1,023
Views
37
CrossRef citations to date
0
Altmetric
Articles

Antioxidants, mechanisms, and recovery by membrane processes

&

References

  • Alashi, A. M., Blanchard, C. L., Mailer, R. J., Agboola, S. O., Mawson, A. J., He, R., Girgih, A. and Aluko, R. E. (2014). Antioxidant properties of Australian canola meal protein hydrolysates. Food Chem. 146:500–506.
  • Arts, M. J. T. J., Haenen, G. R. M. M., Wilms, L. C., Beetstra, S. A. J. N., Heijnen, C. G. M., Voss, H.-P. and Bast, A. (2002). Interactions between flavonoids and proteins: Effect on the total antioxidant capacity. J. Agric. Food Chem. 50:1184–1187.
  • Babizhayev, M. A., Seguin, M. C., Gueyne, J., Evstigneeva, R. P., Ageyeva, E. A. and Zheltukhina, G. A. (1994). L-Carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem. J. 304:509–516.
  • Baldioli, M., Servili, M., Perretti, G. and Montedoro, G. (1996). Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 73:1589–1593.
  • Bazinet, L. (2005). Electrodialytic phenomena and their applications in the dairy industry: A review. Crc. Cr. Rev. Food. Sci. 44:525–544.
  • Bazinet, L., Amiot, J., Poulin, J. F., Tremblay, A. and Labbé, D. (2005a). Process and system for separation of organic charged compounds. Patent PCT/5002AC/733000
  • Bazinet, L., Araya-Farias, M., Doyen, A., Trudel, D. and Têtu, B. (2010). Effect of process unit operations and long-term storage on catechin contents in EGCG-enriched tea drink. Food Res. Int. 43:1692–1701.
  • Bazinet, L., Brianceau, S., Dubé, P. and Desjardins, Y. (2012). Evolution of cranberry juice physico-chemical parameters during phenolic antioxidant enrichment by electrodialysis with filtration membrane. Sep. Purifi. Technol. 87:31–39.
  • Bazinet, L., Cossec, C., Gaudreau, H. and Desjardins, Y. (2009). Production of a phenolic antioxidant enriched cranberry juice by electrodialysis with filtration membrane. J. Agric. Food Chem. 57:10245–10251.
  • Bazinet, L., DeGrandpré, Y. and Porter, A. (2005b). Electromigration of tobacco polyphenols. Sep. Purifi. Technol. 41:101–107.
  • Bazinet, L., DeGrandpré, Y. and Porter, A. (2005c). Enhanced tobacco polyphenol electromigration and impact on membrane integrity. J. Membrane Sci. 254:111–118.
  • Bazinet, L. and Firdaous, L. (2013). Separation of bioactive peptides by membrane processes: Technologies and devices. Recent Pat. Biotechnol. 7:9–27.
  • Bazinet, L., Firdaous, L. and Pouliot, Y. (2011). Débactérisation, concentration et purification par procédés baromembranaires. In: Concepts de Génie Alimentaire: Procédés Associés et Applications à la Conservation des Aliments, pp. 461–526. Tec & Doc Lavoisier, Paris.
  • Bazinet, L., Labbé, D. and Tremblay, A. (2007). Production of green tea EGC- and EGCG-enriched fractions by a two-step extraction procedure. Sep. Purifi. Technol. 56:53–56.
  • Bird, J. (1996). The application of membrane systems in the dairy industry. Int. J. Dairy Technol. 49:16–23.
  • Borneman, Z., Gökmen, V. and Nijhuis, H. H. (2001). Selective removal of polyphenols and brown colour in apple juices using PES/PVP membranes in a single ultrafiltration process. Sep. Purifi. Technol. 22–23:53–61.
  • Bouhallab, S. and Touzé, C. (1995). Continuous hydrolysis of caseinomacropeptide in a membrane reactor: Kinetic study and gram-scale production of antithrombotic peptides. Lait. 75:251–258.
  • Bourseau, P., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Massé, A., Guérard, F., Chabeaud, A., Fouchereau-Péron, M., Le Gal, Y., Ravallec-Plé, R., Bergé, J. P., Picot, L., Piot, J. M., Batista, I., Thorkelsson, G., Delannoy, C., Jakobsen, G. and Johansson, I. (2009). Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: Impact on peptidic populations. Desalination. 244:303–320.
  • Bowen, W. R. and Doneva, T. A. (2000). Atomic force microscopy studies of nanofiltration membranes: Surface morphology, pore size distribution and adhesion. Desalination. 129:163–172.
  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56:317–333.
  • Bray, T. M. and Taylor, C. G. (1994). Enhancement of tissue glutathione for antioxidant and immune function in malnutrition. Biochem. Pharmacol. 47:2113–2123.
  • Carlsen, C., Rasmussen, K., Kjeldsen, K., Westergaard, P. and Skibsted, L. (2003). Pro- and antioxidative activity of protein fractions from pork (longissimus dorsi). Eur. Food Res. Technol. 217:195–200.
  • Cassano, A., Conidi, C., Giorno, L. and Drioli, E. (2013). Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 248–249:185–193.
  • Cassano, A., Donato, L., Conidi, C. and Drioli, E. (2008). Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innov. Food Sci. Emerg. 9:556–562.
  • Cassano, A., Donato, L. and Drioli, E. (2007). Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling. J. Food Eng. 79:613–621.
  • Cassano, A., Figoli, A., Tagarelli, A., Sindona, G. and Drioli, E. (2006). Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination. 189:21–30.
  • Cassano, A., Tasselli, F., Conidi, C. and Drioli, E. (2009). Ultrafiltration of Clementine mandarin juice by hollow fibre membranes. Desalination. 241:302–308.
  • Chabeaud, A., Vandanjon, L., Bourseau, P., Jaouen, P. and Guérard, F. (2009). Fractionation by ultrafiltration of a saithe protein hydrolysate (Pollachius virens): Effect of material and molecular weight cut-off on the membrane performances. J. Food Eng. 91:408–414.
  • Chan, K. M., Decker, E. A. and Feustman, C. (1994). Endogenous skeletal muscle antioxidants. Crc. Cr. Rev. Food Sci. 34:403–426.
  • Chay Pak Ting, B. P., Mine, Y., Juneja, L. R., Okubo, T., Gauthier, S. F. and Pouliot, Y. (2011). Comparative composition and antioxidant activity of peptide fractions obtained by ultrafiltration of egg yolk protein enzymatic hydrolysates. Membranes. 1:149–161.
  • Chen, G. T., Zhao, L., Zhao, L. Y., Cong, T. and Bao, S. F. (2007). In vitro study on antioxidant activities of peanut protein hydrolysate. J. Sci. Food Agr. 87:357–362.
  • Chen, H. M., Muramoto, K. and Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean .beta.-conglycinin. J. Agr. Food Chem. 43:574–578.
  • Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44:2619–2623.
  • Chi, C. F., Wang, B., Deng, Y. Y., Wang, Y. M., Deng, S. G. and Ma, J. Y. (2014). Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Res. Int. 55:222–228.
  • Cissé, M., Vaillant, F., Pallet, D. and Dornier, M. (2011). Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res. Int. 44:2607–2614.
  • Conidi, C., Cassano, A. and Drioli, E. (2011). A membrane-based study for the recovery of polyphenols from bergamot juice. J. Membrane Sci. 375:182–190.
  • Conidi, C., Cassano, A. and Drioli, E. (2012). Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90:867–874.
  • Contreras, M. d. M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J. and Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT - Food Sci. Technol. 44:9–15.
  • Czekaj, P., López, F. and Güell, C. (2000). Membrane fouling during microfiltration of fermented beverages. J. Membrane Sci. 166:199–212.
  • Dávalos, A., Miguel, M., Bartolomé, B. and López-Fandiño, R. (2004). Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Protect. 67:1939–1944.
  • de Souza, M. P., Cunha Petrus, J. C., Guaraldo Gonçalves, L. A. and Viotto, L. A. (2008). Degumming of corn oil/hexane miscella using a ceramic membrane. J. Food Eng. 86:557–564.
  • Díaz-Reinoso, B., Moure, A., Domínguez, H. and Parajó, J. C. (2011). Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chem. Eng. J. 175:95–102.
  • Dimitrios, B. (2006). Sources of natural phenolic antioxidants. Trends Food Sci. Tech. 17:505–512.
  • Doyen, A., Saucier, L., Beaulieu, L., Pouliot, Y. and Bazinet, L. (2012). Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chem. 132:1177–1184.
  • El-Abbassi, A., Khayet, M. and Hafidi, A. (2011). Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Res. 45:4522–4530.
  • El-Abbassi, A., Kiai, H. and Hafidi, A. (2012). Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem. 132:406–412.
  • Elias, R. J., Kellerby, S. S. and Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Crc. Cr. Rev. Food Sci. 48:430–441.
  • Fenton-May, R. I., Hill, C. G. and Amundson, C. H. (1971). Use of ultrafiltration and reverse osmosis systems for the concentration and fractionation of whey. J. Food Sci. 36:14–21.
  • Focke, W. W., van der Westhuizen, I., Lofté Grobler, A. B., Nshoane, K. T., Reddy, J. K. and Luyt, A. S. (2012). The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel. 94:227–233.
  • Galanakis, C. M., Markouli, E. and Gekas, V. (2013). Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep. Purif. Technol. 107:245–251.
  • Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C. and Drioli, E. (2010). Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44:3883–3892.
  • Gilewicz-Łukasik, B., Koter, S. and Kurzawa, J. (2007). Concentration of anthocyanins by the membrane filtration. Sep. Purif. Technol. 57:418–424.
  • Giménez, B., Alemán, A., Montero, P. and Gómez-Guillén, M. C. (2009). Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem. 114:976–983.
  • Gómez-Ruiz, J., López-Expósito, I., Pihlanto, A., Ramos, M. and Recio, I. (2008). Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC–MS/MS. Eur. Food Res. Technol. 227:1061–1067.
  • Guo, H., Kouzuma, Y. and Yonekura, M. (2009). Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 113:238–245.
  • Harnedy, P. A. and FitzGerald, R. J. (2012). Bioactive peptides from marine processing waste and shellfish: A review. J. Funct. Foods. 4:6–24.
  • Haslam, E., Lilley, T. H. and Butler, L. G. (1988). Natural astringency in foodstuffs - A molecular interpretation. Crc. Cr. Rev. Food Sci. 27:1–40.
  • He, R., Girgih, A. T., Malomo, S. A., Ju, X. and Aluko, R. E. (2013). Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods. 5:219–227.
  • Husson, E., Araya-Farias, M., Gagné, A. and Bazinet, L. (2013). Selective anthocyanins enrichment of cranberry juice by electrodialysis with filtration membrane: Influence of membranes characteristics. J. Membrane Sci. 448:114–124.
  • Je, J. Y., Kim, S. Y. and Kim, S. K. (2005). Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. Eur. Food Res. Technol. 221:157–162.
  • Je, J. Y., Park, P. J. and Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 38:45–50.
  • Je, J. Y., Qian, Z. J., Byun, H. G. and Kim, S. K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42:840–846.
  • Jeon, Y. J., Byun, H. G. and Kim, S. K. (1999). Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 35:471–478.
  • Kalbasi, A. and Cisneros-Zevallos, L. (2007). Fractionation of monomeric and polymeric anthocyanins from concord grape (Vitis labrusca L.) juice by membrane ultrafiltration. J. Agr. Food Chem. 55:7036–7042.
  • Kang, J. H., Kim, K. S., Choi, S. Y., Kwon, H. Y., Won, M. H. and Kang, T. C. (2002). Carnosine and related dipeptides protect human ceruloplasmin against peroxyl radical-mediated modification. Mol. Cells. 13:498–502.
  • Kansci, G., Genot, C., Meynier, A., Gaucheron, F. and Chobert, J. M. (2004). beta-Caseinophosphopeptide (f1–25) confers on beta-casein tryptic hydrolysate an antioxidant activity during iron/ascorbate-induced oxidation of liposomes. Lait. 84:449–462.
  • Kim, E. K., Hwang, J. W., Kim, Y. S., Ahn, C. B., Jeon, Y. J., Kweon, H. J., Bahk, Y. Y., Moon, S. H., Jeon, B. T. and Park, P. J. (2013a). A novel bioactive peptide derived from enzymatic hydrolysis of Ruditapes philippinarum: Purification and investigation of its free-radical quenching potential. Process Biochem. 48:325–330.
  • Kim, E. K., Oh, H. J., Kim, Y. S., Hwang, J. W., Ahn, C. B., Lee, J. S., Jeon, Y. J., Moon, S. H., Sung, S. H., Jeon, B. T. and Park, P. J. (2013b). Purification of a novel peptide derived from Mytilus coruscus and in vitro/in vivo evaluation of its bioactive properties. Fish Shellfish Imm. 34:1078–1084.
  • Kim, S. K. and Mendis, E. (2006). Bioactive compounds from marine processing byproducts – A review. Food Res. Int. 39:383–393.
  • Kim, S. K. and Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods. 2:1–9.
  • Koffi, E. N., Le Guernevé, C., Lozano, P. R., Meudec, E., Adjé, F. l. A., Bekro, Y.-A. and Lozano, Y. F. (2013). Polyphenol extraction and characterization of Justicia secunda Vahl leaves for traditional medicinal uses. Ind. Crop Prod. 49:682–689.
  • Labbé, D., Araya-Farias, M., Tremblay, A. and Bazinet, L. (2005). Electromigration feasibility of green tea catechins. J. Membrane Sci. 254:101–109.
  • Lajoie, N., Gauthier, S. F. and Pouliot, Y. (2001). Improved storage stability of model infant formula by whey peptides fractions. J. Agric. Food Chem. 49:1999–2007.
  • Langevin, M. E., Roblet, C., Moresoli, C., Ramassamy, C. and Bazinet, L. (2012). Comparative application of pressure- and electrically-driven membrane processes for isolation of bioactive peptides from soy protein hydrolysate. J. Membrane Sci. 403–404:15–24.
  • Laorko, A., Li, Z., Tongchitpakdee, S., Chantachum, S. and Youravong, W. (2010). Effect of membrane property and operating conditions on phytochemical properties and permeate flux during clarification of pineapple juice. J. Food Eng. 100:514–521.
  • Lapsongphon, N. and Yongsawatdigul, J. (2013). Production and purification of antioxidant peptides from a mungbean meal hydrolysate by Virgibacillus sp. SK37 proteinase. Food Chem. 141:992–999.
  • Lea, A. G. H. (1995). Apple juice. In: Production and Packaging of Non-Carbonated Fruit Juices and Fruit Beverages, pp. 153–196. P. R. Ashurst, London.
  • Le Bourvellec, C. and Renard, C. M. G. C. (2011). Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crc. Cr. Rev. Food. Sci. 52:213–248.
  • Lee, J. S., Yoo, M. A., Koo, S. H., Baek, H. H. and Lee, H. G. (2008). Antioxidant and ACE inhibitory activities of soybean hydrolysates: Effect on enzyme and degree of hydrolysis. Food Sci. Biotechnol. 17:873–877.
  • Li, P., Wang, Y., Ma, R. and Zhang, X. (2005). Separation of tea polyphenol from green tea leaves by a combined CATUFM-adsorption resin process. J. Food Eng. 67:253–260.
  • Loginov, M., Boussetta, N., Lebovka, N. and Vorobiev, E. (2013). Separation of polyphenols and proteins from flaxseed hull extracts by coagulation and ultrafiltration. J. Membrane Sci. 442:177–186.
  • López-Expósito, I., Quirós, A., Amigo, L. and Recio, I. (2007). Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Lait. 87:241–249.
  • Lozano-Sánchez, J., Cerretani, L., Bendini, A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2010). Filtration process of extra virgin olive oil: Effect on minor components, oxidative stability and sensorial and physicochemical characteristics. Trends Food Sci. Tech. 21:201–211.
  • Machado, M. T. C., Mello, B. C. B. S. and Hubinger, M. D. (2013). Study of alcoholic and aqueous extraction of pequi (Caryocar brasiliense Camb.) natural antioxidants and extracts concentration by nanofiltration. J. Food Eng. 117:450–457.
  • Machado, R. M. D., Haneda, R. N., Trevisan, B. P. and Fontes, S. R. (2012). Effect of enzymatic treatment on the cross-flow microfiltration of açaí pulp: Analysis of the fouling and recovery of phytochemicals. J. Food Eng. 113:442–452.
  • Macheix, J. J., Fleriet, A. and Billot, J. (1990). Fruit Phenolics. CRC Press, Boca Raton, FL, USA.
  • Martin-Orue, C., Bouhallab, S. and Garem, A. (1998). Nanofiltration of amino acid and peptide solutions: Mechanisms of separation. J. Membrane Sci. 142:225–233.
  • Mello, B. C. B. S., Petrus, J. C. C. and Hubinger, M. D. (2010). Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J. Food Eng. 96:533–539.
  • Memarpoor-Yazdi, M., Mahaki, H. and Zare-Zardini, H. (2012). Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. J. Funct. Foods. 5:62–70.
  • Mendis, E., Rajapakse, N. and Kim, S. K. (2005). Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agr. Food Chem. 53:581–587.
  • Meziani, M. J., Benalla, H., Zajac, J., Partyka, S. and Jones, D. J. (2003). Adsorption of a cationic gemini surfactant from aqueous solution onto aluminosilicate powders of the MCM-41 type: Effect of pore size and co-adsorption of phenol. J. Colloid Interface Sci. 262:362–371.
  • Moosmann, B. and Behl, C. (2000). Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Eur. J. Biochem. 267:5687–5692.
  • Moure, A., Domínguez, H. and Parajó, J. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 41:447–456.
  • Nawaz, H., Shi, J., Mittal, G. S. and Kakuda, Y. (2006). Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purification Technol. 48:176–181.
  • Negrão Murakami, A. N., Amboni, R. D. d. M. C., Prudêncio, E. S., Amante, E. R., Fritzen-Freire, C. B., Boaventura, B. C. B., Munoz, I. d. B., Branco, C. d. S., Salvador, M. and Maraschin, M. (2013). Concentration of biologically active compounds extracted from Ilex paraguariensis St. Hil. by nanofiltration. Food Chem. 141:60–65.
  • Negrão Murakami, A. N., de Mello Castanho Amboni, R. D., Prudêncio, E. S., Amante, E. R., de Moraes Zanotta, L., Maraschin, M., Cunha Petrus, J. C. and Teófilo, R. F. (2011). Concentration of phenolic compounds in aqueous mate (Ilex paraguariensis A. St. Hil) extract through nanofiltration. LWT - Food Sci. Technol. 44:2211–2216.
  • Nishizawa, A., Yabuta, Y. and Shigeoka, S. (2008). Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 147:1251–1263.
  • Pagliosa, C. M., Vieira, M. A., Podestá, R., Maraschin, M., Zeni, A. L. B., Amante, E. R. and Amboni, R. D. d. M. C. (2010). Methylxanthines, phenolic composition, and antioxidant activity of bark from residues from mate tree harvesting (Ilex paraguariensis A. St. Hil.). Food Chem. 122:173–178.
  • Paraskeva, C. A., Papadakis, V. G., Tsarouchi, E., Kanellopoulou, D. G. and Koutsoukos, P. G. (2007). Membrane processing for olive mill wastewater fractionation. Desalination. 213:218–229.
  • Peña-Ramos, E. A. and Xiong, Y. L. (2003). Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 64:259–263.
  • Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Guérard, F., Chabeaud, A., LeGal, Y., Alvarez, O. M., Bergé, J. P., Piot, J. M., Batista, I., Pires, C., Thorkelsson, G., Delannoy, C., Jakobsen, G., Johansson, I. and Bourseau, P. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. J. Sci. Food Agr. 90:1819–1826.
  • Pihlanto-Leppälä, A., Akkanen, S. and Korhonen, H. J. (2008). ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem. 109:104–112.
  • Poulin, J. F., Amiot, J. and Bazinet, L. (2007). Improved peptide fractionation by electrodialysis with ultrafiltration membrane: Influence of ultrafiltration membrane stacking and electrical field strength. J. Membrane Sci. 299:83–90.
  • Pouliot, Y., Gauthier, S. F. and L'Heureux, J. (2000). Effect of peptide distribution on the fractionation of whey protein hydrolysates by nanofiltration membranes. Lait. 80:113–120.
  • Pourcelly, G. and Bazinet, L. (2008). Developments of bipolar membrane technology in food and bio-industries. In: Handbook of Membrane Separations: Chemical, Pharmaceutical and Biotechnological Applications, pp. 581–657. Pabby, A., Rizvi, S. S. H. and Sastre, A. M., Eds., CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
  • Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure Appl. Chem. 79:2325–2338.
  • Qin, L., Zhu, B. W., Zhou, D. Y., Wu, H. T., Tan, H., Yang, J. F., Li, D. M., Dong, X. P. and Murata, Y. (2011). Preparation and antioxidant activity of enzymatic hydrolysates from purple sea urchin (Strongylocentrotus nudus) gonad. LWT - Food Sci. Technol. 44:1113–1118.
  • Quideau, S., Deffieux, D., Douat-Casassus, C. and Pouységu, L. (2011). Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Edit. 50:586–621.
  • Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y. and Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38:175–182.
  • Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y. and Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chem. 135:1245–1252.
  • Ren, J. M., Liu, J. L., Dong, F. and Guo, Z. Y. (2011). Synthesis and hydroxyl radicals scavenging activity of N-(aminoethyl)inulin. Carbohyd Polym. 85:268–271.
  • Riedl, K., Girard, B. and Lencki, R. W. (1998). Interactions responsible for fouling layer formation during apple juice microfiltration. J. Agric. Food Chem. 46:2458–2464.
  • Riou, V., Vernhet, A., Doco, T. and Moutounet, M. (2002). Aggregation of grape seed tannins in model wine-effect of wine polysaccharides. Food Hydrocolloid. 16:17–23.
  • Roblet, C., Amiot, J., Lavigne, C., Marette, A., Lessard, M., Jean, J., Ramassamy, C., Moresoli, C. and Bazinet, L. (2012). Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Res. Int. 46:237–249.
  • Rosenberg, M. (1995). Current and future applications for membrane processes in the dairy industry. Trends Food Sci. Tech. 6:12–19.
  • Rozoy, E., Simard, S., Liu, Y., Kitts, D., Lessard, J. and Bazinet, L. (2012). The use of cyclic voltammetry to study the oxidation of l-5-methyltetrahydrofolate and its preservation by ascorbic acid. Food Chem. 132:1429–1435.
  • Russo, C. (2007). A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J. Membrane Sci. 288:239–246.
  • Saiga, A., Tanabe, S. and Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51:3661–3667.
  • Sakanaka, S. and Tachibana, Y. (2006). Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem. 95:243–249.
  • Samaranayaka, A. G. P. and Li-Chan, E. C. Y. (2008). Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107:768–776.
  • Samaranayaka, A. G. P. and Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J. Funct. Foods. 3:229–254.
  • Segura Campos, M. R., Chel Guerrero, L. A. and Betancur Ancona, D. A. (2010). Angiotensin-I converting enzyme inhibitory and antioxidant activities of peptide fractions extracted by ultrafiltration of cowpea Vigna unguiculata hydrolysates. J. Sci. Food Agr. 90:2512–2518.
  • Shahidi, F. (2000). Antioxidants in food and food antioxidants. Food/Nahrung. 44:158–163.
  • Shahidi, F. (2004). Functional foods: Their role in health promotion and disease prevention. J. Food Sci. 69:146–149.
  • Shipp, J. and Abdel-Aal, E. S. M. (2010). Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J. 4:7–22.
  • Siebert, K. J., Troukhanova, N. V. and Lynn, P. Y. (1996). Nature of polyphenol−Protein interactions. J. Agric. Food Chem. 44:80–85.
  • Singleton, V. L. (1982). Grape and wine phenolics: background and prospects. In: Grape and Wine Centennial Symposium Proceedings, pp. 215–227. Davis, U.C., Ed., Davis, CA: University of California Press.
  • Snape, J. B. and Nakajima, M. (1996). Processing of agricultural fats and oils using membrane technology. J. Food Eng. 30:1–41.
  • Song, W. W., Li, N. B. and Luo, H. Q. (2012). Gemini surfactant applied to the heparin assay at the nanogram level by resonance Rayleigh scattering method. Anal. Biochem. 422:1–6.
  • Stadtman, E. R. and Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 25:207–218.
  • Subramanian, R., Nakajima, M. and Kawakatsu, T. (1998). Processing of vegetable oils using polymeric composite membranes. J. Food Eng. 38:41–56.
  • Subramanian, R., Nakajima, M., Kimura, T. and Maekawa, T. (1998). Membrane process for premium quality expeller-pressed vegetable oils. Food Res. Int. 31:587–593.
  • Subramanian, R., Raghavarao, K. S. M. S., Nakajima, M., Nabetani, H., Yamaguchi, T. and Kimura, T. (2003). Application of dense membrane theory for differential permeation of vegetable oil constituents. J. Food Eng. 60:249–256.
  • Suetsuna, K., Ukeda, H. and Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11:128–131.
  • Tanzadehpanah, H., Asoodeh, A. and Chamani, J. (2012). An antioxidant peptide derived from Ostrich (Strutihio camelus) egg white protein hydrolysates. Food Research international. 49(1):105–111.
  • Tessier, B., Harscoat-Schiavo, C. and Marc, I. (2006a). Contribution of electrostatic interactions during fractionation of small peptides complex mixtures by UF/NF membranes. Desalination. 200:333–334.
  • Tessier, B., Harscoat-Schiavo, C. and Marc, I. (2006b). Selective separation of peptides contained in a rapeseed (Brassica campestris L.) protein hydrolysate using UF/NF membranes. J. Agric. Food Chem. 54:3578–3584.
  • Thiel, S. W. and Lloyd, D. R. (1983). Physicochemical interactions in pressure-driven membrane separation of glucose, ascorbic acid, citric acid, and mannitol from single solute aqueous solution. Desalination. 46:399–406.
  • Tsuru, T., Sudoh, T., Yoshioka, T. and Asaeda, M. (2001). Nanofiltration in non-aqueous solutions by porous silica–zirconia membranes. J. Membrane Sci. 185:253–261.
  • Tylkowski, B., Trusheva, B., Bankova, V., Giamberini, M., Peev, G. and Nikolova, A. (2010). Extraction of biologically active compounds from propolis and concentration of extract by nanofiltration. J. Membrane Sci. 348:124–130.
  • Tylkowski, B., Tsibranska, I., Kochanov, R., Peev, G. and Giamberini, M. (2011). Concentration of biologically active compounds extracted from Sideritis ssp. L. by nanofiltration. Food Bioprod. Process. 89:307–314.
  • Vandanjon, L., Grignon, M., Courois, E., Bourseau, P. and Jaouen, P. (2009). Fractionating white fish fillet hydrolysates by ultrafiltration and nanofiltration. J. Food Eng. 95:36–44.
  • Vandanjon, L., Johannsson, R., Derouiniot, M., Bourseau, P. and Jaouen, P. (2007). Concentration and purification of blue whiting peptide hydrolysates by membrane processes. J. Food Eng. 83:581–589.
  • Van den Ende, W., Peshev, D. and De Gara, L. (2011). Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends Food Sci. Technol. 22:689–697.
  • Vera Calle, E., Ruales, J., Dornier, M., Sandeaux, J., Persin, F., Pourcelly, G., Vaillant, F. and Reynes, M. (2003a). Comparison of different methods for deacidification of clarified passion fruit juice. J. Food Eng. 59:361–367.
  • Vera Calle, E., Ruales, J., Dornier, M., Sandeaux, J., Sandeaux, R. and Pourcelly, G. (2002). Deacidification of the clarified passion fruit juice. Desalination. 149:357–361.
  • Vera Calle, E., Ruales, J., Dornier, M., Sandeaux, J., Sandeaux, R. and Pourcelly, G. (2003b). Deacidification of clarified passion fruit juice using different configurations of electrodialysis. J. Chem. Technol. Biot. 78:918–925.
  • Vernhet, A. and Moutounet, M. (2002). Fouling of organic microfiltration membranes by wine constituents: Importance, relative impact of wine polysccharides and polyphenols and incidence of membrane properties. J. Membrane Sci. 201:103–122.
  • Wang, B., Li, L., Chi, C. F., Ma, J. H., Luo, H. Y. and Xu, Y. F. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138:1713–1719.
  • Wang, H., Provan, G. J. and Helliwell, K. (2000). Tea flavonoids: Their functions, utilisation and analysis. Trends Food Sci. Tech. 11:152–160.
  • Wang, Y., Zhu, F., Han, F. and Wang, H. (2008). Purification and characterization of antioxidative peptides from Salmon protamine hydrolysate. J. Food Biochem. 32:654–671.
  • Wei, D. S., Hossain, M. and Saleh, Z. S. (2008). Separation of polyphenolics and sugar by ultrafiltration: effects of operating conditions on fouling and difiltration. Int. J. Chem. Biol. Eng. 1:9–16.
  • Xie, Z., Huang, J., Xu, X. and Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem. 111:370–376.
  • Yang, J. I., Ho, H. Y., Chu, Y. J. and Chow, C. J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem. 110:128–136.
  • Young, F., Poot, C., Biernoth, E., Krog, N., Davidson, N. and Gunstone, F. D. (1994). Processing of fat and oils. In: The Lipid Handbook, pp. 249–276. Gunstone, H. J. and Padley, F. B., Eds., Chapman & Hall, London.
  • Zhang, L., Li, J. and Zhou, K. (2010). Chelating and radical scavenging activities of soy protein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresource Technol. 101:2084–2089.
  • Zhang, W., Huang, G., Wei, J., Li, H., Zheng, R. and Zhou, Y. (2012). Removal of phenol from synthetic waste water using Gemini micellar-enhanced ultrafiltration (GMEUF). J. Hazard. Mater. 235–236:128–137.
  • Zhao, J., Huang, G. R., Zhang, M. N., Chen, M. M. and Jiang, J. X. (2011). Amino acid composition, molecular weight distribution and antioxidant stability of shrimp processing byproduct hydrolysate. Am. J. Food Technol. 6:904–913.
  • Zhou, K., Canning, C. and Sun, S. (2013). Effects of rice protein hydrolysates prepared by microbial proteases and ultrafiltration on free radicals and meat lipid oxidation. LWT - Food Sci. Technol. 50:331–335.
  • Zhou, K., Sun, S. and Canning, C. (2012). Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration. Food Chem. 135:1192–1197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.