12.
  • Demeyer, D., Honikel, K. and De Smet, S. (2008). The World Cancer Research Fund report 2007: A challenge for the meat processing industry. Meat Sci. 80:953–959.
  • Deziel, N. C., Buckley, T. J., Sinha, R., Abubaker, S., Platz, E. A. and Strickland, P. T. (2012). Comparability and repeatability of methods for estimating the dietary intake of the heterocyclic amine contaminant 2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine (PhIP). Food Addit. Contam. Part A; 29:1202–1211.
  • Drabik-Markiewicz, G., Van den Maagdenberg, K., De Mey, E., Deprez, S., Kowalska, T. and Paelinck, H. (2009). Role of proline and hydroxyproline in N-nitrosamine formation during heating in cured meat. Meat Sci. 81:479–486.
  • Dundar, A., Sançoban, C. and Yilmaz, M. T. (2012). Response surface optimization of effects of some processing variables on carcinogenic/mutagenic heterocyclic aromatic amine (HAA) content in cooked patties. Meat Sci. 91:325–333.
  • Duranton, B., Freund, J. N., Galluser, M., Schleiffer, R., Gosse, F., Bergmann, C., Hasselmann, M. and Raul, F. (1999). Promotion of intestinal carcinogenesis by dietary methionine. Carcinogenesis 20:493–497.
  • D’evoli, L., Salvatore, P., Lucarini, M., Nicoli, S., Aguzzi, A., Gabrielli, P. and Lombardi-Boccia, G. (2009). Nutritional value of traditional Italian meat-based dishes: Influence of cooking methods and recipe formulation. Int. J. Food Sci. Nutr. 60:38–49.
  • d’Ischia, M., Napolitano, A., Manini, P. and Panzella, L. (2011). Secondary targets of nitrite-derived reactive nitrogen species: Nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem. Res. Toxicol. 24:2071–2092.
  • EC. (2006). Directive 2006/52/EC of the European Parliament and of the Council of 5 July 2006 amending Directive 95/2/EC on food additives other than colours and sweeteners and Directive 94/35/EC on sweeteners for use in foodstuffs. Available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:204:0010:0022:EN:PD. Accessed October 21, 2013.
  • Engemann, A., Focke, C. and Humpf, H. U. (2013). Intestinal formation of N-nitroso compounds in the pig cecum model. J. Agric. Food Chem. 61:998–1005.
  • Engle, S. J., Ormsby, I., Pawlowski, S., Boivin, G. P., Croft, J., Balish, E. and Doetschman, T. (2002). Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res. 62:6362–6366.
  • EPIC. (2012a). European Prospective Investigation into Cancer and Nutrition: Food content of potential carcinogens. Available from http://www.epic-spain.com/libro.html. Accessed August 15, 2013a.
  • EPIC. (2012b). European prospective investigation into cancer and nutrition. Available from http://epic.iarc.fr/keyfindings.php. Accessed August 15, 2013b.
  • Fearon, E. R. and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell 61:759–767.
  • Ferrucci, L. M., Sinha, R., Huang, W. Y., Berndt, S. I., Katki, H. A., Schoen, R. E., Hayes, R. B. and Cross, A. J. (2012). Meat consumption and the risk of incident distal colon and rectal adenoma. Br. J. Cancer 106:608–616.
  • FOD economie. (2010). Prijzen, kosten en rendabiliteit in de varkenskolom. Available from http://economie.fgov.be/nl/binaries/studyporcnltcm325–73348.pdf. Accessed August 15, 2013.
  • Freybler, L. A., Gray, J. I., Asghar, A., Booren, A. M., Pearson, A. M. and Buckley, D. J. (1993). Nitrite stabilization of lipids in cured pork. Meat Sci. 33:85–96.
  • Fung, T. T., Hu, F. B., Wu, K., Chiuve, S. E., Fuchs, C. S. and Giovannucci, E. (2010). The Mediterranean and dietary approaches to stop hypertension (DASH) diets and colorectal cancer. Am. J. Clin. Nutr. 92:1429–1435.
  • Fu, Z., Shrubsole, M. J., Smalley, W. E., Wu, H., Chen, Z., Shyr, Y., Ness, R. M. and Zheng, W. (2011). Association of meat intake and meat-derived mutagen exposure with the risk of colorectal polyps by histologic type. CAPR 4:1686–1697.
  • Galbraith, H. (2002). Hormones in international meat production: Biological, sociological and consumer issues. Nutr. Res. Rev. 15:293–314.
  • Gay, L. J., Mitrou, P. N., Keen, J., Bowman, R., Naguib, A., Cooke, J., Kuhnle, G. G., Burns, P. A., Luben, R., Lentjes, M., Khaw, K. T., Ball, R. Y., Ibrahim, A. E. and Arends, M. J. (2012). Dietary, lifestyle and clinicopathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk study. J. Pathol. 228:405–415.
  • Gerber, N., Brogioli, R., Hattendorf, B., Scheeder, M. R., Wenk, C. and Gunther, D. (2009). Variability of selected trace elements of different meat cuts determined by ICP-MS and DRC-ICPMS. Animal 3:166–172.
  • Glei, M., Klenow, S., Sauer, J., Wegewitz, U., Richter, K. and Pool-Zobel, B. L. (2006). Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat. Res-Fund. Mol. M. 594:162–171.
  • Goldman, R. and Shields, P. G. (2003). Food mutagens. J. Nutr. 133:965S–973S.
  • Gottschalg, E., Scott, G. B., Burns, P. A. and Shuker, D. E. G. (2006). Potassium diazoacetate-induced p53 mutations in vitro in relation to formation of O6-carboxymethyl- and O6-methyl-2′-deoxyguanosine DNA adducts: Relevance for gastrointestinal cancer. Carcinogenesis 28:356–362.
  • Goutefongea, R., Cassens, R. G. and Woolford, G. (1977). Distribution of sodium nitrite in adipose tissue during curing. J. Food Sci. 42:1637–1641.
  • Gratz, S., Wallace, R. J. and El-Nezami, H. (2011). Recent perspectives on the relations between faecal mutagenicity, genotoxicity and diet. FPHAR 2:1–9.
  • Greenfield, H., Acrot, J., Barnes, J. A., Cunningham, J., Adorno, P., Stobaus, T., Turne, R. K., Beilken, S. L. and Muller, W. J. (2009). Nutrient composition of Australian retail pork cuts 2005/2006. Food Chem. 117:721–730.
  • Grivennikov, S. I., Greten, F. R. and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140:883–899.
  • Gunter, M. J., Probst-Hensch, N. M., Cortessis, V. K., Kulldorff, M., Haile, R. W. and Sinha, R. (2005). Meat intake, cooking-related mutagens and risk of colorectal adenoma in a sigmoidoscopy-based case-control study. Carcinogenesis 26:637–642.
  • Halliwell, B. and Gutteridge, J. M. (1984a). Free radicals, lipid peroxidation, and cell damage. Lancet 2:1095.
  • Halliwell, B. and Gutteridge, J. M. (1984b). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1–14.
  • Haorah, J., Zhou, L., Wang, X., Xu, G. and Mirvish, S. S. (2001). Determination of total N-nitroso compounds and their precursors in Frankfurters, fresh Meat, dried salted fish, sauces, tobacco, and tobacco smoke particulates. J. Agric. Food Chem. 49:6068–6078.
  • Hara, A., Sasazuki, S., Inoue, M., Iwasaki, M., Shimazu, T., Sawada, N., Yamaji, T., Takachi, R. and Tsugane, S. (2012). Zinc and heme iron intakes and risk of colorectal cancer: A population-based prospective cohort study in Japan. Am. J. Clin. Nutr. 96:864–873.
  • Hebels, D. G. A. J., Brauers, K. J. J., van Herwijnen, M. H. M., Georgiadis, P. A., Kyrtopoulos, S. A., Kleinjans, J. C. S. and de Kok, T. M. C. M. (2011). Time-series analysis of gene expression profiles induced by nitrosamides and nitrosamines elucidates modes of action underlying their genotoxicity in human colon cells. Toxicol. Lett. 207:232–241.
  • Hedlund, M., Padler-Karavani, V., Varki, N. M. and Varki, A. (2008). Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. P. Natl. Aca. Sci. USA 105:18936–18941.
  • Heinz, G. and Hautzinger, P. (2007). Meat Processing Technology for Small- to Medium-Scale Producers, RAP Publication 2007/20. Food and Agriculture Organization (FAO) of the United Nations, Regional Office for Asia and the Pacific, Bangkok, 2007. Bangkok: FAO Regional Office for Asia and the Pacific (RAP). RAP Publication 2007/20: 456 pages. Available from http://www.fao.org/docrep/010/ai407e/AI407E03.htm. Accessed November 13, 2015.
  • Hogg, N. (2007). Red meat and colon cancer: Heme proteins and nitrite in the gut. A commentary on ‘Diet-induced endogenous formation of nitroso compounds in the GI tract’. Free Radic. Biol. Med. 43:1037–1039.
  • Honikel, K. O. (2008). The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 78:68–76.
  • Hussain, S. P., Hofseth, L. J. and Harris, C. C. (2003). Radical causes of cancer. Nat. Rev. Cancer 3:276–285.
  • IARC (2012). Benzo[a]pyrene. IARC Monogr. Eval. Carcinog. Risks Hum.; 100F:111–144.
  • IARC. (2013). International agency for research on cancer. Agents classified by IARC monographs. Available from http://monographs.iarc.fr/ENG/Classification/. Accessed August 1, 2013.
  • IJssennagger, N., Derrien, M., van Doorn, G. M., Rijnierse, A., van den Bogert, B., Müller, M., Dekker, J., Kleerebezem, M. and Van der Meer, R. (2012b). Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS ONE 7:e49868.
  • IJssennagger, N., de Wit, N., Müller, M. and Van der Meer, R. (2012a). Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon. PLoS ONE 7:e43260.
  • IJssennagger, N., Rijnierse, A., de Wit, N. J. W., Boekschoten, M. V., Dekker, J., Schonewille, A., Muller, M. and Van der Meer, R. (2013). Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon. Carcinogenesis 34:1628–1635.
  • Itzkowitz, S. H. and Yio, X. (2004). Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol. Gastr. L. 287:G7–G17.
  • Jakszyn, P., Agudo, A., Ibanez, R., Garcia-Closas, R., Pera, G., Amiano, P. and Gonzalez, C. A. (2004). Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J. Nutr. 134:2011–2014.
  • Jamin, E. L., Riu, A., Douki, T., Debrauwer, L., Cravedi, J. P., Zalko, D. and Audebert, M. (2013). Combined genotoxic effects of a polycyclic aromatic hydrocarbon (B(a)P) and an heterocyclic amine (PhIP) in relation to colorectal carcinogenesis. PLoS ONE 8:e58591.
  • Jiang, H., Tang, Y., Garg, H. K., Parthasarathy, D. K., Torregrossa, A. C., Hord, N. G. and Bryan, N. S. (2012). Concentration- and stage-specific effects of nitrite on colon cancer cell lines. Nitric Oxide 26:267–273.
  • Johnson, C., Wei, C., Ensor, J., Smolenski, D., Amos, C., Levin, B. and Berry, D. (2013). Meta-analyses of colorectal cancer risk factors. CCC 24:1207–1222.
  • Joosen, A. M. C. P., Kuhnle, G. G. C., Aspinall, S. M., Barrow, T. M., Lecommandeur, E., Azqueta, A., Collins, A. R. and Bingham, S. A. (2009). Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis 30:1402–1407.
  • Joosen, A. M. C. P., Lecommandeur, E., Kuhnle, G. G. C., Aspinall, S. M., Kap, L. and Rodwell, S. A. (2010). Effect of dietary meat and fish on endogenous nitrosation, inflammation and genotoxicity of faecal water. Mutagenesis 25:243–247.
  • Jägerstad, M. and Skog, K. (2005). Genotoxicity of heat-processed foods. Mutat. Res.-Fund. Mol. M. 574:156–172.
  • Kabat, G. C., Miller, A. B., Jain, M. and Rohan, T. E. (2007). A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br. J. Cancer 97:118–122.
  • Kado, S., Uchida, K., Funabashi, H., Iwata, S., Nagata, Y., Ando, M., Onoue, M., Matsuoka, Y., Ohwaki, M. and Morotomi, M. (2001). Intestinal microflora are cecessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res. 61:2395–2398.
  • Kanazawa, K. and Ashida, H. (1998). Dietary hydroperoxides of linoleic acid decompose to aldehydes in stomach before being absorbed into the body. BBA Lipid. Lipid Met. 1393:349–361.
  • Kanner, J. (2007). Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 51:1094–1101.
  • Kanner, J., Frankel, E., Granit, R., German, B. and Kinsella, J. E. (1994). Natural antioxidants in grapes and wines. J. Agric. Food Chem. 42:64–69.
  • Kanner, J., Gorelik, S., Roman, S. and Kohen, R. (2012). Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: The stomach as a bioreactor. J. Agric. Food Chem. 60:8790–8796.
  • Kassie, F., Lhoste, E. F., Bruneau, A., Zsivkovits, M., Ferk, F., Uhl, M., Zidek, T. and Knasmüller, S. (2004). Effect of intestinal microfloras from vegetarians and meat eaters on the genotoxicity of 2-amino-3-methylimidazo[4,5-f]quinoline, a carcinogenic heterocyclic amine. J. Chromatogr. B 802:211–215.
  • Kazerouni, N., Sinha, R., Hsu, C. H., Greenberg, A. and Rothman, N. (2001). Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 39:423–436.
  • Knekt, P., Järvinen, R., Dich, J. and Hakulinen, T. (1999). Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: A follow-up study. Int. J. Cancer 80:852–856.
  • Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., Baselga, J., Liu, C., Shivdasani, R. A., Ogino, S., Birren, B. W., Huttenhower, C., Garrett, W. S. and Meyerson, M. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22:292–298.
  • Kraus, S. and Arber, N. (2009). Inflammation and colorectal cancer. Curr. Opin. Pharmacol. 9:405–410.
  • Kuhnle, G. G. C. and Bingham, S. A. (2007). Dietary meat, endogenous nitrosation and colorectal cancer. Biochem. Soc. Trans. 35:1355–1357.
  • Kuhnle, G. G. C., Story, G. W., Reda, T., Mani, A. R., Moore, K. P., Lunn, J. C. and Bingham, S. A. (2007). Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic. Biol. Med. 43:1040–1047.
  • Larsson, S. C., Rafter, J., Holmberg, L., Bergkvist, L. and Wolk, A. (2005). Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: The Swedish Mammography Cohort. Int. J. Cancer 113:829–834.
  • Leach, S. A., Thompson, M. and Hill, M. (1987). Bacterially catalysed N-nitrosation reactions and their relative importance in the human stomach. Carcinogenesis 8:1907–1912.
  • Lee, D. H., Anderson, K. E., Harnack, L. J., Folsom, A. R. and Jacobs, D. R. (2004). Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women's Health Study. J. Natl. Cancer I. 96:403–407.
  • Le Marchand, L., Donlon, T., Seifried, A. and Wilkens, L. R. (2002). Red meat intake, CYP2E1 genetic polymorphisms, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prevent. 11:1019–1024.
  • Leuratti, C., Watson, M. A., Deag, E. J., Welch, A., Singh, R., Gottschalg, E., Marnett, L. J., Atkin, W., Day, N. E., Shuker, D. E. G. and Bingham, S. A. (2002). Detection of malondialdehyde DNA adducts in human colorectal mucosa: Relationship with diet and the presence of adenomas. Cancer Epidemiol. Biomarkers Prevent. 11:267–273.
  • Lewin, M. H., Bailey, N., Bandaletova, T., Bowman, R., Cross, A. J., Pollock, J., Shuker, D. E. G. and Bingham, S. A. (2006). Red meat enhances the colonic formation of the DNA adduct O6-Carboxymethyl Guanine: Implications for colorectal cancer risk. Cancer Res. 66:1859–1865.
  • Lindahl, T. (1982). DNA repair enzymes. Annu. Rev. Biochem. 51:61–87.
  • Liu, L., Zhuang, W., Wang, R. Q., Mukherjee, R., Xiao, S. M., Chen, Z., Wu, X. T., Zhou, Y. and Zhang, H. Y. (2011). Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur. J. Nutr. 50:173–184.
  • Loh, Y. H., Jakszyn, P., Luben, R. N., Mulligan, A. A., Mitrou, P. N. and Khaw, K. T. (2011). N-nitroso compounds and cancer incidence: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am. J. Clin. Nutr. 93:1053–1061.
  • Lombardi-Boccia, G., Martinez-Dominguez, B. and Aguzzi, A. (2002). Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 67:1738–1741.
  • Lopez-Alonso, M., Garcia-Vaquero, M., Benedito, J. L., Castillo, C. and Miranda, M. (2012). Trace mineral status and toxic metal accumulation in extensive and intensive pigs in NW Spain. Livestock Sci. 146:47–53.
  • Lopez-Alonso, M., Miranda, M., Castillo, C., Hernandez, J., Garcia-Vaquero, M. and Benedito, J. L. (2007). Toxic and essential metals in liver, kidney and muscle of pigs at slaughter in Galicia, north-west Spain. Food Addit. Contam. 24:943–954.
  • Lorrain, B., Dangles, O., Genot, C. and Dufour, C. (2009). Chemical modeling of heme-induced lipid oxidation in gastric conditions and inhibition by dietary polyphenols. J. Agric. Food Chem. 58:676–683.
  • Lund, E. K., Belshaw, N. J., Elliott, G. O. and Johnson, I. T. (2011). Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. P. Nutr. Soc. 70:194–204.
  • Lunn, J. C., Kuhnle, G., Mai, V., Frankenfeld, C., Shuker, D. E. G., Glen, R. C., Goodman, J. M., Pollock, J. R. A. and Bingham, S. A. (2006). The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 28:685–690.
  • Lynch, A. M., Knize, M. G., Boobis, A. R., Gooderham, N. J., Davies, D. S. and Murray, S. (1992). Intra- and interindividual variability in systemic exposure in humans to 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, carcinogens present in cooked beef. Cancer Res.. 52:6216–6223.
  • Magalhaes, B., Peleteiro, B. and Lunet, N. (2012). Dietary patterns and colorectal cancer: Systematic review and meta-analysis. Eur. J. Cancer Prev. 21:15–23.
  • Marchesi, J. R., Dutilh, B. E., Hall, N., Peters, W. H. M., Roelofs, R., Boleij, A. and Tjalsma, H. (2011). Towards the human colorectal cancer microbiome. PLoS ONE 6:e20447.
  • Markowitz, S. D. and Bertagnolli, M. M. (2009). Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 361:2449–2460.
  • Marnett, L. J. (1994). DNA adducts of alpha,beta-unsaturated aldehydes and dicarbonyl compounds. IARC Sci. Publ. 151–163.
  • Marnett, L. J. (2000). Oxyradicals and DNA damage. Carcinogenesis 21:361–370.
  • Marnett, L. J. (2012). Inflammation and cancer: Chemical approaches to mechanisms, imaging, and treatment. J. Org. Chem. 77:5224–5238.
  • Massey, R. C., Key, P. E., Mallett, A. K., and Rowland, I. R. (1988). An investigation of the endogenous formation of apparent total n-nitroso compounds in conventional microflora and germ-free rats. Food Chem. Toxicol. 26(7):595–600.
  • Meira, L. B., Bugni, J. M., Green, S. L., Lee, C. W., Pang, B., Borenshtein, D., Rickman, B. H., Rogers, A. B., Moroski-Erkul, C. A., McFaline, J. L., Schauer, D. B., Dedon, P. C., Fox, J. G. and Samson, L. D. (2008). DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest. 118:2516–2525.
  • Menzie, C. A., Potocki, B. B. and Santodonato, J. (1992). Ambient concentrations and exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 26:1278–1284.
  • Migliore, L., Migheli, F., Spisni, R. and Coppede, F. (2011). Genetics, cytogenetics, and epigenetics of colorectal cancer. J. Biomed. Biotechnol. 2011:792362.
  • Mirvish, S. S. (1995). Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 93:17–48.
  • Mirvish, S. S., Davis, M. E., Lisowyj, M. P. and Gaikwad, N. W. (2008). Effect of feeding nitrite, ascorbate, hemin, and omeprazole on excretion of fecal total apparent N-nitroso compounds in mice. Chem. Res. Toxicol. 21:2344–2351.
  • Mirvish, S. S., Haorah, J., Zhou, L., Hartman, M., Morris, C. R. and Clapper, M. L. (2003). N-Nitroso compounds in the gastrointestinal tract of rats and in the feces of mice with induced colitis or fed hot dogs or beef. Carcinogenesis 24:595–603.
  • Mirvish, S. S., Wallcave, L., Eagen, M. and Shubik, P. (1972). Ascorbate-nitrite reaction: Possible means of blocking the formation of carcinogenic N-nitroso compounds. Science 177:65–68.
  • Modan, B. (1977). Role of diet in cancer etiology. Cancer 40:1887–1891.
  • Moore, H. G. (2010). Colorectal cancer: What should patients and families be told to lower the risk of colorectal cancer? Surgical Oncol. 19:693–710.
  • Moossavi, S. and Rezaei, N. (2013). Toll-like receptor signalling and their therapeutic targeting in colorectal cancer. Int. Immunopharmacol. 16:199–209.
  • Morrissey, P. A. and Tichivangana, J. Z. (1985). The antioxidant activities of nitrite and nitrosylmyoglobin in cooked meats. Meat Sci. 14:175–190.
  • Mouloud, M., Metro, F., Goutefongea, R. and Dumont, J. P. (1992). Mass-spectrometric study of derivatives formed by the reaction of oleic-acid with nitrite - some evidence for the formation of derivatives nitrosubstituted on the alpha-position of the double-bond. Sci. Aliment. 12:371–382.
  • Murata, M., Thanan, R., Ma, N. and Kawanishi, S. (2012). Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol. 2012:623019.
  • Nicolescu, A. C., Reynolds, J. N., Barclay, L. R. and Thatcher, G. R. J. (2004). Organic nitrites and NO: Inhibition of lipid peroxidation and radical reactions. Chem. Res. Toxicol. 17:185–196.
  • NUBEL. (2013). De Belgische Voedingsmiddelentabel. Available from http://www.nubel.com/nl/voedingsmiddelentabel.asp. Accessed December 1, 2013.
  • Ohshima, H. and Bartsch, H. (1994). Chronic infections and inflammatory processes as cancer risk factors: Possible role of nitric oxide in carcinogenesis. Mutat. Res. 305:253–264.
  • Owen, R. W. (1997). Faecal steroids and colorectal carcinogenesis. Scand. J. Gastroenterol. Suppl. 222:76–82.
  • Pala, V., Sieri, S., Berrino, F., Vineis, P., Sacerdote, C., Palli, D., Masala, G., Panico, S., Mattiello, A., Tumino, R., Giurdanella, M. C., Agnoli, C., Grioni, S. and Krogh, V. (2011). Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer 129:2712–2719.
  • Park, Y., Leitzmann, M. F., Subar, A. F., Hollenbeck, A. and Schatzkin, A. (2009). Dairy food, calcium, and risk of cancer in the NIH-AARP Diet and Health Study. Arch. Int. Med. 169:391–401.
  • Parnaud, G., Pignatelli, B., Peiffer, G., Taché, S. and Corpet, D. E. (2000). Endogenous N-nitroso compounds, and their precursors, present in bacon, do not initiate or promote aberrant crypt foci in the colon of rats. Nutr. Cancer 38:74–80.
  • Parthasarathy, D. K. and Bryan, N. S. (2012). Sodium nitrite: The “cure” for nitric oxide insufficiency. Meat Sci. 92:274–279.
  • Pearson, A. M. and Gillet, T. A. (1996). Processed Meats, Chapman and Hall, New York, pp. 210–224.
  • Phillips, D. H. (1983). Fifty years of benzo(a)pyrene. Nature 303:468–472.
  • Phillips, D. H. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutat. Res.-Gen. Tox. En. 443:139–147.
  • Phillips, D. H. and Grover, P. L. (1994). Polycyclic hydrocarbon activation: Bay regions and beyond. Drug. Metab. Rev. 26:443–467.
  • Phinney, S. D. (1996). Metabolism of exogenous and endogenous arachidonic acid in cancer. Adv. Exp. Med. Biol. 399:87–94.
  • Pierre, F. H. F., Martin, O. C., Santarelli, R. L., Tache, S., Naud, N., Gueraud, F., Audebert, M., Dupuy, J., Meunier, N., Attaix, D., Vendeuvre, J. L., Mirvish, S. S., Kuhnle, G. C., Cano, N. and Corpet, D. E. (2013). Calcium and alpha-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers. Am. J. Clin. Nutr. 98:1255–1262.
  • Pierre, F. H. F., Peiro, G., Taché, S., Cross, A. J., Bingham, S. A., Gasc, N., Gottardi, G., Corpet, D. E. and Guéraud, F. (2006). New marker of colon cancer risk associated with heme intake:1,4-dihydroxynonane mercapturic acid. Cancer Epidemiol. Biomarkers Prevent. 15:2274–2279.
  • Pierre, F. H. F., Reeman, A., Taché, S., Van der Meer, R. and Corpet, D. E. (2004). Beef meat and blood sausage promote the formation of azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colons. J. Nutr. 134:2711–2716.
  • Pierre, F. H. F., Santarelli, R. L., Allam, O., Taché, S., Naud, N., Guéraud, F. and Corpet, D. E. (2010). Freeze-dried ham promotes azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colon. Nutr. Cancer 62:567–573.
  • Pignatelli, B., Malaveille, C., Rogatko, A., Hautefeuille, A., Thuillier, P., Munoz, N., Moulinier, B., Berger, F., De, M. H. and Lambert, R. (1993). Mutagens, N-nitroso compounds and their precursors in gastric juice from patients with and without precancerous lesions of the stomach. Eur. J. Cancer 29A:2031–2039.
  • Power, D. G., Gloglowski, E. and Lipkin, S. M. (2010). Clinical genetics of hereditary colorectal cancer. Hematol. Oncol. Clin. North Am. 24:837–859.
  • Pretorius, B., Schoenfeldt, H. C., and Hall, N. (2013). Total iron and heme iron content of south african lean meat (beef, lamb, pork and chicken). Ann. Nut. Metabol. 63:1651–1651.
  • Puangsombat, K., Gadgil, P., Houser, T. A., Hunt, M. C. and Smith, J. S. (2012). Occurrence of heterocyclic amines in cooked meat products. Meat Sci. 90:739–746.
  • Purchas, R. W., Rutherfurd, S. M., Pearce, P. D., Vather, R. and Wilkinson, B. H. P. (2004). Cooking temperature effects on the forms of iron and levels of several other compounds in beef semitendinosus muscle. Meat Sci. 68:201–207.
  • Purchas, R. W., Simcock, D. C., Knight, T. W. and Wilkinson, B. H. P. (2003). Variation in the form of iron in beef and lamb meat and losses of iron during cooking and storage. Int. J. Food Sci. Technol. 38:827–837.
  • Qian, S. Y. and Buettner, G. R. (1999). Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping study. Free Radic. Biol. Med. 26:1447–1456.
  • Ramos, A., Cabrera, M. C. and Saadoun, A. (2012). Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci. 91:116–124.
  • Reddy, B. S. (1992). Dietary fat and colon cancer: Animal model studies. Lipids 27:807–813.
  • Reedy, J., Wirfält, E., Flood, A., Mitrou, P. N., Krebs-Smith, S. M., Kipnis, V., Midthune, D., Leitzmann, M., Hollenbeck, A., Schatzkin, A. and Subar, A. F. (2010). Comparing 3 dietary pattern methods-cluster analysis, factor analysis, and index analysis-with colorectal cancer risk: The NIH-AARP diet and health study. Am. J. Epidemiol. 171:479–487.
  • Robinson, A., Gibson, A. M. and Roberts, T. A. (1982). Factors controlling the growth of Clostridium botulinum types A and B in pasteurized, cured meats. V. Prediction of toxin production: Non-linear effects of storage temperature and salt concentration. J. Food Technol. 17:727–744.
  • Rohrmann, S., Hermann, S. and Linseisen, J. (2009). Heterocyclic aromatic amine intake increases colorectal adenoma risk: Findings from a prospective European cohort study. Am. J. Clin. Nutr. 89:1418–1424.
  • Rohrmann, S., Overvad, K., Bueno-de-Mesquita, H., Jakobsen, M., Egeberg, R., Tjonneland, A., Nailler, L., Boutron-Ruault, M. C., Clavel-Chapelon, F., Krogh, V., Palli, D., Panico, S., Tumino, R., Ricceri, F., Bergmann, M., Boeing, H., Li, K., Kaaks, R., Khaw, K. T., Wareham, N., Crowe, F., Key, T., Naska, A., Trichopoulou, A., Trichopoulos, D., Leenders, M., Peeters, P., Engeset, D., Parr, C. and Skeie, G. (2013). Meat consumption and mortality - results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 11:63.
  • Rohr-Udilova, N. V., Stolze, K., Sagmeister, S., Nohl, H., Schulte-Hermann, R. and Grasl-Kraupp, B. (2008). Lipid hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol. Nutr. Food Res. 52:352–359.
  • Romach, E., Moore, J., Rummel, S. and Richie, E. (1994). Influence of sex and carcinogen treatment protocol on tumor latency and frequency of K-ras mutations in N-methyl-N-nitrosourea-induced lymphomas. Carcinogenesis 15:2275–2280.
  • Rooke, J. A., Flockhart, J. F. and Sparks, N. H. (2010). The potential for increasing the concentrations of micronutrients relevant to human nutrition in meat, milk and eggs. J. Agr. Sci. 148:603–614.
  • Ross, H. D., Henion, J., Babish, J. G. and Hotchkiss, J. H. (1987). Nitrosating agents from the reaction between methyl oleate and dinitrogen trioxide: Identification and mutagenicity. Food Chem. 23:207–222.
  • Rydberg, B., Spurr, N. and Karran, P. (1990). cDNA cloning and chromosomal assignment of the human O6-methylguanine-DNA methyltransferase. cDNA expression in Escherichia coli and gene expression in human cells. J. Biol. Chem. 265:9563–9569.
  • Rywotycki, R. (2003). Meat nitrosamine contamination level depending on animal breeding factors. Meat Sci. 65:669–676.
  • Saffhill, R., Margison, G. P. and O’Connor, P. J. (1985). Mechanisms of carcinogenesis induced by alkylating agents. BBA-Rev. Cancer 823:111–145.
  • Sanford, K. W. and McPherson, R. A. (2009). Fecal occult blood testing. Clin. Lab. Med. 29:523–541.
  • Santarelli, R. L., Naud, N., Taché, S., Guéraud, F., Vendeuvre, J. L., Zhou, L., Anwar, M. M., Mirvish, S. S., Corpet, D. E. and Pierre, F. H. F. (2013). Calcium inhibits promotion by hot dog of 1,2-dimethylhydrazine-induced mucin-depleted foci in rat colon. Int. J. Cancer 133(11):2533–2541.
  • Santarelli, R. L., Pierre, F. and Corpet, D. E. (2008). Processed meat and colorectal cancer: A review of epidemiologic and experimental evidence. Nutr. Cancer 60:131–144.
  • Santarelli, R. L., Vendeuvre, J. L., Naud, N., Taché, S., Guéraud, F., Viau, M., Genot, C., Corpet, D. E. and Pierre, F. H. F. (2010). Meat processing and colon carcinogenesis: Cooked, nitrite-treated, and oxidized high-heme cured meat promotes mucin-depleted foci in rats. CAPR 3:852–864.
  • Schwab, C. E., Huber, W. W., Parzefall, W., Hietsch, G., Kassie, F., Schulte-Hermann, R. and Knasmüller, S. (2000). Search for compounds that inhibit the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Crit. Rev. Toxicol. 30:1–69.
  • Schönfeldt, H. C. and Hall, N. G. (2011). Determining iron bio-availability with a constant heme iron value. J. Food Compos. Anal. 24:738–740.
  • Sesink, A. L. A., Termont, D. S. M. L., Kleibeuker, J. H. and Van der Meer, R. (1999). Red meat and colon cancer: The cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 59:5704–5709.
  • Sesink, A. L. A., Termont, D. S. M. L., Kleibeuker, J. H. and Van der Meer, R. (2001). Red meat and colon cancer: Dietary haem-induced colonic cytotoxicity and epithelial hyperproliferation are inhibited by calcium. Carcinogenesis 22:1653–1659.
  • Shahidi, F. and Pegg, R. B. (1992). Nitrite-free meat curing systems: Update and review. Food Chem. 43:185–191.
  • Shin, A., Joo, J., Bak, J., Yang, H. R., Kim, J., Park, S. and Nam, B. H. (2011). Site-specific risk factors for colorectal cancer in a Korean population. PLoS ONE 6:e23196.
  • Sindelar, J. J. and Milkowski, A. L. (2012). Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 26:259–266.
  • Singer, B. and Essigmann, J. M. (1991). Site-specific mutagenesis: Retrospective and prospective. Carcinogenesis 12(6):949–955.
  • Sinha, R., Kulldorff, M., Gunter, M. J., Strickland, P. and Rothman, N. (2005a). Dietary benzo[a]pyrene intake and risk of colorectal adenoma. Cancer Epidemiol. Biomarkers Prevent. 14:2030–2034.
  • Sinha, R., Peters, U., Cross, A. J., Kulldorff, M., Weissfeld, J. L., Pinsky, P. F., Rothman, N., Hayes, R. B. and Prostate, L. C. a. O. C. P. T. (2005b). Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Res. 65:8034–8041.
  • Skibsted, L. H. (2011). Nitric oxide and quality and safety of muscle based foods. Nitric Oxide 24:176–183.
  • Smith, B. K., Robinson, L. E., Nam, R. and Ma, D. W. L. (2009). Trans-fatty acids and cancer: A mini-review. Br. J. Nutr. 102:1254–1266.
  • Solyakov, A. and Skog, K. (2002). Screening for heterocyclic amines in chicken cooked in various ways. Food Chem. Toxicol. 40:1205–1211.
  • Spiegelhalder, B., Eisenbrand, G. and Preussmann, R. (1976). Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14:545–548.
  • Stavric, B. (1994). Biological significance of trace levels of mutagenic heterocyclic aromatic amines in human diet: A critical review. Food Chem. Toxicol. 32:977–994.
  • Stevanovic, M., Cadez, P., Zlender, B. and Filipic, M. (2000). Genotoxicity testing of cooked cured meat pigment (CCMP) and meat emulsion coagulates prepared with CCMP. J. Food Prot. 63:945–952.
  • Stuff, J. E., Goh, E. T., Barrera, S. L., Bondy, M. L. and Forman, M. R. (2009). Construction of an N-nitroso database for assessing dietary intake. J. Food Compos. Anal. 22:S42–S47.
  • Sugimura, T. (1997). Overview of carcinogenic heterocyclic amines. Mutat. Res-Fund. Mol. M. 376:211–219.
  • Sun, W. Q., Zhou, G. H., Xu, X. L. and Peng, Z. Q. (2009). Studies on the structure and oxidation properties of extracted cooked cured meat pigment by four spectra. Food Chem. 115:596–601.
  • Szterk, A., Roszko, M., Malek, K., Kurek, M., Zbiec, M. and Waszkiewicz-Robak, B. (2012). Profiles and concentrations of heterocyclic aromatic amines formed in beef during various heat treatments depend on the time of ripening and muscle type. Meat Sci. 92:587–595.
  • Tabatabaei, S. M., Heyworth, J. S., Knuiman, M. W. and Fritschi, L. (2010). Dietary benzo[a]pyrene intake from meat and the risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prevent. 19:3182–3184.
  • Takahashi, M., Nishikawa, A., Furukawa, F., Enami, T., Hasegawa, T. and Hayashi, Y. (1994). Dose-dependent promoting effects of sodium chloride (NaCl) on rat glandular stomach carcinogenesis initiated with N-methyl-N’-nitro-N-nitrosoguanidine. Carcinogenesis 15:1429–1432.
  • Terzic, J., Grivennikov, S., Karin, E. and Karin, M. (2010). Inflammation and colon cancer. Gastroenterology 138:2101–2114.
  • Thiébaud, H. P., Knize, M. G., Kuzmicky, P. A., Hsieh, D. P. and Felton, J. S. (1995). Airborne mutagens produced by frying beef, pork and a soy-based food. Food Chem. Toxicol. 33:821–828.
  • Toden, S., Belobrajdic, D. P., Bird, A. R., Topping, D. L. and Conlon, M. A. (2010). Effects of dietary beef and chicken with and without high amylose maize starch on blood malondialdehyde, interleukins, IGF-I, Insulin, Leptin, MMP-2, and TIMP-2 concentrations in rats. Nutr. Cancer 62:454–465.
  • Tomovic, V. M., Petrovic, L. S., Tomovic, M. S., Kevresan, Z. S. and Dzinic, N. R. (2011). Determination of mineral contents of semimembranosus muscle and liver from pure and crossbred pigs in Vojvodina (northern Serbia). Food Chem. 124:342–348.
  • Tricker, A. R. (1997). N-nitroso compounds and man: Sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev. 6:226–268.
  • Tricker, A. R. and Preussmann, R. (1991). Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res-Genet. Tox. 259:277–289.
  • USDA. (2013). United States Department of Agriculture - Food Safety and Inspection Service: Fresh Pork from Farm to Table. Available from http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answe-rs/food-safety-fact-sheets/meat-preparation/fresh-pork-from-farm-to-table/CT_Index. Accessed August 15, 2013.
  • US Pork Center of Excellence. (2013). Pork information gathway. Available from http://www.porkgateway.org/Default.aspx. Accessed October 25, 2013.
  • van den Brandt, P. A. and Goldbohm, R. A. (2006). Nutrition in the prevention of gastrointestinal cancer. Best Pract. Res. Cl. Ga. 20:589–603.
  • Vanhaecke, L., Derycke, L., Le Curieux, F., Lust, S., Marzin, D., Verstraete, W. and Bracke, M. (2008). The microbial PhIP metabolite 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1) induces DNA damage, apoptosis and cell cycle arrest towards Caco-2 cells. Toxicol. Lett. 178:61–69.
  • Van Lieshout, E., Van Doesburg, W. and Van der Meer, R. (2004). Real-time PCR of host DNA in feces to study differential exfoliation of colonocytes between rats and humans. Scand. J. Gastroenterol. 39:852–857.
  • Vannucci, L., Stepankova, R., Kozakova, H., Fiserova, A., Rossmann, P. and Tlaskalova-Hogenova, H. (2008). Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. Int. J. Oncol. 32:609–617.
  • Ventanas, S., Ventanas, J., Jurado, A. and Estevez, M. (2006). Quality traits in muscle biceps femoris and back-fat from purebred Iberian and reciprocal IberianxDuroc crossbred pigs. Meat Sci. 73:651–659.
  • Viegas, O., Novo, P., Pinto, E., Pinho, O. and Ferreira, I. M. P. L. (2012). Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem. Toxicol. 50:2128–2134.
  • Vogt, R., Bennett, D., Cassady, D., Frost, J., Ritz, B. and Hertz-Picciotto, I. (2012). Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: A risk assessment. Environ. Health 11:83.
  • Watson, A. J. and Collins, P. D. (2011). Colon cancer: A civilization disorder. Dig. Dis. 29:222–228.
  • WCRF/AIRC. (2012). World Cancer Research Fund (WCRF) / American Institute for Cancer Research. Second expert report - Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global perspective. Available from http://www.dietandcancerreport.org/expert_report/scientific_process/methodology.php. Accessed August 15, 2013.
  • Westbrook, A. M., Szakmary, A. and Schiestl, R. H. (2010). Mechanisms of intestinal inflammation and development of associated cancers: Lessons learned from mouse models. Mutat. Res.-Rev. Mutat. 705:40–59.
  • Williamson, C. S., Foster, R. K., Stanner, S. A. and Buttriss, J. L. (2005). Red meat in the diet. Nutr. Bull. 30:325–355.
  • Windey, K., De Preter, V. and Verbeke, K. (2012). Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56:184–196.
  • Woolford, G. and Cassens, R. G. (1977). The fate of sodium nitrite in bacon. J. Food Sci. 42:586–589.
  • Yurchenko, S. and Mölder, U. (2007). The occurrence of volatile N-nitrosamines in Estonian meat products. Food Chem. 100:1713–1721.
  • Zhang, X., Giovannucci, E. L., Smith-Warner, S. A., Wu, K., Fuchs, C. S., Pollak, M., Willett, W. C. and Ma, J. (2011). A prospective study of intakes of zinc and heme iron and colorectal cancer risk in men and women. CCC 22:1627–1637.
  • Zhao, L. P., Kushi, L. H., Klein, R. D. and Prentice, R. L. (1991). Quantitative review of studies of dietary fat and rat colon carcinoma. Nutr. Cancer 15:169–177.
  • Zhu, Q., Gao, R., Wu, W. and Qin, H. (2013). The role of gut microbiota in the pathogenesis of colorectal cancer. Tumor Biol. 34:1285–1300.
  • Zhu, Y., Peng, Z. Q., Rui, L. M., Wang, M., Wang, R. R., Wan, K. H., Tian, R. H. and Gao, F. F. (2012). Determination of Formaldehyde Content in Smoked Meat Products. Food Sci. 33:171–174.
  • zur Hausen, H. (2012). Red meat consumption and cancer: Reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int. J. Cancer 130:2475–2483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.