700
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of the types of dietary fats and non-dietary oils on bone metabolism

&

References

  • Achard, F., Gilbert, M., Benistant, C., Ben Slama, S., DeWitt, D. L., Smith, W. L. and Lagarde, M. (1997). Eicosapentaenoic and docosahexaenoic acids reduce PGH synthase 1 expression in bovine aortic endothelial cells. Biochem. Biophys. Res. Commun. 241(2):513–518.
  • Ahmad, N. S., Khalid, B. A., Luke, D. A. and Ima Nirwana, S. (2005). Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin. Exp. Pharmacol. Physiol. 32:761–770.
  • Baba, T. T., Ohara-Nemoto, Y., Miyazaki, T. and Nemoto, T. K. (2013). Involvement of geranylgeranylation of Rho and Rac GTPases in adipogenic and RANKL expression which was inhibited by simavastatin. Cell Biochem. Funct. 31(8):652–659.
  • Baggio, B., Budakovic, A., Nassuato, M. A., Vezzol, G., Manzato, E., Luisetto, G. and Zaninotto, M. (2000). Plasma phospholipid arachidonic acid content and calcium metabolism in idiopathic calcium nephrolithiasis. Kidney Int. 58(3):1278–1284.
  • Boulbaroud, S., Mesfioui, A., Arfaoui, A., Ouichou, A. and el-Hessni, A. (2008). Preventive effects of flaxseed and sesame oil on bone loss in ovariectomized rats. Pak. J. Biol. Sci. 11:1696–1701.
  • Cohen, S. L., Moore, A. M. and Ward, W. E. (2005). Flaxseed oil and inflammation-associated bone abnormalities in interleukin-10 knockout mice. Nutr. Biochem. 16:368–374.
  • Cohen, S. L. and Ward, W. E. (2005). Flaxseed-oil and bone development in growing male and female mice. J. Toxicol. Environ. Health A. 68:1861–1870.
  • Cornish, S. M. and Chilibeck, P. D. (2009). Alpha-linolenic acid supplementation and resistance training in older adults. Appl. Physiol. Nutr. Metab. 34:49–59.
  • Costa, C. A. S., Carlos, A. S., Santos, A. S., Maria, A., Monteiro, V., Moura, E. G. and Saba, C. C. A. M. (2011). Abdominal adiposity, insulin and bone quality in young male rats fed a high-fat diet containing soybean or canola oil. Clinics. 66(10):1811–1816.
  • Dolder, S., Hofstetter, W., Wetterwald, A., Muhlbauer, R. C. and Felix, R. (2006). Effect of monoterpenes on the formation and activation of osteoclasts in vitro. J. Bone. Miner. Res. 21:647–655.
  • Elson, C. E., Peffley, D. M., Hentosh, P. and Mo, H. (1999). Isoprenoid-mediated inhibition of mevalonate synthesis: Potential application to cancer. Proc. Soc. Exp. Biol. Med. 221:294–311.
  • Farina, E. K., Kiel, D. P., Roubenoff, R., Schaefer, E. J., Cupples, L. A. and Tucker, K. L. (2011). Protective effects of fish intake and interactive effects of long chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults the Framingham Osteoporosis Study. Am. J. Clin. Nutr. 93(5):1142–1151.
  • Farmer, C., Petit, H. V., Weiler, H. and Capuco, A. V. (2007). Effects of dietary supplementation with flax during prepuberty on fatty acid profile, mammogenesis, and bone resorption in gilts. J. Anim. Sci. 85:1675–1686.
  • Fernandes, G., Lawrence, R. and Sun, D. (2003). Protective role of n-3 lipids and soy protein in osteoporosis. Prostaglandins Leukot. Essent. Fatty Acids. 68(6):361–372.
  • Griel, A. E., Kris-Etherton, P. M., Hilpert, K. F., Zhao, G., West, S. G. and Corwin, R. L. (2007). An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr. J. 6:2–9.
  • Gunnes, M. and Lehmann, E. H. (1995). Dietary calcium, saturated fat, fiber and vitamin C as predictors of forearm cortical and trabecular bone mineral density in healthy children and adolescents. Acta Paediatr. 84:388–392.
  • Habtezion, A., Silverberg, M. S., Parkes, R., Mikolainis, S. and Steinhart, A. H. (2002). Risk factors for low bone density in Crohn's disease. Inflamm. Bowel. Dis. 8:87–92.
  • Halade, G. V., Rahman, M., Williams, P. J. and Fernandes, G. (2011). Combination of conjugated linoleic acid with fish oil prevents age-associated bone marrow adiposity in C57B1/.6J mice. Nutr. Biochem. 22:459–469.
  • Halade, G. V., Roohman, M. M., Williams, P. J. and Fernandes, G. (2010). High fat diet-induced animal model of age-associated obesity and osteoporosis. J. Nutr. Biochem. 21:1162–1169.
  • Hermizi, H., Faizah, O., Ima-Nirwana, S., Ahmad, N. S. and Norazlina, M. (2009). Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague-Dawleg male rats after nicotine cessation. Calcif. Tissue Int. 84:65–74.
  • Hogstrom, M., Nordstrom, P. and Nordstrom, A. (2007). The n-3 fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: The NO2 Study. Am. J. Clin. Nutr. 85:803–807.
  • Itoh, T. and Yamamoto, K. (2008). Peroxisome proliferator activated receptor gamma and oxidized docosahexaenoic acids as new class of ligand. Naunyn Schmiedebergs Arch. Pharmacol. 377(4–6):541–547.
  • Judex, S., Wohl, G., Wolff, R., Leng, W., Gillis, A. and Zernicke, R. (2000). Dietary fish oil supplementation adversely affects cortical bone morphology and biomechanics in growing rabbits. Calcif. Tissue Int. 66(6):443–448.
  • Kitaura, H., Sands, M. S., Aya, K., Zhou, P., Hirayama, T., Uthgenannt, B., Wei, S., Takeshita, S., Novack, D. V., Silva, M. J., Abu-Amer, Y., Ross, F. P. and Teitelbaum, S. L. (2004). Marrow stromal cells and osteoclast precursors differentially contribute to TNF- alpha-induced osteoclastogenesis in vivo. J. Immuol. 173:4838–4846.
  • Korotkova, M., Ohlsson, C., Hanson, L. A. and Strandvik, B. (2004). Dietary n-6:n-3 fatty acid ratio in the perinatal period affects bone parameters in adult female rats. Br. J. Nutr. 92:643–648.
  • Kruger, M. C., Coetzer, H., de Winter, R., Gericke, G. and van Paperndorp, D. H. (1998). Calcium, gammalinolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging. (Milano) 10:385–394.
  • Kruger, M. C. and Schollum, L. M. (2005). Is docosahexaenoic acid more effective than eicosapentaenoic acid for increasing calcium bioavailability? Prostaglandins Leukot. Essent. Fatty Acids. 73:327–334.
  • Lanham-New, S. A. (2006). Fruit and vegetables: The unexpected natural answer to the question of osteoporosis prevention? Am. J. Clin. Nutr. 83:1254–1255.
  • Lau, B. Y., Fajardo, V. A., McMeekin, L., Sacco, S. M., Ward, W. E., Roy, B. D., Peters, S. J. and Leblanc, P. J. (2010). Influence of high-fat diet from differential dietary sources on bone mineral density, bone strength, and bone fatty acid composition in rats. Appl. Physiol. Nutr. Metab. 35:598–606.
  • Lazzerini, P. E., Capperucci, C., Spreafico, A., Capecchi, P. L., Niccolini, S., Ferrata, P., Frediani, B., Galeazzi, M. and Laghi-Pasini, F. (2013). Rosuvastatin inhibits spontaneous and IL-1β-induced interlenkin-6-production from human cultured osteoblastic cells. Joint Bone Spine. 80(2):195–200.
  • Li, N., Greiner, R. S., Salem, J N. and Watkins, B. A. (2003). Impact of dietary n-3-fatty acid deficiency on rat bone tissue fatty acid composition. Lipids. 38:683–686.
  • Lobo, A. R., Filho, J. M., Alvares, E. P., Cocato, M. and Colli, C. (2009). Effects of dietary lipid composition and inulin-type fructans on mineral bioavailability in growing rats. Nutrition. 25(2):216–25.
  • Lu, C., Chan, S., Haughey, N., Lee, W. and Mattson, M. (2001). Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J. Neurochem. 78(3):577–589.
  • Lukas, R., Gigliotti, J. C., Smith, B. J., Altman, N. S. and Tou, J. C. (2011). Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture. Bone. 49:455–462.
  • Macri, E. V., Chaves, M. M. G., Rodriguez, P. N., Mandalunis, P., Zeni, S., Lifshitz, F. and Friedman, S. M. (2012). High-fat diets affect energy and bone metabolism in growing rats. Eur. J. Nutr. 51:399–406.
  • Mailhot, G., Rabasa-Lhoret, R., Moreau, A., Berthiaume, Y. and Levy, E. (2010). CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal caco 2/15 cells. PLoS One. 5(5):e10446.
  • McLean, R. R. (2009). Proinflammatory cytokines and osteoporosis. Curr. Osteoporos. Rep. 7:134–139.
  • Mo, H. and Elson, C. E. (2006). Isoprenoids and novel inhibitors of mevalonate pathway activities. In: Nutritional Oncology, pp. 629–644. Heber, D., Blackburn, G. L., Go, V. L.W. and Milner, J., Eds., Academic Press, Burlington.
  • Mo, H., Yeganehjoo, H., Shah, A., Mo, W. K., Soelaiman, I. N. and Shen, C. L. (2012). Mevalonatesuppressive dietary isoprenoids for bone health. J. Nut. Bioch. 23(12):1543–1551.
  • Mollard, R. C., Kovacs, H. R., Fitzpatrick-Wong, S. C. and Weiler, H. A. (2005). Low levels of dietary arachidonic and docosahexaenoic acids improve bone mass in neonatal piglets, but higher levels provide no benefit. J. Nutr. 135(3):505–512.
  • Moussavi, N., Gavino, V. and Receveur, O. (2008). Could the quality of dietary fat, and not just its quantity, be related to risk of obesity? Obesity. 16(1):7–15.
  • Muhlbauer, R. C., Lozano, A., Palacio, S., Reinli, A. and Felix, R. (2003). Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone. 32:372–380.
  • Ndiaye, B., Prudhon, C., Guillozo, H. and Lemonnier, D. (1992). Rat serum osteo calcin concentration is determined by food intake and not by inflammation. J. Nutr. 122:1870–1874.
  • Nesaretnam, K. (2008). Multitargeted therapy of cancer by tocotrienols. Cancer Lett. 269:388–395.
  • Nieto, N., Torres, M. I., Rios, A. and Gil, A. (2002). Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J. Nutr. 132:11–19.
  • Oh, S. R., Sul, O. J., Kim, Y. Y., Kim, H. J., Yu, R., Suh, J. H. and Choi, H. S. (2010). Saturated fatty acids enhance osteoclast survival. J. Lipid Res. 51(5):892–899.
  • Orchard, T. S., Cauley, J. A., Frank, G. C., Neuhouser, M. L., Robinson, J. G., Snetselaar, L., Tylavsky, F., Wactawski-Wende, J., Young, A. M., Lu, B. and Jackson, R. D. (2010). Fatty acid consumption and risk of fracture in the Women's Health Initiative. Am. J. Clin. Nutr. 92(6):1452–1460.
  • Orchard, T. S., Ing, S., Lu, B., Belury, M. A., Johnson, K., Wactowski-Wende, J. and Jackson, R. O. (2013). The association of red blood cell n-3 and n-6 fatty acid to dietary fatty acid intake, bone mineral density, and hip fracture risk in the Women's Health Initiative. J. Bone Miner. Res. 28(3):505–515.
  • Poulsen, R. C. and Kruger, M. C. (2006). Detrimental effect of eicosapentaenoic acid supplementation on bone following ovariectomy in rats. Prostaglandins Leukot. Essent. Fatty Acids. 75(6):419–427.
  • Poulsen, R. C., Moughan, P. J. and Kruger, M. C. (2007). Long chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp. Biol. Med. 232:1275–1288.
  • Rahman, M. M., Bhattacharya, A. and Fernandes, G. (2008). Docosahexaenoic acid is more potent inhibitor of osteoclast differentiation in RAW 264–7 cells than eicosapentaenoic acid. J. Cell Physiol. 214(1):201–209.
  • Raisz, L. G., Pilbeam, C. C. and Fall, P. M. (1993). Prostaglandins-mechanisms of action and regulation of production in bone. Osteoporosis Int. 3:S136–S140.
  • Reeves, P. G., Nielsen, F. H. and Fahey, G. C. J. R. (1993). AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123:1939–1951.
  • Rosen, C. J. and Bouxein, M. L. (2006). Mechanisms of disease: Is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2(1):35–43.
  • Sabbieti, M. G., Agas, D., Maggi, F., Vittori, S. and Marchetti, L. (2011). Molecular mediators involved in Ferulago campestris essential oil effects on osteoblast metabolism. J. Cell. Biochem. 112(12):3742–3754.
  • Sacco, S. M., Jiang, J. M., Reza-Lopez, S., Ma, D. W., Thompson, L. U. and Ward, W. E. (2009). Flaxseed combined with low-dose estrogen therapy preserves bone tissue in ovariectomized rats. Menopause. 16:545–554.
  • Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J. D., Schu, P. and von Figura, K. (1998). Impaired osteoclastic bone resorption leads to osteoporosis in cathepsin-k-deficient mice. Proc. Natl. Acad. Sci. USA. 95:13453–13458.
  • Sakaguchi K, Morita, I. and Murota, S. (1994). Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins Leukot. Essent. Fatty Acids. 50:81–84.
  • Salari, P., Rexale, A., Larijani, B. and Abdollahl, M. (2008). A systematic review of the impact of n-3 fatty acids in bone health and osteoporosis. Med. Sci. Monit. 14:RA37–44.
  • Sun, D., Krishnan, A., Zaman, K., Lawrence, R., Bhattacharya, A. and Fernandes, G. (2003). Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J. Bone Miner. Res. 18:1206–1216.
  • Sun, L., Tamaki, H., Ishimaru, T., Teruya, T., Ohta, Y., Katsuyama, N. and Chinen, I. (2004). Inhibition of osteoporosis due to restricted food intake by the fish oils DHA and EPA and perilla oil in the rat. Biosci. Biotechnol. Biochem. 68:2613–2615.
  • Tarlton, J. F., Wilkins, L. J., Toscano, M. J., Avery, N. C. and Knott, L. (2013). Reduced bone breakage and increased bone strength in free range laying hens fed omega-3-polyunsaturated fatty acid supplemented diets. Bone. 52:578–586.
  • Thearle, M., Horlick, M., Bilezikian, J. P., Levy, J., Gertner, J. M., Levine, L. S., Harbison, M., Berdon, W. and Oberfield, S. E. (2000). Osteoporosis: An unusual presentation of childhood Crohn's disease. J. Clin. Endocrinol. Metab. 85:2122–2126.
  • Trebble, T. M. (2005). Bone turnover and nutritional status in Crohn's disease: Relationship to circulating mononuclear cell function and response to fish oil and antioxidants. Proc. Nutr. Soc. 64:183–191.
  • Ubeda, N., Achon, M. and Varela Moreiras, G. (2012). Omega 3 fatty acid in the elderly. Br. J. Nutr. 107(2):137–151.
  • Uchida, R., Chiba, H., Ishimi, Y., Uehara, M., Suzuki, K., Kim, H. and Matsumoto, A. (2011). Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice. J. Bone Miner. Metab. 29(4):404–413.
  • van Papendorp, D. H., Coetzer, H. and Kruger, M. C. (1995). Biochemical profile of osteoporotic patients on essential fatty acid supplementation. Nutr. Res. 15:325–334.
  • Watkins, B. A., Li, Y., Lippman, H. E. and Feng, S. (2003). Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot. Essent. Fatty Acids. 68:387–398.
  • Watkins, B. A., Lippman, H. E., Le Bouteiller, L., Li, Y. and Seifert, M. F. (2001). Bioactive fatty acids: Role in bone biology and bone cell function. Prog. Lipid Res. 40:125–148.
  • Watkins, B. A., Shen, C. L., McMurtry, J. P., Xu, H., Bain, S. D., Allen, K. G. and Seifert, M. F. (1997). Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-I concentration and formation rate in chicks. J. Nutr. 127:1084–1091.
  • Weiler, H. A. and Fitzpatrick-Wong, S. C. (2002). Modulation of essential (n-6):(n-3) fatty acid ratios alters fatty acid status but not bone mass in piglets. J. Nutr. 132:2667–2672.
  • Weiler, H. A., Kovacs, H., Nitschmann, E., Bankovic-Calic, N., Aukema, H. and Ogborn, M. (2007). Feeding flaxseed oil but not secoisolariciresinol diglucoside results in higher bone mass in healthy rats and rats with kidney disease. Prostaglandins Leukot. Essent. Fatty Acids. 76(5):269–275.
  • Weiss, L. A., Barrett-Connor, E. and von Mühlen, D. (2005). Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: The Rancho Bernardo Study. Am. J. Clin. Nutr. 81:934–938.
  • Wohl, G. R., Loehrke, L., Watkins, B. A. and Zemicke, R. F. (1998). Effects of high-fat diet on mature bone mineral content, structure, and mechanical properties. Calcif. Tissue Int. 63:74–79.
  • Wu, S. J., Liu, P. L. and Ng, L. T. (2008). Tocotrienol rich fraction of palm oil exhibit anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol. Nutr. Food Res. 52:921–929.
  • Xu, K., Zweier, J. and Backer, L. (1997). Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site. Circ. Res. 80(1):76–81.
  • Yam, M. I., Abdul Hafid S. R., Cheng, H. M. and Nesaretnum, K. (2009). Tocotrienols suppress proinflammatory markers and cycloxygenase-2 expression in RAW264.7 acrophuges. Lipids. 44:787–797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.