2,601
Views
124
CrossRef citations to date
0
Altmetric
Articles

A comprehensive review of thin-layer drying models used in agricultural products

&

References

  • Abalone, R., Gaston, A., Cassinera, A. and Lara, M. A. (2006). Thin layer drying of amaranth seeds. Biosyst. Eng. 93:179–188.
  • Acquah, H. D. G. (2010). Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of an asymmetric price relationship. J. Agric Econ. 2:1–6.
  • Ademiluyi, T., Oboho, E. O. and Owudogu, M. (2008). Investigation into the thin layer drying models of Nigerian popcorn varieties. Leonardo El. J. Pract. Technol. 13:47–62.
  • Aghbashlo, A., Kianmehr, M. H. and Akhijahani, H. S. (2009a). Evaluation of thin layer drying models for describing drying kinetics of barberries. J. Food Process Eng. 32:278–293.
  • Aghbashlo, M., Kianmehr, M. H. and Hassan-Beygi S. R. (2010). Drying And Rehydration Characteristics Of Sour Cherry (Prunus Cerasus L.). J. Food Process Pres. 34:351–365.
  • Aghbashlo, M., Kianmehr, M. H., Khani, S. and Ghasemi, M. (2009b). Mathematical modelling of thin-layer drying of carrot. Int. Agrophysics. 23:313–317.
  • Aghbashlo, M., Kianmehr, M. H. and Samimi-Akhijahani H. (2007). Evaluation of thin-layer drying models for describing drying kinetics of barberries (Barberries Vulgaris). J. Food Process Eng. 32:278–293.
  • Agrawal, Y. C. and Singh, R. D. (1977). Thin layer drying studies for short graib rice. ASAE Paper No: 77–3531.
  • Ait Mohamed, L., Kane, C. S. E., Kouhila, M., Jamali, A., Mahrouz, M. and Kechaou, N. (2008). Thin layer modeling of gelidium sesquipedale solar drying process. Energ. Convers. Manage. 49:940–946.
  • Ait Mohamed, L., Kouhila, M., Jamali, A., Lahsasni, S., Kechaou, N. and Mahrouz, M. (2005). Single layer solar drying behavior of citrus aurantium leaves under forced convection. Energ. Convers. Manage. 46:1473–1483.
  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control. 19:716–723.
  • Akbulut, A. and Durmus, A. (2009). Thin layer solar drying and mathematical modeling of mulberry. Int. J. Energy Res. 33:687–695.
  • Akgun, N. A. and Doymaz, I. (2005). Modelling of olive cake thin-layer drying process. J. Food Eng. 68:455–461.
  • Akpinar, E. K. (2006a). Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J. Food Eng. 77:864–870.
  • Akpinar, E. K. (2006b). Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 73:75–84.
  • Akpinar, E. K. (2011). Drying of parsley leaves in a solar dryer and under open sun: Modeling, energy and exergy aspects. J. Food Process Eng. 34:27–48.
  • Akpinar, E. K. and Bicer, Y., (2005). Modelling of the drying of eggplants in thin-layers. Int. J. Food Sci. Technol. 40:273–281.
  • Akpinar, E. K. and Bicer, Y. (2003). Modeling and experimental study on drying of apple slices in a convective cyclone dryer. J. Food Process Eng. 26:515–541.
  • Akpinar, E. K., Bicer, Y. and Cetinkaya, F. (2006). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J. Food Eng. 75:308–315.
  • Akpinar, E. K., Bicer, Y. and Yildiz, C. (2003). Thin layer drying of red pepper. J Food Eng. 59:99–104.
  • Akpinar, E.K., Sarsilmaz, C. and Yildiz, C. (2004). Mathematical modeling of a thin layer drying of apricots in a solar energized rotary dryer. Int. J. Energ Res. 28:739–752.
  • Aktas, T. and Polat, R. (2007). Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. J. Food Process Eng. 30:607–624.
  • Alibas, I. (2012). Microwave drying of grapevine (vitis vinifera l.) Leaves and determination of some quality parameters. J. Agric. Sci. 18:43–53.
  • Al-Mahasneh, M. A., Rababah, T. M. and Al-Shbool M. A. (2007). Thin-layer drying kinetics of sesame hulls under forced convection and open sun drying. J. Food Process Eng. 30:324–337.
  • Al-Muhtaseb, A. H., Al-Harahsheh, M., Hararah, M. and Magee, T. R. A. (2010). Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Ind. Crop Prod. 31:171–177.
  • Anigbankpu, C. S., Rumsey, T. R. and Thompson, J. F. (1980). Thin layer drying and equilibrium moisture content equations for Ashley walnuts. ASAE Paper No:80- 6507.
  • Arabhosseini, A., Huisman, W., Van Boxtel, A. and Müller, J. (2009). Modeling of thin layer drying of tarragon (artemisia dracunculus l.). Ind. Crop Prod. 29:53–59.
  • Arslan, D. and Ozcan, M. M. (2012). Evaluation of drying methods with respect to drying kinetics, mineral content, and color characteristics of savory leaves. Food Bioprocess Tech. 5:983–991.
  • Artnaseaw, A., Theerakulpisut, S. and Benjapiyaporn, C. (2010a). Drying characteristics of Shiitake mushroom and Jinda chili during vacuum heat pump drying. Food Bioprod. Process. 88:105–114.
  • Artnaseaw, A., Theerakulpisut, S. and Benjapiyaporn, C. (2010b). Thin layer modeling of Tom Yum herbs in vacuum heat pump dryer. Food Sci. Tench. Int. 1:1–12.
  • ASAE (2001). Thin-Layer Drying of Agricultural Crops. ANSI/ASAE S448.1 JUL2001 (R2006).
  • Babalis, S.J., Papanicolaou, E. and Kyriakis, N. (2006). Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). J. Food Eng. 75:205–214.
  • Baini, R. and Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. J Food Eng. 79:330–343.
  • Bal, L. M., Kar, A. and Satya, S. (2010). Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. Int. J. Food Sci. Tech. 45:2321–2328.
  • Barrozo, M. A. S., Sartori, D. J. M. and Freire, J. T. (2004). A study of the statistical discrimination of the drying kinetics equations. Food Bioprod. Process. 82:219–225.
  • Basunia, M. A. and Abe, T. (1998). Thin layer drying characteristics of rough rice at low and high temperatures. Dry. Technol. 16:579–595.
  • Basunia, M. A. and Abe, T. (2001). Thin layer solar drying characteristics of rough rice under natural convection. J. Food Eng. 47:295–301.
  • Boyce, D. S. (1965). Grain moisture and temperature changes with position and time during through drying. J. Agric. Eng. Res. 10:333–341.
  • Bozkir, O. (2006). Thin layer drying and mathematical modeling for washed dry apricots. J Food Eng. 77:146–151.
  • Brooker, D. B., Bakker Arkema, F. W. and Hall, C. W. (1974). Drying Cereal Grains. AVI Publishing Company.
  • Bruce, D. M. (1985). Exposed layer barley drying, three models fitted to new data up to 150 °C. J. Agric. Eng. Res. 32:337–347.
  • Buser, M. D., Stone, M. L., Brusewitz, G. H., Maness, N. O. and Whitelock, D. P. (1999). Thin layer drying of marigold flowers and flower components for petal removal. Trans. ASAE. 42:1367–1373.
  • Byler, R. K. and Brook, R. C. (1984). Thin layer model, temperature and relative humidity variable. ASAE Paper No:84–3525.
  • Cakmak, G. and Yildiz, C. (2011). The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod. Process. 89:103–108.
  • Celen, S., Kahveci, K., Akyol, U. and Haksever, A. (2010). Drying behavior of cultured mushrooms. J. Food Process. Pres. 34:27–42.
  • Celma, A. R., Cuadros, F. and Lopez-Rodriguez, F. (2009b). Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 87:282–291.
  • Celma, A. R., Lopez-Rodriguez, F. and Blazquez, F. C. (2009a). Experimental modeling of infrared drying of industrial grape by-products. Food Bioprod. Process. 87:247–253.
  • Celma, A. R., Rojas, S. and Lopez-Rodriguez, F. (2008). Mathematical modeling of thin layer infrared drying of wet olive husk. Chem. Eng. Process. 47:1810–1818.
  • Celma, A. R., Rojas, S., Lopez, F., Montero, I. and Miranda, T. (2007). Thin-layer drying behaviour of sludge of olive oil extraction. J. Food Eng. 80:1261–1271.
  • Ceylan, I., Aktas, M. and Dogan, H. (2007). Mathematical modeling of drying characteristics of tropical fruits. Appl. Therm. Eng. 27:1931–1936.
  • Changrue, V., Orsat, V. and Raghavan, G. S. V. (2008). Osmotically dehydrated microwave-vacuum drying of strawberries. J. Food Process. Pres. 32:798–816.
  • Chayjan, R. A., Alizade, H. H. A. and Shadidi, B. (2012). Modeling of some pistachio drying characteristics in fix, semi fluid and fluid bed dryer. CIGR J. 14:143–154.
  • Chen, Y. L. (1996). A thin layer drying equation for paddy rice in an intermittent drying pattern. J. Agric Machinery. 5:55–64.
  • Chen C. H. and Wu, P. C. (2001). Thin-layer drying model for rough rice with high moisture content. J. Agric. Eng. Res. 80:45–52.
  • Chhinnan, M. S. (1984). Evaluation of selected mathematical models for describing thin layer drying of in shell pecans. Trans ASAE. 27:610–615.
  • Chin, S. K., Law, C. L., Supramaniam, C. V. and Cheng, P. G. (2009). Thin-layer drying characteristics and quality evaluation of air-dried ganoderma tsugae murrill. Dry. Technol. 27:975–984.
  • Chottanom, P. and Phoungchandang, S. (2005). The development of osmotically dehydrated mangoes using conventional drying and dehumidified drying. Chem. Eng. Trans. 6:897–902.
  • Choudhury, M.M.I., Bala, B.K. and Haque, M.A. (2011). Mathematical modeling of thin-layer drying of jackfruit leather. J. Food Process. Pres. 35:797–805.
  • Cihan, A., Kahveci, K. and Hacihafizoglu, O. (2007). Modelling of intermittent drying of thin layer rough rice. J Food Eng. 79:293–298.
  • Contreras, C., Martin-Esparza, M. E., Chiralt, A. and Martinez-Navarrete, N. (2008). Influence of microwave application on convective drying: effects on drying kinetics, and optical and mechanical properties of apple and strawberry. J. Food Eng. 88:55–64.
  • Correa, P. C., Martins, J. H. and Christ, D. (1999). Thin layer drying rate and loss of viability modeling for rapeseed. J. Agric. Engng. Res. 74:33–39.
  • Corzo, O., Bracho, N. and Alvarez, C. (2010). Weibull model for thin-layer drying of mango slices at different maturity stages. J Food Process Pres. 34:993–1008.
  • Corzo, O., Bracho, N. and Alvarez, C. (2011). Determination of suitable thin layer model for air drying of mango slices (mangifera indica l.) at different air temperatures and velocities. J. Food Process Eng. 34:332–350.
  • Crank, J. (1975). The mathematics of diffusion. 2nd ed. Clarendon Press, Oxford, Great Britain.
  • Dadalı, G., Apar, D. K. and Ozbek, B. (2007b). Microwave drying kinetics of okra. Dry. Technol. 25:917–924.
  • Dadali, G., Demirhan, E. and Ozbek, B. (2007a). Microwave heat treatment of spinach: Drying kinetics and effective moisture diffusivity. Dry. Technol. 25:1703–1712.
  • Dandamrongrak, R., Young, G. and Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. J. Food Eng. 55:139–146.
  • Daud, W. R .W., Talib, M. Z. M. and Hooi, O. C. (2007). Characteristics of superheated steam through drying of kenaf fibers. In: The Proceedıngs of the 5th Asia-Pasific Drying Conference, Vol. 1:144–149. Hong Kong.
  • Demir, V., Gunhan, T. and Yagcioglu, A.K. (2007). Mathematical modelling of convection drying of green table olives. Biosyst. Eng. 98:47–53.
  • Demirhan, E. and Ozbek B. (2010b). Microwave-drying characteristics of basil. J. Food Process. Pres. 34:476–494.
  • Demirhan, E. and Ozbek, B. (2010a). Drying kinetics and effective moisture diffusivity of purslane undergoing microwave heat treatment. Korean J. Chem. Eng. 27:1377–1383.
  • Demirhan, E. and Ozbek, B. (2011). Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chem. Eng. Commun. 198:957–975.
  • Devahastin, S. (2000). Mujumdar's Practical Guide to Industrial Drying. Exergex Corporation, Canada.
  • Diamante, L. M., Ihns, R., Savage, G. P. and Vanhanen, L. (2010). A new mathematical model for thin layer drying of fruits. Int. J. Food Sci. Tech. 45:1956–1962.
  • Dissa, O. A., Bathiebo, D. J., Desmorieux, H., Coulibaly, O. and Kouliati, J. (2011). Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy. 36:2517–2527.
  • Dissa, A. O., Desmorieux, H. and Bathiebo, J. (2008). Convective drying characteristics of Amelie mango (Mangifera Indica L. cv. ‘Amelie’) with correction for shrinkage. J. Food Eng. 88:429–437.
  • Djendoubi, N., Boudhrioua, N., Bonazzi, C. and Kechaou, N. (2009). Drying of sardine muscles: Experimental and mathematical investigations. Food Bioprod. Process. 87:115–123.
  • Doymaz, I. (2004a). Drying kinetics of white mulberry. J. Food Eng. 61:341–346.
  • Doymaz, I. (2004b). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst. Eng. 89:281–287.
  • Doymaz, I. (2004c). Effect of dipping treatment on air drying of plums. J. Food Eng.. 64:465–470.
  • Doymaz, I. (2005). Sun drying of figs: An experimental study. J. Food Eng. 71:403–407.
  • Doymaz, I. (2006). Drying kinetics of black grapes treated with different solutions. J. Food Eng. 76:212–217.
  • Doymaz, I. (2007a). Air-drying characteristics of tomatoes. J. Food Eng. 78:1291–1297.
  • Doymaz, I. (2007b). Influence of pretreatment solution on the drying of sour cherry. J. Food Eng. 78:591–596.
  • Doymaz, I. (2007c). The kinetics of forced convective air-drying of pumpkin slices. J. Food Eng. 79:243–248.
  • Doymaz, I. (2008a). Drying of leek slices using heated air. J. Food Process Eng. 31:721–737.
  • Doymaz, I. (2008b). Influence of blanching and slice thickness on drying characteristics of leek slices. Chem. Eng. Proce. 47:41–47.
  • Doymaz, I. (2009a). Mathematical modelling of thin-layer drying of kiwifruit slices. J. Food Process. Pres. 33:145–160.
  • Doymaz, I. (2009b). An experimental study on drying of green apples. Dry. Technol. 27:478–485.
  • Doymaz, I. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food Bioprod. Process. 88:124–132.
  • Doymaz, I. (2011a). Drying of thyme and selection of a suitable thin layer drying model. J. Food Process. Pres. 35:458–465.
  • Doymaz, I. (2011b). Drying of pomegranate arils and selection of a suitable drying model. Food Biophys. 6 461–467.
  • Doymaz, I. (2011c). Drying of eggplant slices in thin layers at different air temperatures. J. Food Process. Pres. 35:280–289.
  • Doymaz, I. (2012). Sun drying of seedless and seeded grapes. J. Food Sci. Technol. 49:214–220.
  • Doymaz, I. and Ismail, O. (2010). Drying and rehydration behaviors of green bell peppers. Food Sci. BioTechnol. 19:1449–1455.
  • Doymaz, I. and Ismail, O. (2011). Drying characteristics of sweet cherry. Food Bioprod. Process. 89:31–38.
  • Duc, L. A., Han, J. W. and Keum, D. H., (2011). Thin layer drying characteristics of rapeseed (Brassica napus L.). J. Stored Prod. Res. 47:32–38.
  • El-Beltagy, A., Gamea, G. R. and Essa, A. H. A. (2007). Solar drying characteristics of strawberry. J. Food Eng. 78:456–464.
  • Emam-Ddjomeh, Z., Zadeh, R.Z. and Shahedi, M. (2007). Effects of drying methods on dehydration kinetics of pomegranate peel. The Proceedings of the 5th Asia-Pasific Drying Conference, Vol. 2:1165–1170. Hong Kong.
  • Erbay, Z. and Icier, F. (2008b). Drying kinetics of olive leaves. Gida. 33:165–173 (in Turkish).
  • Erbay, Z. and Icier, F. (2009). A review of thin layer drying of foods: Theory, modeling, and experimental results. Crit. Rev. Food Sci. Nutr. 50:441–464.
  • Erenturk, S., Gulaboglu, M.S. and Gultekin, S. (2004). The thin-layer drying characteristics of rosehip. Biosyst. Eng. 89:159–166.
  • Ertekin, C. and Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 63:349–359.
  • Falade, K. O. and Solademi, O. J. (2010). Modelling of air drying of fresh and blanched sweet potato slices. Int. J. Food Sci. Technol. 45:278–288.
  • Fang, S., Wang, Z. and Hu X. (2009). Hot air drying of whole fruit Chinese jujube (Zizyphus jujuba Miller): Thin-layer mathematical modelling. International Journal of Food Science and Technology. 44:1818–1824.
  • Farmer, G. S., Brusewitz, G. H. and Whitney, R. W. (1983). Drying properties of bluestem grass seed. Transaction of the ASAE. 26:234–237.
  • Faustino, J. M. F., Barroca, M. J. and Guine, R. P. F. (2007). Study of the drying kinetics of green bell pepper and chemical characterization. Food Bioprod. Process. Trans IChemE, Part C. 85:163–170.
  • Friant, N. R., Marks, B. P. and Bakker-Arkema, F. W. (2003). Drying rate of individual ears of corn. ASAE Paper No: 2003–36006.
  • Fumagalli, F. and Freire, J.T. (2007). Analysis of the drying kinetics of brachiaria brizantha (hochst. Stapf) grass seeds at different drying modes. Dry. Technol. 25:1437–1444.
  • Ganesapillai, M., Miranda, L. R., Reddy, T., Bruno, M. and Singh, A. (2011). Modeling, characterization and evaluation of efficiency and drying indices for microwave drying of zingiber officianale and curcuma mangga. Asia-Pasific J. Chem. Eng. 6:912–920.
  • Garavand, A. T., Rafiee, S. and Keyhani, A. R. (2011). Mathematical modeling of thin layer drying kinetics of tomato: Influence of air dryer conditions. Int. Trans. J. Eng. Manage. Appl. Sci. Technol. 2:147–160.
  • Ghazanfari, A., Emami, S. and Tabil, L. G. (2006a). Thin-layer drying of flax fiber: II. Modeling drying process using semi-theoretical and empirical models. Dry. Technol. 24:1637–1642.
  • Ghazanfari, A., Emami, S., Tabil, L. G. and Panigrahi, S. (2006b). Thin layer drying of flax fiber: III. Influence of layer thickness on drying parameters. Dry. Technol. 24:1643–1648.
  • Goyal, R. K., Kingsly, A. R. P., Manikantan, M. R. and Ilyas, S. M. (2007). Mathematical modelling of thin layer drying kinetics of plum in a tunnel dryer. J. Food Eng. 79:176–180.
  • Guine, R. P. F. and Barroca, M. J. (2012). Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod. Process. 90:58–63.
  • Guine, R. P. F., Henrriques, F. and Barroca, M. J. (2012). Mass transfer coefficients for the drying of pumpkin and dried product quality. Food Bioprocess. Technol. 5:176–183.
  • Gunhan T., Demir V. and Hancioglu E. (2005). Mathematical modelling of drying of bay leaves. Energy Convers. Manage. 46:1667–1679.
  • Hacihafizoglu, O., Cihan, A. and Kahveci, K. (2008). Mathematical modelling of drying of thin layer rough rice. Food Bioprod. Process. 86:268–275.
  • Haghi, A.K. and Angiz, F.Z. (2007). Heat and mass transfer in thermal drying of wool: A theoretical approach. The Proceedings of the 5th Asia-Pasific Drying Conference, Vol. 1:443–448.
  • Hasibuan, R. and Daud W. R. W. (2004). Through drying of oil palm empty fruit bunches fiber using superheated steam. Drying 2004. In: Proceedings of 14th IDS, Vol. 1, pp. 2027–2034 Silva, M. A., Rocha, S. C. S. and Mujumdar, A. M., Eds., Sao Paulo, Brazil.
  • Hassan, B. H. and Hobani, A. (2000). Thin-layer drying of dates. J. Food Process Eng. 23:177–189.
  • Hayaloglu, A. A., Karabulut, I., Alpaslan, M. and Kelbaliyev, G. (2007). Mathematical modeling of drying characteristics of strained yoghurt in a convective type tray deryer. J. Food Eng. 78:109–117.
  • Henderson, J. M. and Henderson, S. M. (1968). A computational procedure for deep-bed drying analysis. J. Agric. Eng. Res. 13:87–95.
  • Hii, C. L., Law, C. L. and Cloke, M. (2008). Modeling of thin layer drying kinetics of cocoa beans during artificial and natural drying. J. Eng. Sci. Technol. 3:1–10.
  • Hii, C. L., Law, C. L. and Cloke, M. (2009). Modeling using a new thin layer drying model and product quality of cocoa. J. Food Eng. 90:191–198.
  • Hossain, M. A. and Bala, B. K. (2002). Thin-layer drying characteristics for green chilli. Dry. Technol. 20:489–505.
  • Hossain, M. A., Woods, J. L. and Bala B. K. (2007). Single-layer drying characteristics and colour kinetics of red chilli. Int. J. Food Sci. Technol. 42:1367–1375.
  • Hui, Y. H., Clary, C., Farid, M. M., Fasina, O. O., Noomhorm, A. and Welti-Chanes J. (2008). Food Drying, Science and Technology. DEStech Pub. Inc., PA, USA.
  • Hustrulid, A. and Flikke, A. M. (1959). Theoretical drying curve for shelled corn. Trans. ASAE. 2:112–114.
  • Hutchinson, D. and Otten, L. (1982). Thin layer drying of soybeans and white beans. CSAE Paper No:82–104.
  • Iquaz, A., San Martin, M. B., Mate, J. I., Fernandez, T. and Virseda, P. (2003). Modelling effective moisture diffusivity of rough rice at low drying temperatures. J. Food Eng. 99:253–258.
  • Jain, D. and Pathare, P. B. (2004). Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosyst. Eng. 89:289–296.
  • Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Boonrod, Y., Haewsungcharern M., Bala, B. K., Nagle, M. and Muller, J. (2009). Solar drying of peeled longan using a side loading type solar tunnel dryer: Experimental and simulated performance. Dry. Techn. 27:595–605.
  • Janjai, S., Lamlert, N., Mahayothee, B., Bala, B. K., Preceppe, M. and Muller, J. (2011a). Thin layer drying of peeled longan. Food Sci. Technol. Res. 17:279–288.
  • Janjai, S., Precoppe, M., Lamlert, N., Mahayothee, B., Bala, B. K., Nagle, M. and Muller, J. (2011b). Thin layer drying of litchi. Food Bioprod. Process. 89:194–201.
  • Jayas, D. S. and Sokhansanj, S. (1989). Thin layer drying of barley at low temperatures. CSAE. 31:21–23.
  • Jayas, D. S., Cenkowski, S. and Pabis, S. (1991). Review of thin-layer drying and wetting equations. Dry. Technol. 9:551–588.
  • Jazini, M. H. and Hatamipour, M. S. (2010). A new physical pretreatment of plum for drying. Food Bioprod. Process. 88:133–137.
  • Jena, S. and Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. J. Food Eng. 79:92–99.
  • Kadam, D. M. and Dhingra, D. (2011). Mass transfer kinetics of banana slices during osmo-convective drying. J. Food Process Eng. 34:511–532.
  • Kahveci, K. and Cihan, A. (2008). Drying of Food Materials: Transport Phenomena. Nova Science Publishers Inc.
  • Kailappan, R. and Kaleemullah, S. (2006). Modelling of thin-layer drying kinetics of red chillies. J. Food Eng. 76:531–537.
  • Kaleta, A. and Gornicki, K. (2010). Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int. J. Food Sci. Technol. 45:891–898.
  • Karaaslan S. N. and Tuncer I. K. (2008). Development of a drying model for combined microwave–fan-assisted convection drying of spinach. Biosyst. Eng. 100:44–52.
  • Karabulut, I., Hayaloglu, A. A. and Yildirim, H. (2007). Thin-layer drying characteristics of kurut, a Turkish dried dairy by-product. Int. J. Food Sci. Technol. 42:1080–1086.
  • Kashaninejad, M., Mortazavi, A. and Safekordi, A. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. J. Food Eng. 78:98–108.
  • Kayisoglu, S. and Ertekin, C. (2011). Vacuum drying kinetics of Barbunya bean. Philippine Agric. Scientist. 94:285–291.
  • Khazaei, J. and Daneshmandi, S. (2007). Modeling of thin layer drying kinetics of sesame seeds: Mathematical and neural networks modeling. Int. Agrophys. 21:335–348.
  • Kingsly, A. R. P., Balasubramaniam, V. M. and Rastogi, N. K. (2009). Effect of high-pressure processing on texture and drying behavior of pineapple. J. Food Process Eng. 32:369–381.
  • Kingsly, R. P., Goyal, R. K. and Manikantan, M.R. (2007). Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int. J. Food Sci. Technol. 42:65–69.
  • Kiranoudis, C. T., Tsami, E. and Maroulis, Z. B. (1997). Microwave vacuum drying kinetics of some fruits. Dry. Technol. 15:2421–2440.
  • Kose, B. and Erenturk, S. (2010). Drying characteristics of mistletoe in convective and UV combined convective type dryers. Ind. Crops Prod. 32:394–399.
  • Koua, K.B., Fassinou, W F., Gbaha, P. and Toure, S. (2009). Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy. 34:1594–1602.
  • Kulasiri, D. G., Vaughan, D. H., Cundiff, J. S. and Wilcke, W. F. (1989). Thin layer drying rates of Virginia type peanuts. ASAE Paper No:89–6600.
  • Kumar, D. G. P., Hebbar, H. U. and Ramesh, M. N. (2006). Suitability of thin layer models for infrared-hot air-drying of onion slices. LWT-Food Sci. Technol. 39:700–705.
  • Kumar, N., Sarkar, B. C. and Sharma, H. K. (2012). Mathematical modeling of thin layer hot air drying of carrot pomace. J. Food Sci. Technol. 49:33–41.
  • Kurozawa, L. E., Azoubel, P. M., Murr, F. E. X. and Park, K. J. (2012). Drying kinetic of fresh and osmotically dehydrated mushroom (Agaricus Blazei). J. Food Process Eng. 35:295–313.
  • Lahsasni, S., Kouhila M., Mahrouz, M., Idlimam, A. and Jamali, A. (2004b). Thin layer convective solar drying and mathematical modeling of prickly pear peel. Energy. 29:211–224.
  • Lahsasni, S., Kouhila, M. and Mahrouz, M. (2004a). Drying kinetics of prickly pear fruit (Opuntia ficus indica). J. Food Eng. 61:173–179.
  • Lahsasni, S., Kouhila, M., Mahrouz, M., Ait Mohamed, L. and Agorram, B. (2004c). Characteristic drying curve and mathematical modeling of thin layer solar drying of prickly pear cladode. J. Food Process Eng. 27:103–117.
  • Laohavanich, J. and Wongpichet, S. (2008). Thin layer drying model for gas fired infrared drying of paddy. Songklanakarin J. Sci. Technol. 30:343–348.
  • Lee, J. H. and Kim, H. J. (2009). Vacuum drying kinetics of Asian white radish (raphanus sativus l.) slices. LWT-Food Sci. Technol. 42:180–186.
  • Lemus-Mondaca, R., Betoret, N. and Vega-Galvez, A. (2009). Dehydration characteristics of papaya (carica pubenscens): Determination of equilibrium moisture content and diffusion coefficient. J. Food Process Eng. 32:645–663.
  • Li, H., Morey, R. V. and Afinrud, M. (1987). Thin layer drying rates of oilseed sunflower. Trans ASAE. 30:1172–1175, 1180.
  • Lima, O. C. M. and Massarani, G. (1995). Estudo sobre a secagem de papel III: Uma analise nas equacoes de secagem. Anais do XXIII Congresso Brasileiro de Sistemas Particulados, Maringa, PR, Brasil, Vol. 1:431–440.
  • Liu, X., Qiu, Z., Wang, L., Cheng, Y., Qu, H. and Chen, Y. (2009). Mathematical modeling for thin layer vacuum belt drying of Panax notoginseng extract. Energy Convers. Manage. 50:928–932.
  • Lopez, R., De Ita, A. and Vaca, M. (2009). Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Convers. Manage. 50:2119–2126.
  • Lopez, A., Pique, M. T., Boatella, J., Ferran, A., Garcia, J. and Romero, A. (1998). Drying characteristics of the hazelnut. Drying Technology. 16:627–649.
  • Luikov, A. V. (1968). Analytical Heat Diffusion Theory. Academic Press.
  • Madamba, P. S. (2003). Thin layer drying models for osmotically pre-dried young coconut. Dry. Technol. 21:1759–1780.
  • Madhiyanon, T., Phila, A. and Soponronnarit, S. (2009). Models of fluidized bed drying for thin-layer chopped coconut. Appl. Thermal Eng. 29:2849–2854.
  • Magalhaes, A. and Pinho, C. (2008). Spouted bed drying of cork stoppers. Chem. Eng. Process. 47:2395–2401.
  • Meisami-Asl, E. and Rafiee, S. (2009). Mathematical modeling of kinetics of thin-layer drying of apple (var. Golab). Agric. Eng. Int. 1185, Vol. XI.
  • Meisami-Asl, E., Rafiee, S., Keyhani, A. and Tabatabaeefar, A. (2010). Determination of suitable thin layer drying curve model for apple slices. Plant Omics J. 3:103–108.
  • Menges, H. O. and Ertekin, C. (2006b). Thin layer drying model for treated and untreated Stanley plums. Energy Convers. Manage. 47:2337–2348.
  • Menges, H. O. and Ertekin, C. (2006a). Mathematical modeling of thin layer drying of Golden apples. J. Food Eng. 77:119–125.
  • Menges, H. O. and Ertekin, C. (2006c). Modelling of air drying of Hacıhaliloglu-type apricots. J. Sci. Food. Agric. 86:279–291.
  • Midilli, A. and Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers. Manage. 44:1111–1122.
  • Midilli, A., Kucuk, H. and Yapar, Z. (2002). A new model for single-layer drying. Dry. Technol. 20:1503–1513.
  • Misra, M. K. and Brooker, D. B. (1980). Thin layer drying and rewetting equations for shelled yellow corn. Trans ASAE. 23:1254–1260.
  • Mohammadi, A., Rafiee, S., Keyhani A. R. and Djomeh, Z. E. (2009). Moisture content modeling of sliced kiwifruit (cv. hayward) during drying. Pakistan Journal of Nutrition 8:78–82.
  • Mota, C. L., Luciano, C., Diasa, A., Barroca, M. J. and Guine, R. P. F. (2010). Convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process. 88:115–123.
  • Mundada, M., Hathan, B. S. and Maske, S. (2010). Convective dehydration kinetics of osmotically pretreated pomegranate arils. Biosyst. Eng. 107:307–316.
  • Neter, J., Wasserman, W. and Kutner, M.H. (1990). Applied linear statistical models. In: Regression Analysis of Variance and Experimental Designs. Richard D. Irwin Inc., USA.
  • Noomhorn, A. and Verma, L. R. A. (1986). A generalized single layer rice drying model. ASAE Paper No: 86–3057, ASAE, St. Joseph, MI.
  • Nourhene, B., Mohammed, K. and Nabil, K. (2008). Experimental and mathematical investigations of convective solar drying of four varieties of olive leaves. Food Bioprod. Process. 86:176–184.
  • O'Callaghan, J. R., Menzies, D. J. and Bailey, P. H. (1971). Digital simulation of agricultural drier performance. J. Agric. Eng. Res. 16:223–244.
  • Oman, S. D. (1991). Multiplicative effects in mixed model analysis of variance. Biometrika. 78:729–739.
  • Otsura, K., Murata, S. and Chuma, Y. (1975). An empirical equation for thin layer drying of rough rice with heated air. J. Japanese Agric Machinery. 37:331–338 (in Japanese).
  • Overhults, D. G., Ross, I. J., White, G. M. and Hamilton, H. E. (1973). Drying soybeans with heated air. Trans. ASAE. 16:112–113.
  • Ozbek, B. and Dadali, G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. Food Eng. 83:541–549.
  • Pabis, S., Jayas, D. S. and Cenkowski, S. (1998). Grain Drying, Theory and Practice. John Wiley and Sons, USA.
  • Panchariya, P. C., Popovic, D. and Sharma, A. L. (2002). Thin-layer modelling of black tea drying process. J Food Eng. 52:349–357.
  • Pardeshi, I.L., Arora, S. and Borker, P. A. (2009). Thin-layer drying of green peas and selection of a suitable thin-layer drying model. Dry. Technol. 27:288–295.
  • Pardeshi, I. L. and Chattopadhyay, P. K. (2010). Hot air puffing kinetics for soy-fortified wheat-based ready-to-eat (rte) snacks. Food Bioproc. Technol. 3:415–426.
  • Patil, R. T. (1995). Drying Characteristics of Alfalfa Crops. PhD Agricultural and bioresource Engineering, University of Saskatchewan, Saskatoon, S7N5A9.
  • Patil, B. G. and Ward, G. T. (1989). Heated air drying of rapeseed. Agricultural Mech. Asia, Africa Latin America. 20:52–58.
  • Paulsen, M. R. and Thompson, T. L. (1973). Drying endysus of grain sorghum. Trans. ASAE. 16:537–540.
  • Phoungchandang, S. and Kongpim, P. (2012). Modeling using a new thin layer drying model and drying characteristics of sweet basil using tray and heat pump assisted dehumidified drying. J. Food Process Eng. 35:851–862.
  • Purkayastha, M. D., Nath, A., Deka, B. C. and Mahanta, C. L. (2011). Thin layer drying of tomato slices. J. Food Sci. Technol. DOI:10.1007/s13197-011-0397-x.
  • Queiroz, R., Gabas, A. L. and Telis, V. R. N. (2004). Drying kinetics of tomato by using eletric resistance and heat pump dryers. Dry. Technol. 22:1603–1620.
  • Radhika, G. B., Satyanarayana, S. V. and Rao, D. G. 2011. Mathematical model on thin layer drying of finger millet (Eluesine coracana). Advance Journal of Food Science and Technology 3:127–131.
  • Rafiee, S., Keyhani, A. R. and Jafari, A. (2008). Modeling effective moisture diffusivity of wheat (Tajan) during air drying. Int. J. Food Properties. 11:223–232.
  • Resende, O., Arcanjo, R. V. and Siqueira, V. C. (2009). Mathematical modeling for drying coffee (Coffea canephora Pierre) berry clones in concrete yard. Acta Scientiarum-Agronomy. 31:189–196.
  • Roberts, J. S., Kidd, D. R. and Padilla-Zakour, O. (2008). Drying kinetics of grape seeds. J. Food Eng. 89:460–465.
  • Rowe, R. J. and Gunkel, W. W. (1972). Simulation of temperatre and moisture content of alfalfa during thin layer drying. Trans ASAE. 15:805–810.
  • Sacilik, K. and Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. J. Food Eng. 73:281–289.
  • Sacilik, K., Keskin, R. and Elicin, A. K. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. J Food Eng. 73:231–238.
  • Sacilik, K. and Unal, G. (2005). Dehydration characteristics of Kastamonu garlic slices. Biosyst. Eng. 92:207–215.
  • Sander, A. and Kardum, J. P. (2009). Experimental validation of thin-layer drying models. Chem. Eng. Technol. 32:590–599.
  • Sankat, C. K., Castaigne, F. and Maharaj, R. (1996). The air drying behavior of fresh and osmotically dehydrated banana slices. Int. J. Food Sci. Technol. 31:123–135.
  • Sawhney, R. L., Sarsavadia, P. N., Pangavhane, D. R. and Singh, S.P. (1999). Determination of drying constants and their dependence on drying air parameters for thin layer onion drying. Dry. Technol. 17:299–315.
  • Schwarz, G. (1978). Estimating the dimensional of a model. Ann. Stat. 6:461–464.
  • Sharaf-Eldeen, Y. I., Blaisdell, J. L. and Hamdy, M. Y. (1980). A model for ear corn drying. Trans. ASAE. 23:1261–1265, 1271.
  • Sharma, G. P., Verma, R. C. and Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. J. Food Eng. 71:282–286.
  • Shi, J., Pan, Z., Mchugh, T. H., Wood, D., Hirschberg, E. and Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT - Food Sci. Technol. 41:1962–1972.
  • Shi, Q., Zheng, Y. and Zhao, Y. (2013). Mathematical modeling on thin layer heat pump drying of yacon slices. Energy Convers. Manage. 71:208–216.
  • Shittu, T. A. and Raji, A. O. (2011). Thin layer drying of African breadfruit (Treculia africana) seeds: Modeling and rehydration capacity. Food Bioprocess Technol. 4:224–231.
  • Siatkowski, M., Weres, J., Kujawa S., Szabelska, A. and Zyprych J. (2010). Growth curve functıons ın modelıng the thın-layer dryıng of corn. Agricultural Engineering 6:89–94.
  • Singh, B., Panesar, P. S., Gupta, A. K. and Kennedy, J. F. (2006). Sorption isotherm behavior of osmoconvectively dehydrated carrot cubes. J. Food Process. Pres. 30:684–698.
  • Sinico, R., Muir, W. R., Jayas, D. S. and Cenkowski, S. (1995). Thin layer drying and wetting of wheat. PostHarvest Biology and Technology 5:261–275.
  • Sobukola, O. P., Dairo, O. U. and Odunewu, A. V. (2008). Convective hot air drying of blanched yam slices. Int. J. Food Sci. Technol. 43:1233–1238.
  • Soponronnarit, S., Swasdisevi, T., Wetchacama, S. and Wutiwiwatchai, W. (2001). Fluidised bed drying of soybeans. J. Stored Prod. Res. 37:133–151.
  • Soysal, Y., Oztekin, S. and Eren, O. (2006). Microwave drying of parsley: Modelling, kinetics, and energy aspects. Biosyst. Eng. 93:403–413.
  • Sripinyowanich, J. and Noomhorm, A. (2011). A new model and quality of unfrozen and frozen cooked rice dried in a microwave vibro-fluidized bed dryer. Dry. Technol. 29:735–748.
  • Suherman, B. F., Satriadi, H., Yuariski, O., Nugroho, R. S. and Shobib, A. (2012). Thin layer drying kinetics of roselle. Advance Journal of Food Science and Technology 4:51–55.
  • Sun, D. W. and Woods, J. L. (1994). Low temperature moisture transfer characteristics of barley: Thin layer models and equilibrium isotherms. J. Agric. Eng. Res. 59:273–283.
  • Tabatabaee, R., Jayas, D. S. and White N. D. G. (2004) Thin layer drying and rewetting characteristics of buckwheat. Canadian Biosyst. Eng. 46:19–24.
  • Tahmasebi, M., Hashjin, T. T., Khoshtaghaza, M. H. and Nikbakht, A. M. (2011). Evaluation of thin layer drying models for simulation of drying kinetics of quercus. J. Agric. Sci. Tech. 13:155–163.
  • Tang, J., Sokhansanj, S and Sosulski, F. W. (1989). Thin layer drying of lentil. ASAE Paper No: 89–6540.
  • Therdthai, N. and Northongkom, H. (2011). Characterization of hot air drying and microwave vacuum drying of fingerroot (Boesenbergia pandurata). Int. J. Food Sci. Technol. 46:601–607.
  • Thompson, T. L., Peart, R. M. and Foster, G. H. (1968). Mathematical simulation of corn drying: A new model. Trans. ASAE. 11:582–586.
  • Thorat, I. D., Mohapatra, D., Sutar, R. F., Kapdi, S. S. and Jagtap, D. D. (2012). Mathematical modeling and experimental study on thin layer vacuum drying of ginger. Food Bioprocess Technol. 5:1379–1383.
  • Tirawanichakul, S., Tirawanichakul, Y. and Sniso, E. (2008). Paddy dehydration by adsorption: Thermo-physical properties and diffusion model of agriculture residues. Biosyst. Eng. 99:249–255.
  • Tironi, A., Crozza, D. E. and Pagano, A.M. (2004). Drying kinetics of carthamus tinctorius L. seeds. Proceedings of the 14th International Drying Symposium, Vol. C, pp. 1612–1619.
  • Togrul, H. (2005). Simple modeling of infrared drying of fresh apple slices. J. Food Eng. 71:311–323.
  • Togrul, H. (2006). Suitable drying model for infrared drying of carrot. J. Food Eng. 77:610–619.
  • Togrul, I. T. (2010). Modelling of heat and moisture transport during drying black grapes. Int. J. Food Sci. Technol. 45:1146–1152.
  • Togrul, I. T. and Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. J. Food Eng. 55:209–216.
  • Togrul, I. T. and Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. J. Food Eng. 58:23–32.
  • Togrul, I. T. and Pehlivan, D. (2004). Modeling of thin layer drying kinetics of some fruits under open air sun drying process. J. Food Eng. 65:413–425.
  • Tripathy, P. P. and Kumar, S. (2008). Determination of temperature dependent drying parameters for potato cylinders and slices during solar drying. Energy Convers. Manage. 49:2941–2948.
  • Tunde-Akintunde, T. Y. (2011). Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy. 36:2139–2145.
  • Usub, T., Lertsatitthankorn, C., Poomsaad N., Wiset, L., Siriamornpun, S. and Soponronnarit, S. (2010). Thin layer solar drying characteristics of silkworm pupae. Food Bioprod. Process. 88:149–160.
  • Varadharaju, N., Karunanidhi, C. and Kailappan, R. (2001). Coffee cherry drying: A two-layer model. Dry. Technol. 19:709–715.
  • Vega, A., Uribe, E. and Lemus, R. (2007). Hot-air drying characteristics of Aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. LWT-Food Sci. Technol. 40:1698–1707.
  • Vega-Galvez, A., Andres, A., Gonzalez, E., Notte-Cuello, E., Chacana, M. and Lemus-Mondaca, R. (2009a). Mathematical modelling on the drying process of yellow squat lobster (Cervimunida jhoni) fishery waste for animal feed. Animal Feed Sci. Technol. 151:268–279.
  • Vega-Galvez, A., Dagnino-Subiabre, A., Terreros, G., Lopez, J., Miranda, M. and Di Scala, K. (2011). Mathematical modeling of convective air drying of quinoa-supplemented feed for laboratory rats. Brazilian Arch. Biol. Technol. Int. J. 54:161–171.
  • Vega-Galvez, A., Lemus-Mondaca, R. and Bilbao-Sainz, C. (2008a). Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): Mathematical modeling and evaluation of kinetic parameters. J. Food Process. Eng. 31:120–137.
  • Vega-Galvez, A., Lemus-Mondaca, R., Tello-Ireland, C., Miranda, M. and Yagnam, F. (2009b). Kinetic study of convective drying of blueberry variety O'Neil (Vaccinium corymbosum L.). Chilean J. Agric. Res. 69:171–178.
  • Vega-Galvez, A., Martin, R. S., Sanders, M., Miranda, M. and Lara, E. (2010). Characteristics and mathematical modeling of convective drying of quinoa (Chenopodium Quinoa Willd.): Influence of temperature on the kinetic parameters. J. Food Process. Pres. 34:945–963.
  • Vega-Galvez, A., Miranda, M., Bilbao-Sainz, C., Uribe, E. and Lemus-Mondaca, R. (2008b). Empirical modeling of drying process for apple (cv. Granny Smith) slices at different air temperatures. J. Food Process. Preserv. 32:972–986.
  • Vega-Galvez, A., Notte-Cuello, E. and Lemus-Mondaca, R. (2009c). Mathematical modelling of mass transfer during rehydration process of Aloe vera (Aloe barbadensis Miller). Food Bioprod. Process. 87:254–260.
  • Vengaiah, P. C. and Pandey, J. P. (2007). Dehydration kinetics of sweet pepper (Capsicum annum L.). J. Food Eng. 81:282–286.
  • Verma, L. R., Bucklin, R. A., Endan, J. B. and Wratten, F.T. (1985). Effects of drying air parameters on rice drying models. Trans ASAE. 28:296–301.
  • Vijayaraj, B., Saravanan, R. and Renganarayanan, S. (2007). Studies on thin layer drying of bagasse. Int. J. Energy Res. 31:422–437.
  • Wang, D. C., Fon, D. S., Fang, W. and Sokhansanj, S. (2004). Development of a visual method to test the range of applicability of thin layer drying equations using MATLAB tools. Dry. Technol. 22:1921–1948.
  • Wang, J. (2002). A single layer model for far infrared radiation drying of onion slices. Dry. Technol. 20:1941–1953.
  • Wang, Z. F., Fang, S. Z. and Hu, X. S. (2009). Effective diffusivities and energy consumption of whole fruit Chinese Jujube (Zizyphus Jujuba Miller) in microwave drying. Dry. Technol. 27:1097–1104.
  • Wang, C. Y. and Singh, R. P. (1978). A single layer drying equation for rough rice. ASAE Paper No:3001.
  • Wang, Z., Sun, J., Chen, F., Liao, X. and Hu, X. (2007a). Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J Food Eng. 80:536–544.
  • Wang, Z., Sun, J., Liao X., Chen, F., Zhao G., Wu, J. and Hu, X. (2007b). Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40:39–46.
  • Westerman, P. W., White, G. M. and Ross, I. J. (1973). Drying rate and quality of white shelled corn as influenced by dew point temperature. Trans. ASAE. 16:118–120.
  • White, G. M., Bridges, T. C., Loewer, O. J. and Ross, I. J. (1978). Seed coat damage in thin layer drying of soybeans as affected by drying conditions. ASAE Paper No: 78–3052.
  • White, G. M., Ross, I. J. and Poneleit, C. G. (1981). Fully exposed drying popcorn. Trans. ASAE. 24:466–468.
  • Wolfinger, R. (1993). Covariance structure selection in general mixed models. Commun.Stat-Simul. 22:1079–1106.
  • Wongwises, S. and Thongprasert, M. (2000). Thin layer and deep bed drying of long grain rough rice. Dry. Technol. 18:1583–1599.
  • Xanthopoulos, G., Lambrinos, G. and Manolopoulou, H. (2007a). Evaluation of thin-layer models for mushroom (Agaricus Bisporus) drying. Dry. Technol. 25:1471–1481.
  • Xanthopoulos, G., Oikonomou, N. and Lambrinos, G. (2007b). Applicability of a single layer drying model to predict the drying rate of whole figs. J. Food Eng. 81:553–559.
  • Yaldiz, O. and Ertekin, C. (2001). Thin layer solar drying of some vegetables. Dry. Technol. 19:583–597.
  • Yaldiz, O., Ertekin, C. and Uzun, H. I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26:457–465.
  • Yang, C. Y., Fon, D. S. and Lin, T. T., (2007). Simulation and validation of thin layer models for peanut drying. Dry. Technol. 25:1515–1526.
  • Yesilova, A., Kaydan, M. B. and Kaya, Y. (2010). Modeling insect-egg data with excess zeros using zero-inflated regression models. Hacettepe J. Mathematics Stat. 39:273–282.
  • Yi, X. K., Wu, W. F., Zhang, Y. Q., Li, J. X. and Luo, H. P. (2012). Thin layer drying characteristics and modeling of Chineese jujubes. Mathematical Problems Eng. Article ID: 386214, 18 pages.
  • Zenoozian, M. S., Feng, H. and Razavi, S. M. A. (2008). Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. J. Food Process. Pres. 32:88–102.
  • Zomorodian, A. and Moradi, M. (2010). Mathematical modeling of forced convection thin layer solar drying for cuminum cyminum. J. Agr. Sci. Tech. 12:401–408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.