1,605
Views
53
CrossRef citations to date
0
Altmetric
Articles

2,5-diketopiperazines in food and beverages: Taste and bioactivity

&

References

  • Aninat, C., Hayashi, Y., Andre, F. and Delaforge, M. (2001). Molecular requirements for inhibition of cytochrome P450 activities by roquefortine. Chem. Res. Toxicol. 14:1259–1265.
  • Aninat, C., André, F. and Delaforge, M. (2005). Oxidative metabolism by P450 and function coupling to efflux systems: modulation of mycotoxin toxicity. Food Addit. Contam. 22:361–368.
  • Aniya, Y., Ohtani, I. I., Higa, T., Miyagi, C., Gibo, H., Shimabukuro, M., Nakanishi, H. and Taira. (2000). J. Free Rad. Biol. Med. 28:999–1004.
  • Anonymous. (1980). Aspartame: availability of board inquiry decision. Fed. Reg. 45:69558.
  • Anteunis, M. J. O. (1978). The cyclic dipeptides. Proper model compounds in peptide research. Bull. Soc. Chim. Belges. 87:627–650.
  • Ben Ameur Mehdi, R., Shaaban, K. A., Rebai, I. K., Smaoui, S., Bejar, S. and Mellouli, L. (2009). Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Nat. Prod. Res. 23:1095–1107.
  • Bertinetti, B. V., Peña, N. I. and Cabrera, G. M. (2009). An antifungal tetrapeptide from the culture of Penicillium canescens. Chem. Biodivers. 6:1178–1184.
  • Birkenshaw, J. H. and Mohammed, Y. S. (1962). Studies in the biochemistry of micro-organisms. III. The production of l-phenylalanine anhydride (cis-l-3,6-dibenzyl-2,5-dioxopiperazine) by penicillium nigricans (bainier) thom. Biochem. J. 85:523–528.
  • Bobylev, M. M., Bobyleva, L. I., Cutler, H. G., Cutler, S. J. and Strobel, G. A. (1999). Growth regulating activity of maculosin analogs in the etiolated wheat coleoptile bioassay (Triticum aestivum L. cv. Wakeland). PGRSA Q. 27:105–118.
  • Borthwick, A. D. (2012). 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112:3641–3716.
  • Bull, S. D., Davies, S. G., Parkin, R. M. and Sánchez-Sancho, F. (1998). The biosynthetic origin of diketopiperazines derived from D-proline. J. Chem. Soc., Perkin Trans. 1, 14:2313–2320
  • Caballero, E., Avendaño, C. and Menéndez, J. C. (2003). Brief total synthesis of the cell cycle inhibitor tryprostatin B and related preparation of its alanine analogue. J. Org. Chem. 68:6944–6951.
  • Cabrera, G. M., Butler, M., Rodriguez, M. A., Godeas, A., Haddad, R. and Eberlin, M. N. (2006). A sorbicillinoid urea from an intertidal Paecilomyces marquandii. J. Nat. Prod. 69:1806–1808.
  • Cavelier, F., Giraud, M., Bernard, N. and Martinez, J. (2001). Original and general strategy of dimerization of bioactive molecules. In: Peptides: The Wave of the Future, pp. 152–155. Lebl, M., and Houghten, R. A., Ed., American Peptide Society, San Diego.
  • Chen, G., Zhu, Y., Wang, H. Z., Wang, S. J. and Zhang, R. Q. (2007). The metabolites of a mangrove endophytic fungus, Penicillium thomi. J. Asian Nat. Prod. Res. 9:159–164.
  • Chen, G., Lin, Y., Vrijmoed, L. L. and Fong, W. F. (2006). A new isoChroman from the marine endophytic fungus 1893#. Chem. of Nat. Comp. 42:138–141.
  • Chen, J. H., Lan, X. P., Liu, Y. and Jia, A. Q. (2012). The effects of diketopiperazines from Callyspongia sp. on release of cytokines and chemokines in cultured J774A. 1 macrophages. Bioorg. Med. Chem. Lett. 22:3177–3180.
  • Chen, M. Z., Dewis, M. L., Kraut, K., Merritt, D., Reiber, L., Trinnaman, L. and Da Costa, N.C. (2009), 2, 5-Diketopiperazines (Cyclic Dipeptides) in beef: Identification, synthesis, and sensory evaluation. J. Food Sci. 74: C100–C105.
  • Chen, Y. H., Liou, S. E. and Chen, C. C. (2004). Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. Eur. Food Res. Tech. 218:589–597.
  • Cho, J. Y., Kang, J. Y., Hong, Y. K., Baek, H. H., Shin, H. W. and Kim, M. S. (2012). Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox, 291–11. Biosci. Biotech. Biochem. 76:1116–1121.
  • Cornacchia, C., Cacciatore, I., Baldassarre, L., Mollica, A., Feliciani, F. and Pinnen, F. (2012). 2,5-Diketopiperazines as neuroprotective agents. Mini-Rev. Med. Chem. 12:2–12.
  • Coursindel, T., Restouin, A., Dewynter, G., Martinez, J., Collette, Y. and Parrot, I. (2010). Stereoselective ring contraction of 2,5-diketopiperazines: an innovative approach to the synthesis of promising bioactive 5-membered scaffolds. Bioorg. Chem. 38:210–217.
  • Cryle, M. J., Bell, S. G. and Schlichting, I. (2010). Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus Subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochem. 49:7282–7296.
  • Cui, H. B., Mei, W. L., Miao, C. D., Lin, H. P., Hong, K. and Dai, H. F. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp. 0935030 of mangrove plant Acrostichum aureurm. Chin. J. Antibiot, 33: 407–410.
  • Curtius, T. and Goebel, F. (1888). Uber glycollather. J. Prakt. Chem. 37:50–181.
  • Da Costa, N. C., Chen, M. Z., Merritt, D. and Trinnaman, L. (2010). Methionine containing cyclic dipeptides: Occurrence in natural products, synthesis, and sensory evaluation. ACS Symposium Series, In Controlling Maillard Pathways to Generate Flavors. 1042:111–120.
  • De Baere, S., Cherlet, M., Baert, K. and De Backer, P. (2002). Quantitative analysis of amoxicillin and its major metabolites in animal tissues by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Anal. Chem. 74:1393–1401.
  • Ding, Y., de Wet, J. R., Cavalcoli, J., Li, S., Greshock, T. J., Miller, K. A., Finefield, J. M., Sunderhaus, J. D., McAfoos, T. J., Tsukamoto, S., Williams, R. M. and Sherman, D. H. (2010). Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived aspergillus sp. J. Amer. Chem. Soc. 132:12733–12740.
  • Ding, Z. G., Zhao, J. Y., Yang, P. W., Li, M. G., Huang, R., Cui, X. L. and Wen, M. L. (2009). (1)H and (13)C NMR Assignments of eight nitrogen containing compounds from nocardia alba sp. nov (YIM 30243(T)). Magn. Reson. Chem. 47:366–370.
  • Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev. 106:17–89.
  • Eguchi, C. and Kakuta, A. (1974). Cyclic dipeptides. I. Thermodynamics of the cis-trans isomerization of the side chains in cyclic dipeptides. J. Amer. Chem. Soc. 96:3985–3989.
  • Emri, T., Tóth, V., Nagy, C. T., Nagy, G., Pócsi, I., Gyémánt, G., Antal, K., Balla, J., Balla, G., Román, G., Kovács, I. and Pócsi, I. (2013). Towards high-siderophore-content foods: Optimisation of coprogen production in submerged cultures of Penicillium nalgiovense. J. Sci. Food Agric. 93:2221–2228.
  • Faden, A. I., Movsesyan, V. A., Fang, X. and Wang, S. (2005). Identification of novel neuroprotective agents using pharmacophore modeling. Chem. Biodivers. 2:1564–1570.
  • Falorni, M., Giacomelli, G., Porcheddu, A. and Taddei, M. (2000). Solution-phase synthesis of mixed amide libraries by simultaneous addition of functionalities (SPSAF) to a diketopiperazine tetracarboxylic acid scaffold monitored by GC analysis of isobutyl alcohol. Eur. J. Org. Chem. 8:1669–1675.
  • Friedrich, A., Jainta, M., Nieger, M. and Bräse, S. (2007). One-pot synthesis of symmetrical and unsymmetrical diketopiperazines from unprotected amino acids. Syn. Lett. 13:2127–2129.
  • Furtadoa, N. A. J. C., Pupoa, M. T., Carvalhoa, I., Campoa, V. L., Duarteb, M. C. T. and Bastos, J. K. (2005). Diketopiperazines produced by an Aspergillus fumigatus brazilian strain. J. Braz. Chem. Soc. 16:1448–1453.
  • Furukawa, T., Akutagawa, T., Funatani, H., Uchida, T., Hotta, Y., Niwa, M. and Takaya, Y. (2012). Cyclic dipeptides exhibit potency for scavenging radicals. Bioorg. Med. Chem. 20:2002–2009.
  • Gautschi, M., Schmid, J. P., Peppard, T. L., Ryan, T. P., Tuorto, R. M. and Yang, X. (1997). Chemical characterization of diketopiperazines in beer. J. Agric. Food Chem. 45:3183–3189.
  • Geha, R., Buckley, C. E. and Greenberg, P. (1993). Aspartame is no more likely than placebo to cause Urticaria/Angioedema: Results of a multicenter, randomized, double-blind, placebo-controlled, crossover study. J. Allergy Clin. Immunol. 92:513–520.
  • Gillard, J., Frenkel, J., Devos, V., Sabbe, K., Paul, C., Rempt, M., Inzé, D., Pohnert, G., Vuylsteke, M. and Vyverman, W. (2013). Metabolomics enables the structure elucidation of a diatom sex pheromone. Angew. Chem. Int. Ed. Engl. 52:854–857.
  • Ginz, M. and Engelhardt, U. H. (2000). Identification of proline-based diketopiperazines in roasted coffee. J. Agric. Food Chem. 48:3528–3532.
  • Ginz, M. and Engelhardt, U. H. (2001). Identification of new diketopiperazines in roasted coffee. Eur. Food Res. Tech. 213:8–11.
  • Gondry, M., Sauguet, L., Belin, P., Thai, R., Amouroux, R., Tellier, C., Tuphile, K., Jacquet, M., Braud, S., Courçon, M., Masson, C., Dubois, S., Lautru, S., Lecoq, A., Hashimoto, S., Genet, R. and Pernodet, J. L. (2009). Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat. Chem. Biol. 5:414–420.
  • Goodman, M. and Temussi, P. A. (1985). Structure-activity relationship of a bitter diketopiperazine revisited. Biopoly. 24:1629–1633.
  • Gozlan, I., Rotstein, A. and Avisar, D. (2013). Amoxicillin-degradation products formed under controlled environmental conditions: identification and determination in the aquatic environment. Chemosphere. 91:985–992.
  • Graz, M., Hunt, A., Jamie, H., Grant, G. and Milne, P. (1999). Antimicrobial activity of selected cyclic dipeptides. Pharmazie. 54:772–775.
  • Grove, J. F. and Pople, M. (1981). Nitrogen-containing minor metabolic products of Beauveria Bassiana. Phytochem. 20:815–816.
  • Guan, J., Mathai, S., Harris, P., Wen, J. Y., Zhang., R., Brimble, M. and Gluckman, P. (2007). Peripheral administration of a novel diketopiperazine, NNZ 2591, prevents brain injury and improves somatosensory-motor function following hypoxia-ischemia in adult rats. Neuropharm. 53:749–762.
  • Gudasheva, T. A., Boyko, S. S., Akparov, V. K., Ostrovskaya, R. U., Skoldinov, S. P., Rozantsev, G. G., Voronina, T. A., Zherdev, V. P. and Seredenin, S. B. (1996). Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolyl-glycine in rat brain. FEBS Lett. 391:149–152.
  • Guigoz, Y. and Solms, J. (1976). Bitter peptides, occurrence and structure. Chem. Senses Flav. 2:71–84.
  • Guo, X., Zheng, L., Zhou, W., Cui, Z., Han, P., Tian, L. and Wang, X. (2011). A case study on chemical defense based on quorum sensing: antibacterial activity of sponge-associated bacterium Pseudoalteromonas sp. NJ6-3-1 induced by quorum sensing mechanisms. Ann. Microbiol. 61:247–255.
  • Hider, R. C. and Kong, X. (2010). Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637–657.
  • Hilton, C. W., Prasad, C., Vo, P. and Mouton, C. (1992). Food contains the bioactive peptide, cyclo(His-Pro), J. Clin. Endocrinol. Metab. 75:375–378.
  • Ho, C. T. (1996). Thermal generation of maillard aromas. In: The Maillard Reaction: Consequences for the Chemical and Life Sciences. pp. 27−53. Ikan, R., Ed., John Wiley & Sons Ltd., Chichester, UK.
  • Ho, C. T., Lu, C. Y., Wang, Y., Raghavan, S. and Payne, R. (2007). Maillard flavor chemistry of cysteine and cysteine containing peptides. Chemistry of Flavors, 8th Wartburg Proceedings. 91–95.
  • Houston, D. R., Synstad, B., Eijsink, V. G. H., Stark, M. J. R., Eggleston, I. M. and van Aalten, D. M. F. (2004). Structure-based exploration of cyclic dipeptide chitinase inhibitors. J. Med. Chem. 47:5713–5720.
  • Huang, G. H., Shen, Y. L. and Zhong, H. F. (2007). Analysis of flavor components of maillard reaction products using the hydrolysate of tilapia. China Condiment (Zhongguo Tiaoweipin). 8:68–70.
  • Huberman, L., Gollop, N., Mumcuoglu, K. Y., Breuer, E., Bhusare, S. R., Shai, Y. and Galun, R. (2007). Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med. Vet. Entomol. 21:127–131.
  • Isaka, M., Palasarn, S., Rachtawee, P., Vimuttipong, S. and Kongsaeree, P. (2005). Unique diketopiperazine dimers from the insect pathogenic fungus verticillium hemipterigenum BCC 1449. Org. Lett. 7:2257–2260.
  • Ishibashi, N., Sadamori, K., Yamamoto, O., Kanchisa, H., Kouge, K., Kikuchi, E., Okai, H. and Fukui, S. (1987). Bitterness of phenylalanine and tyrosine-containing peptides. Agric. Biol. Chem. 51:2389–2394.
  • Ishibashi, N., Kouge, K., Shinoda, I., Kanehisa, H. and Okai, H. (1988). A mechanism for bitter taste sensibility in peptides (Food & Nutrition). Agric. Biol. Chem. 52:819–827.
  • Ishibashi, N., Kubo, T., Chino, M., Fukui, H., Shinoda, I., Kikuchi, E., Okai, H. and Fukui, S. (1988). Taste of proline-containing peptides. Agric. Biol. Chem. 52:95–98.
  • Ishii, H. (1981a). Incidence of brain tumors in rats fed aspartame. Toxicol. Lett. 7:433–437.
  • Ishii, H., Koshimizu, T., Usami, S. and Fujimoto, T. (1981b). Toxicity of aspartame and its diketopiperazine for wistar rats by dietary administration for 104 weeks. Toxicology. 21:91–94.
  • Jainta, M., Nieger, M., Bräse, S. (2008). Microwave-assisted stereoselective one-pot synthesis of symmetrical and unsymmetrical 2,5-diketopiperazines from unprotected amino acids. Eur. J. Org. Chem. 32:5418–5424.
  • Jakas, A. and Horvat, Š. (2003). Study of degradation pathways of amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions and spectroscopic properties. Biopolymers. 69:421–431.
  • Jamie, H., Kilian, G., Dyason, K and Milne, P. J. (2002a). The effect of the isomers of cyclo(Trp-Pro) on heart and ion-channel activity. J. Pharm. Pharmacol. 54:1659–1665.
  • Jamie, H., Kilian, G. and Milne, P. J. (2002b). Hepatotoxicity of the isomers of cyclo (Trp-Pro). Pharmazie, 57:638–642.
  • Jayatilake, G. S., Thornton, M. P., Leonard, A. C., Grimwade, J. E. and Baker, B. J. (1996). Metabolites from an antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 59:293–296.
  • Jhaumeer-Laulloo, S., Khodabocus, A., Jugoo, A., Jheengut, D. and Sobha, S. (2003). Synthesis of diketopiperazines containing prolinyl unit-cyclo(L-Prolinyl-L-Leucine), Cyclo(L-Prolinyl-L-isoLeucine) and Cyclo(L-Tryptophyl-L-Proline). J. Ind. Chem. Soc. 80:765–768.
  • Jiang, Z., Boyd, K. G., Mearns-Spragg, A., Adams, D. R., Wright, P. C. and Burgess, J. G. (2000). Two diketopiperazines and one halogenated phenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Nat. Prod. Lett. 14:435–440.
  • Julianti, E., Oh, H., Jang, K. H., Lee, J. K., Lee, S. K., Oh, D. C., Oh, K. B. and Shin, J. (2011). Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J. Nat. Prod. 74:2592–2594.
  • Kawai, T., Ishida, Y., Kakiuchi, H., Ikeda, N., Higshida, T. and Nakamura, S. (1991). Flavor components of dried squid. J. Agric. Food Chem. 39:770–777.
  • Kim, H.O., Li-Chan, E.C.Y. (2006). Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem. 54:10102–10111.
  • Kohl, S., Behrens, M., Dunkel, A., Hofmann, T. and Meyerhof, W. (2012). Amino acids and peptides activate at least five members of the human bitter taste receptor family. J. Agric. Food Chem. 61:53–60.
  • Kopp-Holtwiesche, B. and Rehm, H. J. J. (1990). Antimicrobial action of roquefortine. Environ. Pathol. Toxicol. 10:41–44.
  • Kumar, N., Mohandas, C., Nambisan, B., Kumar, D. S. and Lankalapalli, R. S. (2013). Isolation of proline-based cyclic dipeptides from bacillus sp. n strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties. World J. Microbio. Biotech. 29:355–364.
  • Lee, B. H. and Pan, T. M. (2013). Dimerumic acid, a novel antioxidant identified from monascus-fermented products exerts chemoprotective effects: mini review. J. Funct. Foods. 5:2–9.
  • Li, H., Liu, L., Zhang, S., Cui, W. and Lu, J. (2012). Identification of antifungal compounds produced by Lactobacillus casei AST18. Curr. Microbiol. 65:156–161.
  • Li, X. J., Tang, H. Y., Duan, J. L., Gao, J. M. and Xue, Q. H. (2013). Bioactive alkaloids produced by Pseudomonas brassicacearum subsp. Neoaurantiaca, an endophytic bacterium from Salvia miltiorrhiza. Nat. Prod. Res. 27:496–499.
  • Lin., L., Okada, S., York, D. A. and Bray, G. A. (1994). Structural requirements for the biological activity of enterostatin. Peptides. 15:849.
  • Lind, H., Sjögren, J., Gohil, S., Kenne, L., Schnürer, J. and Broberg, A. (2007). Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS Microbiol. Lett. 271:310–315.
  • Liu, C. J., Liu, D. Y., Xiang, L., Zhou W. and Shao, N. N. (2009). Studies on the chemical constituents of Portulaca oleracea. Zhong Yao Cai. 32:1689–1691.
  • Liu, C., Yang, X. Q., Ding, Z. T., Zhao, L. X., Cao, Y. R., Xu, L. H. and Yang, Y. B. (2011). Cyclodipeptides from the secondary metabolites of two novel actinomycetes. Chin. J. Nat. Med. 9:78–80.
  • Long, C., Lu, X. L., Gao, Y., Jiao, B. H. and Liu, X.Y. (2011). Description of a sulfitobacter strain and its extracellular cyclodipeptides. Evid. Based Complement Alternat. Med. 393752:1–6.
  • Lu, X., Shen, Y., Zhu, Y., Xu, Q., Liu, X., Ni, K. and Jiao, B. (2009). Diketopiperazine constituents of Marine Bacillus subtilis. Chem. of Nat. Comp. 45:290–292.
  • Machasashi, K. and Huang, L. (2009). Review: Bitter peptides and bitter taste receptors. Cellular and Molecular Life Sciences. 66:1661–1671.
  • Magnusson, J., Ström, K., Roos, S., Sjögren, J. and Schnürer, J. (2003). Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219:129–135.
  • Mallikarjun, S. and Sieburth, R. M. (2013). Aspartame and risk of cancer: a meta-analytic review. Arch. Environ. Occup. Health. 70: 133–141.
  • Marcaccini, S., Pepino, R. and Pozo, M. C. (2001). A facile synthesis of 2,5-diketopiperazines based on isocyanide chemistry. Tet. Lett. 42:2727–2728.
  • Menna, M., Aiello, A., D'Aniello, F., Fattorusso, E., Imperatore, C., Luciano, P. and Vitalone, R. (2012). Further investigation of the mediterranean sponge Axinella polypoides: isolation of a new cyclonucleoside and a new betaine. Marine Drugs. 10:2509–2518.
  • Mercier, J. C., Grosclaude, F. and Ribadeau-Dumas, B. (1971). Structure primaire de la caséine αsl-bovine: séquence compléte. Eur. J. Biochem. 23:41–51.
  • Minelli, A., Bellezza, I., Grottelli, S. and Galli, F. (2008) Focus on cyclo(His-Pro): history and perspectives as antioxidant peptide. Amino Acids. 35:283–289.
  • Mitova, M., Tommonaro, G., Hentschel, U., Muller, W. E. G. and De Rosa, S. (2004). Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Mar. Biotech. 6:95–103.
  • Mitova, M., Tutino, M. L., Infusini., G., Marino, G. and De Rosa, S. (2005). Exocellular peptides from antarctic psychrophile pseudoalteromonas haloplanktis. Mar. Biotechnol. 7:523–531.
  • Murray, T. K. and Baker, B. E. (1952). Studies on protein hydrolysis. Part I. Preliminary observations on the taste of enzymic protein hydrolysates. J. Sci. Food Agric. 3:470–475.
  • Musthafa, K. S., Balamurugan, K., Pandian, S. K. and Ravi, A. V. (2012). 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in pseudomonas aeruginosa PAO1. J. Basic Microbiol. 52:679–686.
  • Ney, K. H. (1971). Predictions of bitterness of peptides from their amino acid composition. Z. Lebensm Unters Forsch. 147:64–71.
  • Ney, K. H. (1986). Cocoa aroma: bitter compounds as important taste ingredients. Gordian. 5:84–88.
  • Nierman, W., Pain, A., Anderson, M. J. and Wortman, J. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 438:1151–1156.
  • Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. (1999). New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86:29–35.
  • Nishanth Kumar, S., Mohandas, C. and Nambisan, B. (2013). Purification of an antifungal compound, Cyclo(L-Pro-D-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Microbiol. Res. 168:278–288.
  • Ortiz-Castro, R., Díaz-Pérez, C., Martínez-Trujillo, M., Rosa, E., Campos-García, J. and López-Bucio, J. (2011). Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Nat. Acad. Sci. 108:7253–7258.
  • Otagiri, K., Nosho, Y., Shinoda, I., Fukui, H. and Okai, H. (1985) Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. Agric. Biol. Chem. 49:1019–1026.
  • Park, D. K., Lee, K. E., Baek, C. H., Kim, I. H., Kwon, J. H., Lee, W. K., Lee, K. H., Kim, B. S., Choi, S. H. and Kim, K. S. (2006). Cyclo (Phe-Pro) modulates the expression of ompU in Vibrio spp. J. Bacteriol. 188:2214–2221.
  • Park, Y. C., Gunasekera, S. P., Lopez, J. V., McCarthy, P. J. and Wright, A. E. (2006) Metabolites from the marine-derived fungus Chromocleista sp. isolated from a deep-water sediment sample collected in the Gulf of Mexico. J. Nat. Prod. 69:580–584.
  • Pedras, M. S. C., Yu, Y., Liu, J. and Tandron-Moya, Y. A. Z. (2005). Metabolites produced by the phytopathogenic fungus rhizoctonia solani: isolation, chemical structure determination, syntheses and bioactivity. Naturforsch. C. 60:717–722.
  • Peng, J. and Clive, D. L. J. (2008). Asymmetric synthesis of the ABC-ring system of the antitumor antibiotic MPC1001. J. Org. Chem. 74:513–519.
  • Pérez-Picaso, L., Escalante, J., Olivo, H. F. and Rios, M. Y. (2009). Efficient microwave assisted syntheses of 2,5-Diketopiperazines in aqueous media. Molecules. 14:2836–2849.
  • Pérez-Picaso, L., Olivo, H. F., Argotte-Ramos, R., Rodríguez-Gutiérrez, M. D. C. and Rios, M. Y. (2012). Linear and cyclic dipeptides with antimalarial activity. Bioorg. Med. Chem. Lett. 22:7048–7051.
  • Perry, T. I., Richardson, K. S. C., Hansen, S. and Friesen, A. J. D. (1965). Identification of the diketopiperazine of histidyl-proline in human urine. J. Biol. Chem. 240:4540–4542.
  • Pickenhagen, W. (1974). “Le Principe Amer du Cacao”, Thése, Université de Paris-Sud, Centre d'Orsay.
  • Pitchen, R. (2002). The medicinal chemistry of the cyclic dipeptides Cyclo(Met-Met) and Cyclo(Met-Gly). Dissertation, Magister Scientiae, Faculty of Health Sciences, University of Port Elizabeth.
  • Pócsi, I., Jeney, V., Kertai, P., Pócsi, I., Emri, T., Gyémánt, G., Fésüs, L., Balla, J. and Balla, G. (2008). Fungal siderophores function as protective agents of LDL oxidation and are promising anti-atherosclerotic metabolites in functional food. Mol. Nutr. Food Res. 52:1434–1447.
  • Prasad, C. (1995). Bioactive cyclic dipeptides. Peptides, 16:151–164.
  • Prasad, C. (2005). Food-derived neuroactive cyclic dipeptides. In: Nutritional Neuroscience, pp. 331–340. Lieberman, H. R., Kanarek, R. B., Prasad, C., Eds., CRC Press LLC, Boca Raton, Fla.
  • Ramos, F., Boison, J., Friedlander, L. G. and Names, I. (2012). U.P.A.C. other information on identity and properties. Amoxicillin, Residues in Food and their Evaluation, ftp://ftp.fao.org/ag/agn/jecfa/vetdrug/12-2012-amoxicillin.pdf.
  • Rhee, K. H., Choi, K. H., Kim, C. J. and Kim, C. H. (2001). Identification of streptomyces sp. AMLK-335 producing antibiotic substance inhibitory to vancomycin-resistant enterococci. J. Microbiol. Biotech. 11:469–474.
  • Rhee, K. H. (2002a). Inhibition of DNA topoisomerase I by Cyclo(L-Prolyl-L-Phenylalanyl) isolated from streptomyces sp. AMLK-335. J. Microbiol. Biotech. 12:1013–1016.
  • Rhee, K. H. (2002b). Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J. Gen. Appl. Microbiol. 48:321–327.
  • Rhee, K. H. (2003). Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotech. 13:984–988.
  • Rhee, K. H. (2004). Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int. J. Antimicrob. Agents 24:423–427.
  • Rhee, K. H. (2006). In vitro activity of cyclic dipeptides against gram-positive and gram-negative anaerobic bacteria and radioprotective effect on lung cells. J. Microbiol. Biotech. 16:158–162.
  • Rhoden, C. R., Rivera, D. G., Kreye, O., Bauer, A. K., Westermann, B. and Wessjohann, L. A. (2009). Rapid access to N-substituted diketopiperazines by one-pot Ugi-4CR/deprotection+Activation/Cyclization (UDAC). J. Comb. Chem. 11:1078–1082.
  • Rizzi, G. P. (1989). Heat-induced flavor formation from peptides. Therm. Gener. Aromas ACS Symp. Ser. 409:172–181.
  • Rose, G. D., Gierasch, L. M. and Smith, J. A. (1985). Turns in peptides and proteins. Adv. Protein Chem. 37:1–109.
  • Roudot-Agaron, F., Le Barbs, D., Einhorn, J., Adda, J. and Gripon, J. C. (1993). Flavor constituents of aqueous fraction extracted from comte cheese by liquid carbon dioxide. J. Food Sci. 58:1005–1009.
  • Ryan, L. A., Dal Bello, F., Arendt, E. K. and Koehler, P. (2009). Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread, J. Agric. Food Chem. 57:9563–9568.
  • Ryan, L. A., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E. K. (2011). Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 146:276–283.
  • Samonina, G., Ashmarin, I. and Lyapina, L. (2002). Glyproline peptide family: review on bioactivity and possible origins. Pathophys. 8:229–234.
  • Sansone, G., Rezza, I., Calvente, V., Benuzzi, D. and Tosetti, M. I. S. D. (2005). Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol. Technol. 35:245–251.
  • Santagada, V., Fiorino, F., Perissutti, E., Severino, B., Terracciano, S., Cirino, G. and Caliendo, G. (2003). A convenient strategy of dimerization by microwave heating and using 2,5-Diketopiperazine as scaffold. Tet. Lett. 44:1145–1148.
  • Schnürer, J. and Magnusson, J. (2005). Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16:70–78.
  • Shangguan, N., Hehre, W. J., Ohlinger, W. S., Beavers, M. P. and Joullié, M. M. (2008). The total synthesis of roquefortine C and a rationale for the thermodynamic stability of isoRoquefortine C over roquefortine C. J Amer. Chem. Soc. 130:6281–6287.
  • Shiba, T., Uratani, H., Kubota, I. and Sumi, Y. (1981). Some aspects of the relationship between the structure of a bitter diketopiperazine and its receptor. Biopoly. 20:1985–1987.
  • Shigemori, H., Tenma, M., Shimazaki, K. and Kobayashi, J. (1998). Three new metabolites from the marine yeast aureobasidium pullulans. J. Nat. Prod. 61:696–698.
  • Stark, T. and Hofmann T. (2005). Structures, sensory activity, and dose/response functions of 2,5-Diketopiperazines in roasted cocoa nibs (Theobroma Cacao). J. Agric. Food Chem. 53:7222–7231.
  • Steinberg, S. and Bada, J. L. (1981). Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science. 213:544–545.
  • Stierle, A. C., Cardellina, J. H. and Strobel, G. A. (1988). Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata. Proc. Natl. Acad. Sci. U. S. A. 85:8008–8011.
  • Ström, K., Sjögren, J., Broberg, A. and Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides Cyclo(L-Phe-L-Pro) and Cyclo (L-Phe-trans-4-OH-L-Pro) and 3-Phenyllactic acid. J. Appl. Environ. Microbiol. 68:4322–4327.
  • Szafranek, J., Palacz, Z. and Grzonka, Z. (1976). A comparison of electron impact and field ionization spectra of some 2, 5-Diketopiperazines. Org. Mass. Spec. 11:920–930.
  • Takaya, Y., Furukawa, T., Miura, S., Akutagawa, T., Hotta, Y., Ishikawa, N. and Niwa, M. (2007). Antioxidant constituents in distillation residue of awamori spirits. J. Agric. Food Chem. 55:75–79.
  • Takahashi, K., Tadenuma, M., Kitamoto, K. and Sato, S. (1974). L-Prolyl-L-Leucine anhydride a bitter compound formed in aged sake. Agr. Biol. Chem. 38:927–932.
  • Tamura, M., Miyoshi, T., Mori, N., Kinomura, K., Kawaguchi, M., Ishibashi, N. and Okai, H. (1990). Mechanism for the bitter tatsing potency of peptides using O-aminoacyl sugars as model compounds. Agric. & Biol. Chem. 54:1401–1409.
  • Thajudeen, H., Park, K., Moon, S. S. and Hong, I. S. (2010). An efficient green synthesis of proline-based cyclic dipeptides under water-mediated catalyst-free conditions. Tet. Lett. 51:1303–1305.
  • Tian, S. Z., Pu, X., Luo, G., Zhao, L. X., Xu, L. H., Li, W. J. and Luo, Y. (2013). Isolation and characterization of new p-Terphenyls with antifungal, antibacterial, and antioxidant activities from a halophilic actinomycete nocardiopsis gilva YIM 90087. J. Agric. Food Chem. 61:3006–3012.
  • Toelstede, S. and Hofmann, T. (2008). Sensomics mapping and identification of key bitter metabolites in Gouda cheese. J. Agric. Food Chem. 56:2795–2804.
  • Tsang, W. S., Clarke, M. A. and Parrish, F. W. (1985). Determination of aspartame and its breakdown products in soft drinks by reverse-phase chromatography with UV detection. J. Agric. Food Chem. 33:734–738.
  • Tsuruoka, N., Beppu, Y., Koda, H., Doe, N., Watanabe, H. and Abe, K., (2012). A DKP Cyclo(L-Phe-L-Phe) found in chicken essence is a dual inhibitor of the serotonin transporter and acetylcholinesterase. PloS One. 7: e50824.
  • Tullberg, M., Grotli, M. and Luthman, K. (2006). Efficient synthesis of 2,5-Diketopiperazines using microwave assisted heating. Tetrahedron. 62:7484–7491.
  • van der Helm, D and Winkelmann, G. (1994). Hydroxamates and polycarboxylates as ion transport agents (Siderophores). In: Fungi, 11, pp.39–98. Winkelmann, G. and Winge, D. R. Ed., Metal Ions in Fungi, Marcel Dekker, Inc., New York, N.Y.
  • Vergne, C., Boury-Esnault, N., Perez, T., Martin, M., Adeline, M., Tran Huu Dau, E. and Al-Mourabit, A. (2006), Verpacamides A–D, A sequence of C11N5 Diketopiperazines relating Cyclo(Pro-Pro) to Cyclo(Pro-Arg), from the marine sponge Axinella vaceleti: Possible biogenetic precursors of Pyrrole-2-aminoimidazole alkaloids. Org. Lett. 8:2421–2424.
  • Walchshofer, N., Sarciron, M. E., Garnier, F., Delatour, P., Petavy, A. F. and Paris, (1997). Anthelmintic activity of 3,6-dibenzyl-2,5-dioxopiperazine, cyclo(L-Phe-L-Phe). Amino Acids 12:41–47.
  • Wang, R., Yang, C. and Song, H. (2012). Key meat flavour compounds formation mechanism in a glutathione-xylose maillard reaction. Food Chem. 131:280–285.
  • Yamashiro, J., Shiraishi, S., Fuwa, T. and Horie, T. (2008). Dimerumic acid protected oxidative stress-induced cytotoxicity in isolated rat hepatocytes. Cell Biol. Toxicol. 24:283–290.
  • Yan, P. S., Song, Y., Sakuno, E., Nakajima, H., Nakagawa, H. and Yabe, K. (2004). Cyclo(L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl. Environ. Microbiol. 70:7466–7473.
  • Yang, E. J. and Chang, H. C. (2010). Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139:56–63.
  • Yang, Z., Yang, Y., Yang, X., Zhang, Y., Zhao, L., Xu, L. and Ding, Z. (2011). Sesquiterpenes from the secondary metabolites of Streptomyces sp. (YIM 56130). Chem. Pharm. Bull. 59:1430–1433.
  • Yaron, A. and Naider, F. (1993). Proline-dependent structural and biological properties of peptides and proteins. CRC Crit. Rev. Biochem. 28:31–81.
  • Yin, J., Diao, Y., Wen, Z., Wang, Z. and Li, M. (2010). Studying peptides biological activities based on multidimensional descriptors (E) using support vector regression. Intern J. Peptide Res Therapeutics. 16:111–121.
  • Zhao, W. Y., Zhu, T. J., Fan, G.T., Liu, H. B., Fang, Y. C., Gu, Q. Q. and Zhu, W. M. (2010). Three new dioxopiperazine metabolites from a marine-derived fungus aspergillus fumigatus fres. Nat. Prod. Res. 24:953–957.
  • Zhu, F., Lin, Y. C., Zhou, S. N. and Vrijmoed, L. L. P. (2003). Metabolites of mangrove endophytic fungus no.2534 from the South China Sea. Acta Sci. Nat. Univ. Sunyatseni. 42:52–54.
  • Zhuravleva, O. I., Leshchenko, E. V., Afiyatullov, S. S., Sobolevskaya, M. P., Denisenko, V. A. and Shevchenko, L. S. (2011). Metabolites from the Marine Actinobacterium Streptomyces sp. KMM 7210. Chem. of Nat. Comp. 47:494–495.
  • Zi, J. C., Lin, S., Zhu, C. G., Yang, Y. C. and Shi, J. G. (2012). Minor constituents from the tubers of Gymnadenia conopsea. J. Asian Nat. Prod. Res. 12:477–484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.