1,086
Views
40
CrossRef citations to date
0
Altmetric
Article

Tea and bone health: Findings from human studies, potential mechanisms, and identification of knowledge gaps

&
Pages 1603-1617 | Received 29 Sep 2014, Accepted 17 Dec 2014, Published online: 01 Mar 2017

References

  • Akesson, K., Marsh, D., Mitchell, P. J., McLellan, A. R., Stenmark, J., and Pierroz, D. D., et al. (2013). Capture the Fracture: A global campaign to break the fragility fracture cycle. Osteoporosis. Int. 24:2135–2152.
  • Alatalo, S. L., Halleen, J. M., Hentunen, T. A., Monkkonen, J., and Vaananen, H. K. (2000). Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into the culture medium. Clin. Chem. 46:1751–1754.
  • Almedia, M., Han, L., Martin-Millan, M., O’Brien, C. A., and Manolagas, S. C. (2007). Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem. 282:27285–27297.
  • Baek, K. H., Oh, K. W., Lee, W. Y., Lee, S. S., Kim, M. K., and Kown, H. S., et al. (2010). Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif. Tissue. Int. 87:226–235.
  • Baron, R., and Kneissel, M. (2013). Wnt signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med. 19:179–192.
  • Basu, S., Michaelsson, K., Olofsson, H., Johansson, S., and Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Comm. 288:275–279.
  • Battikh, H., Chaieb, K., Bakhrouf, A., and Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. J. Food Biochem. 13:231–236.
  • Benzie, I. F. F., Szeto, Y. T., Strain, J. J., and Tomlinson, B. (1999). Consumption of green tea causes rapid increase in plasma antioxidant power in humans. Nutr. Cancer 34:83–87.
  • Boyanova, L. (2014). Comparative evaluation of the activity of plant infusions against Helicobacter pylori strains by three methods. World J. Microbiol. Biotechnol. 30:1633–1637.
  • Bramati, L., Aquilano, F., and Pietta, P. (2003). Unfermented rooibos tea: Quantitative characterization of flavonoids by HPLC-UV and determination of the total antioxidant activity. J. Agric. Food Chem. 51:7472–7474.
  • Breiter, T., Laue, C., Kressel, G., Groll, S., Engelhardt, U. H., and Hahn, A. (2011). Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations. Food Chem. 128:338–347.
  • Burge, R., Dawson-Hughes, B., Solomon, D. H., Wong, J. B., King, A., and Tosteson, A. (2007). Incidence and economic burden of osteoporosis-related fractures in the United States, 2005 – 2025. J. Bone Miner. Res. 22:465–475.
  • Cabrera, C., Gimenez, R., and Lopez, M. C. (2003). Determination of tea components with antioxidant activity. J. Agric. Food Chem. 51:4427–4435.
  • Cantatore, A., Randall, S. D., Traum, D., and Adams, S. D. (2013). Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. BMC Complement Altern. Med. 13:139–140.
  • Casagrande, F., and Darbon, J. M. (2001). Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem. Pharmacol. 61:1205–1215.
  • Center, J. R., Nguyen, T. V., Schneider, D., Sambrook, P. N., and Eisman, J. A. (1999). Mortality after all major types of osteoporotic fracture in men and women: An observational study. Lancet 353:878–882.
  • Chen, C., Ho, C. (1995). Antioxidant properties of polyphenols extracted from green and black teas. J. Food Lipids. 2:35–46.
  • Chen, G., Deng, C., and Li, Y. P. (2012). TGF-B and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8:272–288.
  • Chen, Z., Pettinger, M. B., Ritenbaugh, C., LaCroix, A. Z., Robbins, J., and Caan, B. J., et al. (2003). Habitual tea consumption and risk of osteoporosis: A prospective study in the women's health initiative observational cohort. Am. J. Epidemiol. 158:772–781.
  • Cheng, W. Y., Chiao, M. T., Liang, Y. J., Yang, Y. C., Shen, C. C., and Yang, C. Y. (2013). Luteolin inhibitors migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol. Biol. Rep. 40:5315–5326.
  • Chin, J. M., Merves, M. L., Goldberger, B. A., Sampson-Cone, A., and Cone, E. J. (2008). Caffeine content of brewed teas. J. Anal. Toxicol. 32:702–708.
  • Choi, J., Choi, S. Y., Lee, S. Y., Kim, H. S., and Lee, S. Y., et al. (2013). Caffeine enhances osteoclast differentiation and maturation through p38 MAP kinase/Mitf and DC-STAMP/CtsK and TRAP pathway. Cell Signal. 25:1222–1227.
  • Choi, S. W., Son, Y. J., Yun, J. M., and Kim, S. H. (2012). Fisetin inhibits osteoclast differentiation via downregulation of p38 and c-Fos-NFATc1 signaling pathways. Evid Based Complement Alternat. Med. 2012:810563.
  • Choi, Y. T., Jung, C. H., Lee, S. R., Bae, J. H., Baek, W. K., and Suh, M. H., et al. (2001). The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 70:603–614.
  • Cooper, R., Morre, D. J., and Morre, D. M. (2005). Medicinal benefits of green tea: Part 1. Review of noncancer health benefits. J. Altern. Compliment. Med. 11:521–528.
  • Das, A. S., Banerjee, M., Das, D., Mukherjee, S., and Mitra, C. (2013). Black tea may be a prospective adjunct for calcium supplementation to prevent early menopause bone loss in a rat model of osteoporosis. J. Osteoporos. 2013:760586.
  • Das, A. S., Mukherjee, M., and Mitra, C. (2004). Evidence for a prospective anti-osteoporosis effect of black tea (Camellia Sinensis) extract in a bilaterally ovariectomized rat model. Asia Pac J. Clin. Nutr. 13:210–216.
  • DePaula, C. A., Abjornson, C., Pan, Y., Kotha, S. P., Koike, K., and Guzelsu, N. (2002). Changing the structurally effective mineral content of bone with in vitro fluoride treatment. J. Biomech. 35:355–361.
  • Deroo, B. J., Korach, K. S. (2006). Estrogen receptors and human disease. J. Clin. Invest. 116:560–570.
  • Devine, A., Hodgson, J. A., Dick, A. M., and Prince, R. L. (2007). Tea drinking is associated with benefits on bone mineral density in older women. Am. J. Clin. Nutr. 86:1243–1247.
  • Dludla, P. V., Muller, C. J. F., Louw, J., Joubert, E., Salie, R., and Opoku, A. R., et al. (2014). The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine 21:595–601.
  • Du, F., Qiukui, D., Birong, D., Changquan, H., Hongmei, W., and Yanling, Z., et al. (2011). Association of osteoporotic fracture with smoking, alcohol consumption, tea consumption and exercise among Chinese nonagenarians/centenarians. J. Nutr. Health Aging 15:327–331.
  • Falahati-Nini, A., Riggs, B. L., Atkinson, E. J., O’Fallon, W. M., Eastell, R., and Kholsa, S. (2000). Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106:1552–1560.
  • Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L., and Magara, Y. (2006). World Health Organization (WHO). Fluoride in Drinking-Water. IWA, London, UK.
  • Focking, M., Schmiegelt, D., and Trapp, T. (2005). Caffeine-mediated enhancement of glucocorticoid receptor activity in human osteoblastic cells. Biochem. Biophys. Res. Commun. 18:435–439.
  • Fujita, K., and Janz, S. (2007). Attenuation of Wnt signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Mol. Cancer 6:1–13.
  • Gadow, A. V., Joubert, E., and Hansmann, C. F. (1997). Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 60:73–77.
  • Glass, D. A, Bialek, P., Ahn, J. D., Starbuck, M., Patel, M. S., and Clevers, H., et al. (2005). Canonical Wnt signalling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8:751–764.
  • Goodin, M. G., and Rosengren, R. J. (2003). Epigallocatechin gallate modulates CYP450 isoforms in the female Swiss-Webster mouse. Toxicol. Sci. 76:262–270.
  • Grainge, M. J., Coupland, C. A. C., Cliffe, S. J., Chilvers, C. E. D., and Hosking, D. J. (1998). Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham Epic Study Group. Osteoporosis Int. 8:355–363.
  • Halleen, J. M., Alatalo, S. L., Suominen, H., Cheng, S., Janckila, A. J., and Vaananen, H. K. (2000). Tartrate-resistant acid phosphatase 5b: A novel serum marker of bone resorption. J. Bone Miner. Res. 15:1337–1345.
  • Hallstrom, H., Byberg, L., Glynn, A., Lemming, E. W., Wolk, A., and Michaelsson, K. (2013). Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am. J. Epidemiol. 178:898–909.
  • Hallstrom, H., Wolk, A., Glynn, A., and Michaelsson, K. (2006). Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporosis Int. 17:1055–1064.
  • Hardcastle, A. C., Aucott, L., Reid, D. M., and Macdonald, H. M. (2011). Associations between dietary flavonoid intakes and bone health in a Scottish population. J. Bone. Miner. Res. 26:941–947.
  • Harris, S. S., and Dawson-Hughes, B. (1994). Caffeine and bone loss in healthy post-menopausal women. Am. J. Clin. Nutr. 60:573–578.
  • Hegarty, V. M., May, H. M., and Khaw, K. T. (2000). Tea drinking and bone mineral density in older women. Am. J. Clin. Nutr. 71:1003–1007.
  • Henning, S. M., Aronson, W., Niu, Y., Conde, F., Lee, N. H., and Seeram, N. P., et al. (2006). Tea polyphenols and theaflavins are present in prostate tissue of humans and mice after green and black tea consumption. Am. Soc. Nutr. 136:1839–1843.
  • Henning, S. M., Fajardo-Lira, C., Lee, H. W., Youssedian, A. A., Go, V. L. W., and Heber, D. (2003). Catechin content of 18 teas and green tea extract supplement correlated with the antioxidant capacity. Nutr. Cancer 45:226–235.
  • Henning, S. M., Niu, Y., Lee, N. H., Thames, G. D., Minutti, R. R., and Wang, H., et al. (2004). Bioavailability and antioxidant activity of tea flavonols after consumption of green tea, black tea, or a green tea extract supplement. Am. J. Clin. Nutr. 80:1558–1564.
  • Henning, S. M., Niu, Y., Liu, Y., Lee, N. H., Hara, Y., and Thames, G. D., et al. (2005). Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. J. Nutr. Biochem. 16:610–616.
  • Hernandez-Avila, M., Colditz, G. A., Stampfer, M. J., Rosner, B., Speizer, F. E., and Willett, W. C. (1991). Caffeine, moderate alcohol intake, and risk of fractures in middle-aged women. Am. J. Nutr. 54:157–163.
  • Hollman, P. C., and Katan, M. B. (1999). Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 37:937–942.
  • Hoover, P. A., Webber, C. E., Beaumont, L. F., and Blake, J. M. (1996). Postmenopausal bone mineral density: Relationship to calcium intake, calcium absorption, residual estrogen, body composition and physical activity. Can. J. Physiol. Pharmacol. 74:911–917.
  • Hossein-Nezhad, A., Maghbooli, Z. H., Javadi, A. R. S., and Larijani, B. (2007). Relationship between tea drinking and bone mineral density in Iranian population. Iranian J. Publ. Health. 57–62.
  • Hsiao, M., Liu, C., and Wang, C. (2012). Factors associated with low bone mineral density among women with major depressive disorder. Int. J. Psychiatry Med. 44:77–90.
  • Hughes, D. E., Dai, A., Tiffee, J. C., Mundy, G. R., and Boyce, B. F. (1996). Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat. Med. 2:1132–1134.
  • Ioannidis, G., Papaioannou, A., Hopman, W. M., Akhtar-Danesh, N., Anastassiades, T., and Pickard, L., et al. (2009). Relation between fractures and mortality: Results from the Canadian Multicentre Osteoporosis Study. CMAJ. 181:265–271.
  • Jha, R. M., Mithal, A., Malhortra, N., and Brown, E. M. (2010). Pilot case-control investigation of risk factors for hip fractures in the urban Indian population. BMC Musculoskelet. Disord. 11:1–11.
  • Johnell, O., Gullberg, B., Kanis, J. A., Allander, E., Elffors, L., and Dequeker, J., et al. (1995). Risk factors for hip fracture in European women: The MEDOS study. Mediterranean Osteoporosis Study. J. Bone Miner. Res. 10:1802–1815.
  • Johnell, O., and Kanis, J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis Int. 17:1726–1733.
  • Johnson, J. E. H., Kearns, A. E., Doran, P. M., Khoo, T. K. l., and Wermers, R. A. (2007). Fluoride-related bone disease associated with habitual tea consumption. Mayo Clin. Proc. 82:719–724.
  • Joubert, E., Beelders, T., de Beer, D., Malherbe, C. J., de Villiers, A. J., and Sigge, G. O. (2012). Variation in phenolic content and antioxidant activity of fermented rooibos herbal tea infusions: Role of production season and quality grade. J. Agric. Food Chem. 60:9171–9179.
  • Joubert, E., and de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S. Afr. J. Bot. 77:869–886.
  • Joubert, E., and Ferreira, D. (1996). Antioxidants of rooibos tea – A possible explanation for its health promoting properties. S. Afr. J. Food Sci. Nutr. 8:79–83.
  • Kanis, J., Johnell, O., Gullberg, B., Allander, E., Elffors, L., and Ranstam, J., et al. (1999). Risk factors for hip fracture in men from southern Europe: The MEDOS study. Mediterranean Osteoporosis Study. Osteoporosis Int. 9:45–54.
  • Kanis, J. A., Melton, J. L., Christiansen, C., Johnston, C. C., and Khaltaev, N. (1994). The diagnosis of osteoporosis. J. Bone Miner. Res. 9:1137–1141.
  • Kreiger, N., Gross, A., and Hunter, G. (1992). Dietary factors and fracture in postmenopausal women: A case-control study. Int. J. Epidemiol. 21:953–958.
  • Kapiszekska, M., Miskiewicz, M., Ellison, P. T., Thune, I., and Jasienska, G. (2006). High tea consumption diminishes salivary 17B-estradiol concentrations in Polish women. Br. J. Nutr. 95:989–995.
  • Kyriazopoulos, P., Trovas, G., Charopoulos, J., Antonogiannakis, E., Galanos, A., and Lyritis, G. (2006). Lifestyle factors and forearm bone density in young Greek men. Clin. Endocrinol. (Oxf). 65:234–238.
  • La, V. D., Tanabe, S., and Grenier, D. (2009). Naringenin inhibits human osteoclastogenesis and osteoclastic bone resorption. J. Peridontal. Res. 44:193–198.
  • Lee, J. W., Ahn, J. Y., Hasegawa, S., Cha, B. Y., Yonezawa, T., and Nagai, K., et al. (2009). Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology 61:125–134.
  • Lee, K., Jessop, H., Suswillo, R., Zaman, G., and Lanyon, L. (2003). Endocrinology: Bone adaptation requires oestrogen receptor-alpha. Nature. 424:389.
  • Lee, K. W., Bode, A. M., and Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer. 11:211–218.
  • Lee, W. S., Lee, E. G., Sung, M. S., and Yoo, W. H. (2014). Kaempferol inhibits IL-1B-stimulated, RANKL-mediated osteoclastogenesis via downregulation of MAPK, c-Fos, and NFATc1. Inflammation. 37:1221–1230.
  • Leung, L. K., Su., Y., Chen, R., Zhang, Z., Huang, Y., and Chen, Z. Y. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131:2248–2251.
  • Li, S., Zhang, Y., Kang, H., Liu, W., Liu, P., and Zhang, J., et al. (2005). Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280:19883–19887.
  • Lin, J. T., and Lane, J. M. (2004). Osteoporosis: A review. Clin. Orthop. Relat. Res. 425:126–134.
  • Liu, S. H., Chen, C., Yang, R. S., Yen, Y. P., Yang, Y. T., and Tsai, C. (2011). Caffeine enhances osteoclast differentiation from bone marrow hematopoietic cells and reduces bone mineral density in growing rats. J. Orthop. Res. 29:954–960.
  • Longcope, C., Kato, T., and Horton, R. (1969). Conversion of blood androgens to estrogens in normal adult men and women. J. Clin. Invest. 48:2191–2201.
  • Lung, S. C. C., Hsiao, P. K., and Chiang, K. M. (2003). Fluoride concentrations in three types of commercially packed tea drinks in Taiwan. J. Expo. Sci. Enviorn. Epidemiol. 13:66–73.
  • Manolagas, S. C., and Almeida, M. (2007). Gone with the Wnts: Beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent disease of bone, lipid and glucose metabolism. Mol. Endocrinol. 21:2605–2614.
  • Massey, L. K., and Whiting, S. J. (1993). Caffeine, urinary calcium, calcium metabolism and bone. J. Nutr. 123:1611–1614.
  • Marnewick, J. L., Gelderblom, W. C., and Joubert, E. (2000). An investigation of the antimutagenic properties of South African herbal teas. Mutat. Res. 471:157–166.
  • Marnewick, J. L., Rautenbach, F., Venter, I., Neethling, H., Blackhurst, D. M., and Wolmarans, P., et al. (2011). Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J. Ethnopharmacol. 133:46–52.
  • Marnewick, J. L., Westhuizen, F. H., Joubert, E., Swanevelder, S., Swart, P., and Gelderblom, W. C. A. (2009). Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced fumonisin B1 in rat liver. Food Chem. Toxicol. 47:220–229.
  • Marshall, D., Johnell, O., and Wedel, H. (1996). Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 18:1254–1259.
  • McCusker, R. R., Goldberger, B. A., and Cone, E. J. (2003). Caffeine content of specialty coffees. J. Anal. Toxicol. 27:520–522.
  • McKay, D. L., and Blumberg, J. B. (2007). A review of the bioactivity of South African herbal teas: Rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytother. Res. 21:1–16.
  • Minkin, C. (1982). Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34:285–290.
  • Mody, N., Parhami, F., Sarafian, T. A., and Demer, L. L. (2001). Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31:509–519.
  • Morinobu, A., Biao, W., Tanaka, S., Horiuchi, M., Jun, L., and Tsuji, G., et al. (2008). (-)-Epigallocatechin-3-gallate suppresses osteoclast differentiation and ameliorates experimental arthritis in mice. Arthritis Rheum. 58:2012–2018.
  • Morishima, A., Grumbach, M. M., Simpson, E. R., Fisher, C., and Qin, K. (1995). Aromatase deficiency in male and female siblings by a novel mutation and the physiological role of estrogens. J. Clin. Endocrinol. Metab. 80:3689–3698.
  • Muraki, S., Yamamoto, S., Ishibashi, H., Oka, H., Yoshimura, N., and Kawaguchi, H., et al. (2007). Diet and lifestyle associated with increased bone mineral density: Cross-sectional study of Japanese elderly women at an osteoporosis outpatient clinic. J. Orthop. Sci. 12:317–320.
  • Nash, L. A., Sullivan, P. J., Peters, S. J., and Ward, W. E. (2015). Rooibos flavonoids, orientin and luteolin, stimulate mineralization in human osteoblasts through the Wnt pathway. Mol. Nutr. Food Res. 59:443–453.
  • Ng, T. P., Aung, K. C. Y., Feng, L., Feng, L., Nyunt, M. S. Z., and Yap, K. B. (2014). Tea consumption and physical function in order adults: A cross-sectional study. J. Nutr. Health Aging. 18:161–166.
  • Post, J. F., and Varma, R. S. (1992). Growth inhibitory effects of bioflavonoids and related compounds on human leukemic CEM-C1 and CEM-C7 cells. Cancer Lett. 67:207–213.
  • Rapuri, P. B., Gallagher, J. C., Kinyamu, H. K., and Ryschon, K. L. (2001). Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am. J. Clin. Nutr. 74:694–700.
  • Rapuri, R. P., Gallagher, J. C., and Nawaz, Z. (2007). Caffeine decreases vitamin D receptor protein expression and 1,25(OH)2D3 stimulated alkaline phosphatase activity in human osteoblast cells. J. Steroid. Biochem. Mol. Bol. 103:368–371.
  • Rezai-Zadeh, K., Shytle, D., Sun, N., Mori, T., Hou, H., and Jeanniton, D., et al. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 25:8807–8814.
  • Riggs, B. L., Hodgson, S. F., O'Fallon, W. M., Chao, E. Y., Wahner, H. W., and Muhs, J. M., et al. (1990). Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N. Engl. J. Med. 322:802–809.
  • Rothwell, J. A., Pérez-Jiménez, J., Neveu, V., Medina-Ramon, A., M'Hiri, N., and Garcia Lobato, P., et al. (2013). A. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content.
  • Saitoglu, M., Ardicoglu, O., Ozgocmen, S., Kamanli, A., and Kaya, A. (2007). Osteoporosis risk factors and association with somatotypes in males. Arch. Med. Res. 38:746–751.
  • Seifert, M. F., and Watkins, B. A. (1997). Role of dietary lipid and antioxidants in bone metabolism. Nutr. Res. 17:1209–1228.
  • Shen, C. L., Chyu, M. C., Yeh, J. K., Zhang, Y., Pence, B. C., and Felton, C. K., et al. (2012). Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: A 6-month randomized placebo-controlled trial. Osteoporosis Int. 23:1522–1541.
  • Shen, C. L., Wang, P., Guerrieri, J., Yeh, J., and Wang, J. S. (2008). Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporosis Int. 19:979–990.
  • Shen, C. L., Yeh, J. K., Cao, J. J., Tatum, O. L., Dagda, R. Y., and Wang, J. S. (2010). Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats. Osteoporosis Int. 21:1841–1852.
  • Shevde, N. K., Bendixen, A. C., Dienger, K. M., and Pike, J. W. (2000). Estrogens suppress RANKL ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. PNAS. 97:7829–7834.
  • Sheweita, S. A., and Khoshhal, K. I. (2007). Calcium metabolism and oxidative stress in bone fractures: Role of antioxidants. Curr. Drug Metab. 8:519–525.
  • Song, J. M., Lee, K. H., and Seong, B. L. (2005). Antiviral effect of catechins in green tea on influenza virus. Antiviral. Res. 68:66–74.
  • Srivastava, S., Bankar, R., and Roy, P. (2013). Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells. Phytomedicine 20:683–690.
  • Tavani, A., Negri, E., and Vecchia, C. L. (1995). Coffee intake and risk of hip fracture in women in northern Italy. Prev. Med. 24:396–400.
  • Tea Association of the U.S.A. Tea Fact Sheet 2013. Tea Assoc. U.S.A.
  • Tassinari, M. A., Gerstenfeld, L. C., Stein, G. S., and Lian, J. B. (1991). Effect of caffeine on parameters of osteoblast growth and differentiation of a mineralized extracellular matrix in vitro. J. Bone Miner. Res. 6:1029–1036.
  • Trzeciakiewicz, A., Habauzit, V., Mercier, S., Lebecque, P., Davicco, M., and Coxam, V., et al. (2010). Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signaling pathway. J. Nutr. Biochem. 21:424–431.
  • Vali, B., Rao, L. G., and El-Sohemy, A. (2007). Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J. Nutr. Biochem. 18:341–347.
  • Van Wyk, B. E. (2011). The potential of South African plans in the development of new medicinal products. S. Afr. J. Bot. 77:812–829.
  • Vestergaard, P., Hermann, A. P., Gram, J., Jensen, L. B., Eiken, P., and Abrahamsen, B., et al. (2001). Evaluation of methods for prediction of bone mineral density by clinical and biochemical variables in perimenopausal women. Maturitas. 40:211–220.
  • Villano, D., Pecorari, M., Testa, M. F., Raguzzini, A., and Stalmach, A., Crozier, A., et al. (2010). Unfermented and fermented rooibos tea (Aspalathus linearis) increase plasma total antioxidant capacity in healthy humans. Food Chem. 123:679–683.
  • Wang, G., Liu, L. H., Zhang, Z., Zhang, F., Li, S., and Chen, Y., et al. (2014). Oolong tea drinking could help prevent bone loss in postmenopausal Han Chinese women. Cell Biochem. Biophys. In print.
  • Way, T. D., Lee, H. H., Kao, M. C., and Lin, J. K. (2004). Black tea polyphenol theaflavins inhibit aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected human breast cancer cells through tyrosine kinase suppression. Eur. J. Cancer 40:2165–2174.
  • Wong, R. W. K., and Rabie, A. B. M. (2008). Effect of quercetin on preosteoblasts and bone defects. Open Ortho. J. 2:27–32.
  • Woo, J. T., Nakagawa, H., Notoya, M., Yonezawa, T., Udagawa, N., and Lee, I., et al. (2004). Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol. Pharm. Bull. 27:504–509.
  • Wu, C. H., Yang, Y. C., Yao, W. J., Lu, F. H., Wu, J. S., and Chang, C. J. (2002). Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch. Intern. Med. 162:1001–1006.
  • Yang, C. S., and Wang, X. (2010). Green tea and cancer prevention. Nutr. Cancer 62:931–937.
  • Zeng, F. F., Wu, B. H., Fan, F., Xie, H. L., Xue, W. Q., and Zhu, H. L., et al. (2013). Dietary patterns and the risk of hip fractures in elderly Chinese: A matched case-control study. J. Clin. Endocrinol. Metab. 98:2347–2355.
  • Zhang, Y. B., Zhong, Z. M., Hou, G., Jiang, H., and Chen, J. T. (2011). Involvement in oxidative stress in age-related bone loss. J. Surg. Res. 169:e37.
  • Zhou, Y., Guan, X. X., Zhu, Z. L., Guo, J, Huang, Y. C., and Hou, W. W., et al. (2010). Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Br. J. Pharmacol. 161:1542–1552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.