1,424
Views
44
CrossRef citations to date
0
Altmetric
Articles

Light-induced changes in bottled white wine and underlying photochemical mechanisms

, , , &

References

  • Abrahamson, H. B., Rezvani, A. B. and Brushmiller, J. G. (1994). Photochemical and spectroscopic studies of complexes of iron(III) with citric acid and other carboxylic acids. Inorg. Chim. Acta. 226:117–127.
  • Allen, C. and Parks, O. W. (1975). Evidence for methional in skim milk exposed to sunlight. J. Dairy Sci. 58:1609–1611.
  • Amerine, M. A. and Joslyn, M. A. (1970). Table wines. The technology of their production. 2nd ed. University of California Press, Berkeley and Los Angeles.
  • Andrés-Lacueva, C., Mattivi, F. and Tonon, D. (1998). Determination of riboflavin, flavin mononucleotide and flavin-adenine dinucleotide in wine and other beverages by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A. 823:355–363.
  • Aust, S. D., Morehouse, L. A. and Thomas, C. E. (1985). Role of metals in oxygen radical reactions. J. Free Radic. Biol. Med. 1:3–25.
  • Balzani, V. and Carassiti, V. (1970). In: Photochemistry of coordination compounds. pp. 172–174, Academic Press, New York.
  • Barril, C., Clark, A. C., Prenzler, P. D., Karuso, P. and Scollary, G. R. (2009). Formation of pigment precursor (+)-1′-methylene-6′-hydroxy-2H-furan-5′-one-catechin isomers from (+)-catechin and a degradation product of ascorbic acid in a model wine system. J. Agric. Food Chem. 57:9539–9546.
  • Barril, C., Clark, A. C. and Scollary, G. R. (2008). Understanding the contribution of ascorbic acid to the pigment development in model white wine systems using liquid chromatography with diode array and mass spectrometry detection techniques. Anal. Chim. Acta. 621:44–51.
  • Baxendale, J. H. and Bridge, N. K. (1955). Photoreduction of ferric compounds in aqueous solution. J. Phys. Chem. 59:783–788.
  • Bekbölet, M. (1990). Light effects on food. J. Food Protect. 53:430–440.
  • Benítez, P., Castro, R. and García Barroso, C. (2003). Changes in the polyphenolic and volatile contents of “Fino” sherry wine exposed to ultraviolet and visible radiation during storage. J. Agric. Food Chem. 51:6482–6487.
  • Benítez, P., Castro, R., Natera, R. and García Barroso, C. (2006). Changes in the polyphenolic and volatile content of “Fino” sherry wine exposed to high temperature and ultraviolet and visible radiation. Eur. Food Res. Technol. 222:302–309.
  • Blake, A., Kotseridis, Y., Brindle, I. D., Inglis, D. and Pickering, G. J. (2010). Effect of light and temperature on 3-alkyl-2-methoxypyrazine concentration and other impact odourants of Riesling and Cabernet Franc wine during bottle ageing. Food Chem. 119:935–944.
  • Boulton, R. B., Singleton, V. L., Bisson, L. F. and Kunkee, R. E. (1996). Principles and practices of winemaking. Chapman & Hall, New York.
  • Bradley, D. G., Lee, H. O. and Min, D. B. (2003). Singlet oxygen detection in skim milk by electron spin resonance spectroscopy. J. Food Sci. 68:491–494.
  • Bradshaw, M. P., Barril, C., Clark, A. C., Prenzler, P. D. and Scollary, G. R. (2011). Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Crit. Rev. Food Sci. Nutr. 51:479–498.
  • Cardoso, D. R., Libardi, S. H. and Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 3:487–502.
  • Cardoso, D. R., Olsen, K., Møller, J. K. S. and Skibsted, L. H. (2006). Phenol and terpene quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer. J. Agric. Food Chem. 54:5630–5636.
  • Cataldi, T. R. I., Nardiello, D., Scrano, L. and Scopa, A. (2002). Assay of riboflavin in sample wines by capillary zone electrophoresis and laser-induced fluorescence detection. J. Agric. Food Chem. 50:6643–6647.
  • Cellamare, L., D'Auria, M., Emanuele, L. and Racioppi, R. (2009). The effect of light on the composition of some volatile compounds in wine: An HS-SPME-GC-MS study. Int. J. Food Sci. Technol. 44:2377–2384.
  • Chiron, F., Chalchat, J. C., Garry, R. P., Pilichowski, J. F. and Lacoste, J. (1997). Photochemical hydroperoxidation of terpenes I. Synthesis and characterization of α-pinene, β-pinene and limonene hydroperoxides. J. Photochem. Photobiol. Chem. 111:75–86.
  • Choe, E., Huang, R. and Min, D. B. (2005). Chemical reactions and stability of riboflavin in foods. J. Food Sci. 70:R28–R36.
  • Clark, A. C., Dias, D. A., Smith, T. A., Ghiggino, K. P. and Scollary, G. R. (2011). Iron(III) tartrate as a potential precursor of light induced oxidative degradation of white wine: Studies in a model wine system. J. Agric. Food Chem. 59:3575–3581.
  • Clark, A. C., Prenzler, P. D. and Scollary, G. R. (2007). Impact of the condition of storage of tartaric acid solutions on the production and stability of glyoxylic acid. Food Chem. 102:905–916.
  • Clark, A. C. and Scollary, G. R. (2003). Influence of light exposure, ethanol and copper (II) on the formation of a precursor for xanthylium cations from tartaric acid. Aus. J. Grape Wine Res. 9:64–71.
  • Clark, A. C., Vestner, J., Barril, C., Maury, C., Prenzler, P. D. and Scollary, G. R. (2009). The influence of stereochemistry of antioxidants and flavanols on oxidation processes in a model wine system: Ascorbic acid, erythorbic acid, (+)-catechin and (−)-epicatechin. J. Agric. Food Chem. 58:1004–1011.
  • D'Auria, M., Emanuele, L., Mauriello, G. and Racioppi, R. (2003). On the origin of “goût de lumiere” in Champagne. J. Photochem. Photobiol. Chem. 158:21–26.
  • Danilewicz, J. C. (2003). Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper. Am. J. Enol. Viticult. 54:73–85.
  • Danilewicz, J. C. (2007). Interaction of sulfur dioxide, polyphenols, and oxygen in a wine-model system: Central role of iron and copper. Am. J. Enol. Viticult. 58:53–60.
  • Danilewicz, J. C. (2012). Review of oxidative processes in wine and value of reduction potentials in enology. Am. J. Enol. Viticult. 63:1–10.
  • Danilewicz, J. C. (2013). Reactions involving iron in mediating catechol oxidation in model wine. Am. J. Enol. Viticult. 64:316–324.
  • Danilewicz, J. C., Seccombe, J. T. and Whelan, J. (2008). Mechanism of interaction of polyphenols, oxygen and sulfur dioxide in model wine and wine. Am. J. Enol. Viticult. 59:128–136.
  • DeRosa, M. C. and Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234:351–371.
  • Dias, D. A., Clark, A. C., Smith, T. A., Ghiggino, K. P. and Scollary, G. R. (2013). Wine bottle colour and oxidative spoilage: Whole bottle light exposure experiments under controlled and uncontrolled temperature conditions. Food Chem. 138:2451–2459.
  • Dias, D. A., Ghiggino, K. P., Smith, T. A. and Scollary, G. R. (2010). Wine Bottle Colour and Oxidative Spoilage. The University of Melbourne, Melbourne.
  • Dias, D. A., Smith, T. A., Ghiggino, K. P. and Scollary, G. R. (2012). The role of light, temperature and wine bottle colour on pigment enhancement in white wine. Food Chem. 135:2934–2941.
  • Dozon, N. M. and Noble, A. C. (1989). Sensory study of the effect of fluorescent light on a sparkling wine and its base wine. American J. Enol. Viticult. 40:265–271.
  • Duka, G. G., Batyr, D. G., Romanchuk, L. S. and Sychev, A. Y. (1990). Photochemical transformation of hydroxy acids in the presence of iron(III) ions. Soviet J. Coord. Chem. 16:54–65.
  • Elias, R. J., Andersen, M. L., Skibsted, L. H. and Waterhouse, A. L. (2009). Identification of free radical intermediates in oxidized wine using electron paramagnetic resonance spin trapping. J. Agric. Food Chem. 57:4359–4365.
  • Es-Safi, N. E., Cheynier, V. and Moutounet, M. (2003). Effect of copper on oxidation of (+)-catechin in a model solution system. Int. J. Food Sci. Technol. 38:153–163.
  • Es-Safi, N. E., Guernevé, C., Fulcrand, H., Cheynier, V. and Moutounet, M. (2000). Xanthylium salts formation involved in wine colour changes. Int. J. Food Sci. Technol. 35:63–74.
  • Escudero, A., Asensio, E., Cacho, J. and Ferreira, V. (2002). Sensory and chemical changes of young white wines stored under oxygen. An assessment of the role played by aldehydes and some other important odorants. Food Chem. 77:325–331.
  • Escudero, A., Hernández-Orte, P., Cacho, J. and Ferreira, V. (2000). Clues about the role of methional as character impact odorant of some oxidized wines. J. Agric. Food Chem. 48:4268–4272.
  • Faust, B. C. and Hoigné, J. (1990). Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ. Part A. Gen. Top. 24:79–89.
  • Faust, B. C. and Zepp, R. G. (1993). Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27:2517–2522.
  • Feng, W. and Nansheng, D. (2000). Photochemistry of hydrolytic iron(III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere. 41:1137–1147.
  • Foote, C. S. (1976). Photosensitized oxidation and singlet oxygen: Consequences in biological systems. In: Free radicals in biology. Vol. 2, pp. 85–133. Pryor, W. A., Ed., Academic Press, New York.
  • Fowles, G. W. A. (1992). Acids in grapes and wines: A review. J. Wine Res. 3:25–41.
  • Fulcrand, H., Cheynier, V., Oszmianski, J. and Moutounet, M. (1997). An oxidized tartaric acid residue as a new bridge potentially competing with acetaldehyde in flavan-3-ol condensation. Phytochemistry. 46:223–227.
  • George, N., Clark, A. C., Prenzler, P. D. and Scollary, G. R. (2006). Factors influencing the production and stability of xanthylium cation pigments in a model white wine system. Aus. J. Grape Wine Res. 12:57–68.
  • Glebov, E. M., Pozdnyakov, I. P., Grivin, V. P., Plyusnin, V. F., Zhang, X., Wu, F. and Deng, N. (2011). Intermediates in photochemistry of Fe(III) complexes with carboxylic acids in aqueous solutions. Photochem. Photobiol. Sci. 10:425–430.
  • Goldsmith, M. R., Rogers, P. J., Cabral, N. M., Ghiggino, K. P. and Roddick, F. A. (2005). Riboflavin triplet quenchers inhibit lightstruck flavor formation in beer. J. Am. Soc. Brew. Chem. 63:177–184.
  • Goniak, O. J. and Noble, A. C. (1987). Sensory study of selected volatile sulfur compounds in white wine. Am. J. Enol. Viticult. 38:223–227.
  • Grant-Preece, P., Fang, H., Schmidtke, L. M. and Clark, A. C. (2013). Sensorially important aldehyde production from amino acids in model wine systems: Impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide. Food Chem. 141:304–312.
  • Gray, P., Stone, I. and Rothschild, H. (1941). The action of sunlight on beer. Wallerstein Lab Commun. 4:29–40.
  • Grodowski, M. S., Veyret, B. and Weiss, K. (1977). Photochemistry of flavins II. Photophysical properties of alloxazines and isoalloxazines. Photochem. Photobiol. 26:341–352.
  • Hartley, A. (2008). The effect of ultraviolet light on wine quality. Waste and Resources Action Program, Oxon.
  • Haye, B., Maujean, A., Jacquemin, C. and Feuillat, M. (1977). Contribution a l’étude des “goûts de lumière” dans le vin de Champagne I. Aspects analytiques. Dosage des mercaptans et des thiols dans les vins. Connaiss. Vigne Vin. 11:243–254.
  • Heelis, P. F. (1982). The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11:15–39.
  • Huang, R., Kim, H. J. and Min, D. B. (2006). Photosensitizing effect of riboflavin, lumiflavin and lumichrome on the generation of volatiles in soy milk. J. Agric. Food Chem. 54:2359–2364.
  • Huvaere, K., Olsen, K., Andersen, M. L., Skibsted, L. H., Heyerick, A. and De Keukeleire, D. (2004). Riboflavin-sensitized photooxidation of isohumulones and derivatives. Photochem. Photobiol. Sci. 3:337–340.
  • Iwanami, Y., Tateba, H., Kodama, N. and Kishino, K. (1997). Changes of lemon flavor components in an aqueous solution during UV irradiation. J. Agric. Food Chem. 45:463–466.
  • Jiang, L. Y., He, S., Jiang, K. Z., Sun, C. R. and Pan, Y. J. (2010). Resveratrol and its oligomers from wine grapes are selective 1O2 quenchers: Mechanistic implication by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and theoretical calculation. J. Agric. Food Chem. 58:9020–9027.
  • Jung, R., Hey, M., Hoffmann, D., Leiner, T., Patz, C. D., Rauhut, D., Schüssler, C. and Wirsching, M. (2007). Lichteinfluss bei der Lagerung von Wein. Mitt. Klosterneuburg. 57:224–231.
  • Jung, M. Y., Yoon, S. H., Lee, H. O. and Min, D. B. (1998). Singlet oxygen and ascorbic acid effects on dimethyl disulfide and off-flavor in skim milk exposed to light. J. Food Sci. 63:408–412.
  • Kavitha, V. and Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere. 55:1235–1243.
  • Kilmartin, P. A. and Zou, H. (2001). The effect of electrode material on the measured redox potential of red and white wines. Electroanalysis. 13:1347–1350.
  • Korycka-Dahl, M. B., Richardson, T. and Foote, C. S. (1978). Activated oxygen species and oxidation of food constituents. Crit. Rev. Food Sci. Nutr. 10:209–241.
  • Kreitman, G. Y., Cantu, A., Waterhouse, A. L. and Elias, R. J. (2013). Effect of metal chelators on the oxidative stability of model wine. J. Agric. Food Chem. 61:9480–9487.
  • Kuroiwa, Y., Hashimoto, N., Hashimoto, H., Kokubo, E. and Nakagawa, K. (1963). Factors essential for the evolution of sunstruck flavour. J. Am. Soc. Brew. Chem. 181–193.
  • La Follette, G., Stambor, J. and Aiken, J. (1993). Chemical and sensory considerations in sur lies production of Chardonnay wines. III. Occurrence of sunstruck flavor. Wein-Wiss. 48:208–210.
  • Li, H., Guo, A. and Wang, H. (2008). Mechanisms of oxidative browning of wine. Food Chem. 108:1–13.
  • Luque-Pérez, E., Ríos, A. and Valcárcel, M. (1998). Flow-injection spectrophotometric determination of citric acid in beverages based on a photochemical reaction. Anal. Chim. Acta. 366:231–240.
  • Marais, J. (1983). Terpenes in the aroma of grapes and wines: A review. S Afr. J. Enol. Viticult. 4:49–58.
  • Marchand, S., de Revel, G. and Bertrand, A. (2000). Approaches to wine aroma: Release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J. Agric. Food Chem. 48:4890–4895.
  • Mattivi, F., Monetti, A., Vrhovšek, U., Tonon, D. and Andrés-Lacueva, C. (2000). High-performance liquid chromatographic determination of the riboflavin concentration in white wines for predicting their resistance to light. J. Chromatogr. A. 888:121–127.
  • Maujean, A., Haye, M. and Feuillat, M. (1978). Contribution a l’étude des “goûts de lumière” dans le vin de Champagne II. Influence de la lumière sur le potentiel d'oxydoreduction. Correlation avec la teneur en thiols du vin. Connaiss. Vigne Vin. 12:277–290.
  • Maujean, A. and Seguin, N. (1983a). Contribution a l’étude des goûts de lumière dans les vins de Champagne 3 Les réactions photochimiques responsables des goûts de lumière dans le vin de Champagne. Sci. Aliment. 3:589–601.
  • Maujean, A. and Seguin, N. (1983b). Contribution a l’étude des goûts de lumière dans les vins de Champagne 4 Approaches a une solution œnologique des moyens de prévention des goûts de lumière. Sci. Aliment. 3:603–613.
  • Maury, C., Clark, A. C. and Scollary, G. R. (2010). Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions. Anal. Chim. Acta. 660:81–86.
  • Mestres, M. Busto, O., and Guasch, J. (2000). Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A. 881:569–581.
  • Miles, C. J. and Brezonik, P. L. (1981). Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Environ. Sci. Technol. 15:1089–1095.
  • Min, D. B. and Boff, J. M. (2002). Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. Food Saf. 1:58–72.
  • Monteagudo, J. M., Durán, A., Corral, J. M., Carnicer, A., Frades, J. M. and Alonso, M. A. (2012). Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters. Chem. Eng. J. 181–182:281–288.
  • Mosteo, R., Ormad, P., Mozas, E., Sarasa, J. and Ovelleiro, J. L. (2006). Factorial experimental design of winery wastewaters treatment by heterogeneous photo-Fenton process. Water Res. 40:1561–1568.
  • Mosteo, R., Sarasa, J., Ormad, M. P. and Ovelleiro, J. L. (2008). Sequential solar photo-Fenton-biological system for the treatment of winery wastewaters. J. Agric. Food Chem. 56:7333–7338.
  • Müller, F. (1983). The flavin redox-system and its biological function. In: Radicals in Biochemistry. Vol. 108, pp. 71–107, Springer, Berlin and Heidelberg.
  • Neumann, M. and Garcia, N. A. (1992). Kinetics and mechanism of the light-induced deterioration of lemon oil. J. Agric. Food Chem. 40:957–960.
  • Ournac, A. (1968). Riboflavine pendant la fermentation du jus de raisin et la conservation du vin sur lies. Ann. Technol. Agr. 17:67–75.
  • Patton, S. (1954). The mechanism of sunlight flavor formation in milk with special reference to methionine and riboflavin. J. Dairy Sci. 37:446–452.
  • Patton, S. and Josephson, D. V. (1953). Methionine-origin of sunlight flavor in milk. Science. 118:211.
  • Pearson, R. G. (1968a). Hard and soft acids and bases, HSAB, part I Fundamental principles. J. Chem. Educ. 45:581–587.
  • Pearson, R. G. (1968b). Hard and soft acids and bases, HSAB, part II Underlying theories. J. Chem. Educ. 45:643–648.
  • Pérez-Ruiz, T., Martínez-Lozano, C., Tomás, V. and Martín, J. (2004). High-performance liquid chromatographic separation and quantification of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection. J. Chromatogr. A. 1026:57–64.
  • Perlman, L. and Morgan, A. F. (1945). Stability of B vitamins in grape juices and wines. J. Food Sci. 10:334–341.
  • Pichler, U. (1996). Analisi della riboflavina nei vini bianchi e influenza della sua concentrazione. Enotecnico. 32:57–62.
  • Pignatello, J. J., Oliveros, E. and MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36:1–84.
  • Pozdnyakov, I. P., Kolomeets, A. V., Plyusnin, V. F., Melnikov, A. A., Kompanets, V. O., Chekalin, S. V., Tkachenko, N. and Lemmetyinen, H. (2012). Photophysics of Fe(III)-tartrate and Fe(III)-citrate complexes in aqueous solutions. Chem. Phys. Lett. 530:45–48.
  • Pripis-Nicolau, L., de Revel, G., Bertrand, A. and Maujean, A. (2000). Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. J. Agric. Food Chem. 48:3761–3766.
  • Ramey, D. D. and Ough, C. S. (1980). Volatile ester hydrolysis or formation during storage of model solutions and wines. J. Agric. Food Chem. 28:928–934.
  • Recamales, Á. F., Sayago, A., González-Miret, M. L. and Hernanz, D. (2006). The effect of time and storage conditions on the phenolic composition and colour of white wine. Food Res. Int. 39:220–229.
  • Refsgaard, H. H. F., Brockhoff, P. M., Meilgaard, M. C., Laursen, P. F. and Skibsted, L. H. (1996). Light-induced sensory and chemical changes in aromatic bitters. Z. Lebensm. Unters. Forsch. 203:47–55.
  • Refsgaard, H. H. F., Brockhoff, P. M., Poll, L., Olsen, C. E., Rasmussen, M. and Skibsted, L. H. (1995). Light-induced sensory and chemical changes in aquavit. LWT - Food Sci. Technol. 28:425–435.
  • Ribéreau-Gayon, P., Glories, Y., Maujean, A. and Dubourdieu, D. (2006). Handbook of enology. Volume 2. The chemistry of wine stabilization and treatments. 2nd ed. John Wiley & Sons, Ltd, Chichester.
  • Rossi, J. A. and Singleton, V. L. (1966). Contributions of grape phenols to oxygen absorption and browning of wines. Am. J. Enol. Viticult. 17:231–239.
  • Sato, S., Nakamura, K., Tadenuma, M. and Motegi, K. (1970). Effects of light rays on the colour of alcoholic beverages. J. Soc. Brew. Jpn. 65:433–438.
  • Schieberle, P. and Grosch, W. (1989). Potent odorants resulting from the peroxidation of lemon oil. Z. Lebensm. Unters. Forsch. 189:26–31.
  • Schmidtke, L. M., Clark, A. C. and Scollary, G. R. (2011). Micro-oxygenation of red wine: Techniques, applications, and outcomes. Crit. Rev. Food Sci. Nutr. 51:115–131.
  • Schonberg, A. and Moubacher, R. (1952). The Strecker degradation of α-amino acids. Chem. Rev. 50:261–277.
  • Siebert, T., Bramley, B. and Solomon, M. (2009). Hydrogen sulfide: Aroma detection threshold study in white and red wine. Aus. Wine Res. Inst. Tech. Rev. No. 183:14–16.
  • Silva Ferreira, A. C., Guedes de Pinho, P., Rodrigues, P. and Hogg, T. (2002). Kinetics of oxidative degradation of white wines and how they are affected by selected technological parameters. J. Agric. Food Chem. 50:5919–5924.
  • Šima, J. and Makáňová, J. (1997). Photochemistry of iron(III) complexes. Coord. Chem. Rev. 160:161–189.
  • Simpson, R. F. (1982). Factors affecting oxidative browning of white wine. Vitis. 21:233–239.
  • Singleton, V. L. (1987). Oxygen with phenols and related reactions in musts, wines, and model systems: Observations and practical implications. Am. J. Enol. Viticult. 38:69–77.
  • Sioumis, N., Kallithraka, S., Makris, D. P. and Kefalas, P. (2006). Kinetics of browning onset in white wines: Influence of principal redox-active polyphenols and impact on the reducing capacity. Food Chem. 94:98–104.
  • Smith, R. C., Reed, V. D. and Hill, W. E. (1994). Oxidation of thiols by copper(II). Phosphorus, Sulfur Silicon Relat. Elem. 90:147–154.
  • Solomon, M., Geue, J., Osidacz, P. and Siebert, T. (2010). Aroma detection threshold study of methanethiol in white and red wine. Aus. Wine Res. Inst. Tech. Rev. No. 186:8–10.
  • Spikes, J. D. (1981). Photodegradation of foods and beverages. In: Photochemical and photobiological reviews. Vol. 6, pp. 39–85. Smith, K. C., Ed., Springer, New York.
  • Tomlinson, J. W. and Kilmartin, P. A. (1997). Measurement of the redox potential of wine. J. Appl. Electrochem. 27:1125–1134.
  • Ugliano, M. (2013). Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem. 61:6125–6136.
  • Ugliano, M., Dieval, J. B., Dimkou, E., Wirth, J., Cheynier, V., Jung, R. and Vidal, S. (2013). Controlling oxygen at bottling to optimize post-bottling development of wine. Pract. Winery Vineyard. 34:44–50.
  • Wardle, B. (2009). Principles and applications of photochemistry. John Wiley & Sons, Ltd, Chichester.
  • Waterhouse, A. L. and Laurie, V. F. (2006). Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Viticult. 57:306–313.
  • WRAP. (2010). Waste & Resources Action Program, Oxon. http://www.wrap.org.uk/sites/files/wrap/Newsletterforwebsite.pdf (24 December, 2013).
  • Zuo, Y. and Hoigné, J. (1992). Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 26:1014–1022.
  • Zuo, Y. and Hoigné, J. (1993). Evidence for photochemical formation of H2O2 and oxidation of SO2 in authentic fog water. Science. 260:71–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.