3,602
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles

&

REFERENCES

  • Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid. Interface Sci. 14:3–15.
  • Aguilera, J. M., Stanley, D. W., and Barbosa-Cánovas, G. V. (1999). Microstructural Principles of Food Processing Engineering. Aspen Puslishers, Gaithersburg, Maryland.
  • Akbar, A. and Anal, A. K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control. 38:88–95.
  • Allan, K. E., Lenehan, C. E., and Ellis, A. V. (2009). UV light stability of alpha-cyclodextrin/resveratrol host-guest complexes and isomer stability at varying pH. Aust. J. Chem. 62:921–926.
  • Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., and Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48:410–427.
  • Baker, R. W. (1987). Controlled Release of Biologically Active Agents. John Wiley and Sons, New York, N.Y.
  • Berton-Carabin, C. C., Coupland, J. N., Qian, C., McClements, D. J., and Elias, R. J. (2012). Reactivity of a lipophilic ingredient solubilized in anionic or cationic surfactant micelles. Colloids Surfaces a-Physicochemical Eng. Aspects. 412:135–142.
  • Berton-Carabin, C. C., Elias, R. J., and Coupland, J. N. (2013). Reactivity of a model lipophilic ingredient in surfactant-stabilized emulsions: Effect of droplet surface charge and ingredient location. Colloids Surfaces a-Physicochem. Eng. Aspects. 418:68–75.
  • Bleeker, E. A. J., de Jong, W. H., Geertsma, R. E., Groenewold, M., Heugens, E. H. W., Koers-Jacquemijns, M., van de Meent, D., Popma, J. R., Rietveld, A. G., Wijnhoven, S. W. P., Cassee, F. R., and Oomen, A. G. (2013). Considerations on the EU definition of a nanomaterial: Science to support policy making. Regul. Toxicol. Pharmacol. 65:119–125.
  • Boon, C. S., McClements, D. J., Weiss, J., and Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 50:515–532.
  • Borel, T. and Sabliov, C. M. (2014). Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Ann. Rev. Food Sci. Technol. 5:197–213.
  • Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., ten Voorde, S., Wijnhoven, S. W. P., Marvin, H. J. P., and Sips, A. (2009). Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53:52–62.
  • Bresson, S., Rousseau, D., Ghosh, S., El Marssi, M., and Faivre, V. (2011). Raman spectroscopy of the polymorphic forms and liquid state of cocoa butter. Eur. J. Lipid. Sci. Technol. 113:992–1004.
  • Bunjes, H. (2011). Structural properties of solid lipid based colloidal drug delivery systems. Curr. Opin. Colloid. Interface Sci. 16:405–411.
  • Bunjes, H., Steiniger, F., and Richter, W. (2007). Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir. 23:4005–4011.
  • Byelov, D. V., Meijer, J. M., Snigireva, I., Snigirev, A., Rossi, L., van den Pol, E., Kuijk, A., Philipse, A., Imhof, A., van Blaaderen, A., Vroege, G. J., and Petukhov, A. V. (2013). In situ hard X-ray microscopy of self-assembly in colloidal suspensions. Rsc Adv. 3:15670–15677.
  • Campos, D. A., Madureira, A. R., Gomes, A. M., Sarmento, B., and Pintado, M. M. (2014). Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids Surfaces B-Biointerfaces. 115:109–117.
  • Castelain, C. and Genot, C. (1996). Partition of adsorbed and nonadsorbed bovine serum albumin in dodecane-in-water emulsions calculated from front-face intrinsic fluorescence measurements. J. Agric. Food Chem. 44:1635–1640.
  • Celedon, A. and Aguilera, J. M. (2002). Applications of microprobe Raman spectroscopy in food science. Food Sci. Technol. Int. 8:101–108.
  • Chang, Y. H. and McClements, D. J. (2014). Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: Influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem. 62:2306–2312.
  • Chang, Y. H., McLandsborough, L., and McClements, D. J. (2012). Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: Influence of ripening inhibitors. J. Agric. Food Chem. 60:12056–12063.
  • Chen, H. Q. and Zhong, Q. X. (2014). Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate. Food Hydrocolloids. 35:358–366.
  • Chen, J. J., Zheng, J. K., McClements, D. J., and Xiao, H. (2014). Tangeretin-loaded protein nanoparticles fabricated from zein/beta-lactoglobulin: Preparation, characterization, and functional performance. Food Chem. 158:466–472.
  • Cho, A. R., Chun, Y. G., Kim, B. K., and Park, D. J. (2014). Preparation of alginate-CaCl2 microspheres as resveratrol carriers. J. Mater. Sci. 49:4612–4619.
  • Choi, K. O., Aditya, N. P., and Ko, S. (2014). Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem. 147:239–244.
  • Christensen, J. O., Schultz, K., Mollgaard, B., Kristensen, H. G., and Mullertz, A. (2004). Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur. J. Pharm. Sci. 23:287–296.
  • Cialla, D., Marz, A., Bohme, R., Theil, F., Weber, K., Schmitt, M., and Popp, J. (2012). Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403:27–54.
  • Colfen, H. and Antonietti, M. (2000). Field-flow fractionation techniques for polymer and colloid analysis. In: New Developments in Polymer Analytics I, pp. 67–187. Schmidt, M., Ed., Springer-Verlag Berlin, Berlin.
  • Dahan, A. and Hoffman, A. (2006). Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: Correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm. Res. 23:2165–2174.
  • Dahan, A. and Hoffman, A. (2007). The effect of different lipid based formulations on the oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur. J. Pharm. Biopharm. 67:96–105.
  • Dahan, A. and Hoffman, A. (2008). Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J. Control. Release. 129:1–10.
  • Danino, D. (2012). Cryo-TEM of soft molecular assemblies. Curr. Opin. Colloid. Interface Sci. 17:316–329.
  • Degner, B. M., Chung, C., Schlegel, V., Hutkins, R., and McClements, D. J. (2014). Factors influencing the freeze-thaw stability of emulsion-based foods. Compr. Rev. Food Sci. Food Safety. 13:98–113.
  • Delgado, A. V., Gonzalez-Caballero, F., Hunter, R. J., Koopal, L. K., and Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309:194–224.
  • Dhayal, S. K., Gruppen, H., de Vries, R., and Wierenga, P. A. (2014). Controlled formation of protein nanoparticles by enzymatic cross-linking of alpha-lactalbumin with horseradish peroxidase. Food Hydrocolloids. 36:53–59.
  • Dhuique-Mayer, C., Borel, P., Reboul, E., Caporiccio, B., Besancon, P., and Amiot, M. J. (2007). beta-Cryptoxanthin from Citrus juices: assessment of bioaccessibility using an in vitro digestion/Caco-2 cell culture model. Br. J. Nutr. 97:883–890.
  • Do Thi, T., Van Speybroeck, M., Barillaro, V., Martens, J., Annaert, P., Augustijns, P., Van Humbeeck, J., Vermant, J., and Van den Mooter, G. (2009). Formulate-ability of ten compounds with different physicochemical profiles in SMEDDS. Eur. J. Pharm. Sci. 38:479–488.
  • Donald, A. M. (1998). Environmental scanning electron microscopy for the study of ‘wet’ systems. Curr. Opin. Colloid. Interface Sci. 3:143–147.
  • Donald, A. M., He, C. B., Royall, C. P., Sferrazza, M., Stelmashenko, N. A., and Thiel, B. L. (2000). Applications of environmental scanning electron microscopy to colloidal aggregation and film formation. Colloids Surfaces a-Physicochem. Eng. Aspects. 174:37–53.
  • Donsi, F., Wang, Y. W., and Huang, Q. R. (2011). Freeze-thaw stability of lecithin and modified starch-based nanoemulsions. Food Hydrocolloids. 25:1327–1336.
  • Dressman, J. B., Thelen, K., and Willmann, S. (2011). An update on computational oral absorption simulation. Expert Opin. Drug Metabol. Toxicol. 7:1345–1364.
  • Dudkiewicz, A., Tiede, K., Loeschner, K., Jensen, L. H. S., Jensen, E., Wierzbicki, R., Boxall, A. B. A., and Molhave, K. (2011). Characterization of nanomaterials in food by electron microscopy. Trac-Trends Anal. Chem. 30:28–43.
  • Dukhin, A. S. and Goetz, P. J. (2001). Acoustic and electroacoustic spectroscopy characterizing concentrated dispersions emulsions. Adv. Colloid Interface Sci. 92:73–132.
  • Egerton, R. (2008). Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer Science, New York, N.Y.
  • Everall, N. J. (2010). Confocal Raman microscopy: Common errors and artefacts. Analyst. 135:2512–2522.
  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., and Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 6:628–647.
  • Ferrua, M. J., Kong, F. B., and Singh, R. P. (2011). Computational modeling of gastric digestion and the role of food material properties. Trends Food Sci. Technol. 22:480–491.
  • Gade, A., Gaikwad, S., Duran, N., and Rai, M. (2014). Green synthesis of silver nanoparticles by Phoma glomerata. Micron. 59:52–59.
  • Gazme, B. and Madadlou, A. (2014). Fabrication of whey protein-pectin conjugate particles through laccase-induced gelation of microemulsified nanodroplets. Food Hydrocolloids. 40:189–195.
  • Gitrowski, C., Al-Jubory, A. R., and Handy, R. D. (2014). Uptake of different crystal structures of TiO2 nanoparticles by Caco-2 intestinal cells. Toxicol. Lett. 226:264–276.
  • Gladden, L. F. (1995). Applications of nuclear-magnetic-resonance imaging in particle technology. Particle Particle Syst. Characterization. 12:59–67.
  • Guillot, A., Limberger, M., Kramer, J., and Lehr, C. M. (2013). In situ drug release monitoring with a fiber-optic system: Overcoming matrix interferences using derivative spectrophotometry. Dissolution Technol. 20:15–19.
  • Gupta, R. and Rousseau, D. (2012). Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions. Food Function. 3:302–311.
  • Hartel, R. W. (2013). Advances in food crystallization. In: Annual Review of Food Science and Technology, Vol 4, pp. 277–292. Doyle, M. P. and Klaenhammer, T. R., Eds., Annual Reviews, Palo Alto.
  • Heins, A., Sokolowski, T., Stockmann, H., and Schwarz, K. (2007). Investigating the location of propyl gallate at surfaces and its chemical microenvironment by H-1 NMR. Lipids. 42:561–572.
  • Hertz, H. M., Bertilson, M., von Hofsten, O., Gleber, S. C., Sedlmair, J., and Thieme, J. (2012). Laboratory X-ray microscopy for high-resolution imaging of environmental colloid structure. Chem. Geology. 329:26–31.
  • Hey, M. J. and Alsagheer, F. (1994). Interphase transfer rates in emulsions studied by NMR-Spectroscopy. Langmuir. 10:1370–1376.
  • Hosseini, S. F., Zandi, M., Rezaei, M., and Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polymers. 95:50–56.
  • Huang, Y. J., Liu, M. Z., Gao, C. M., Yang, J. L., Zhang, X. Y., Zhang, X. J., and Liu, Z. (2013). Ultra-small and innocuous cationic starch nanospheres: Preparation, characterization and drug delivery study. Int. J. Biol. Macromol. 58:231–239.
  • Hunter, R. J. (1986). Foundations of Colloid Science, Vol 1. Oxford University Press, Oxford.
  • Jinschek, J. R. (2013). Use of an environmental transmission electron microscope for dynamic in situ studies of nano-structured materials at the atomic scale. Am. Lab. 45:12–+.
  • Jinschek, J. R. (2014). Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions. Chem. Commun. 50:2696–2706.
  • Kim, M. J. and Shin, S. (2014). Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem. Toxicol. 67:80–86.
  • Klang, V., Matsko, N. B., Valenta, C., and Hofer, F. (2012). Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron. 43:85–103.
  • Klang, V., Valenta, C., and Matsko, N. B. (2013). Electron microscopy of pharmaceutical systems. Micron. 44:45–74.
  • Kong, F. and Singh, R. P. (2011). A Human Gastric Simulator (HGS) to study food digestion in human stomach (vol 75, pg E627, 2010). J. Food Sci. 76:VIII–VIII.
  • Kotanen, C. N., Wilson, A. N., Wilson, A. M., Ishihara, K., and Guiseppi-Elie, A. (2012). Biomimetic hydrogels gate transport of calcium ions across cell culture inserts. Biomed. Microdevices. 14:549–558.
  • Krpetic, Z., Davidson, A. M., Volk, M., Levy, R., Brust, M., and Cooper, D. L. (2013). High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. Acs Nano. 7:8881–8890.
  • Kuntsche, J., Horst, J. C., and Bunjes, H. (2011). Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 417:120–137.
  • Lamanna, M., Morales, N., Garcia, N. L., and Goyanes, S. (2013). Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. Carbohydr. Polymers. 97:90–97.
  • Lampis, S., Zonaro, E., Bertolini, C., Bernardi, P., Butler, C. S., and Vallini, G. (2014). Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb. Cell Factories. 13:35.
  • Lee, S. J., Choi, S. J., Li, Y., Decker, E. A., and McClements, D. J. (2011). Protein-stabilized nanoemulsions and emulsions: Comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J. Agric. Food Chem. 59:415–427.
  • Lesmes, U. and McClements, D. J. (2009). Structure-function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci. Technol. 20:448–457.
  • Levin, I. W. and Bhargava, R. (2005). Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition. Annual Review of Physical Chemistry 56:429–474.
  • Li, Y., Hu, M., and McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chem. 126:498–505.
  • Li, Y., Kim, J., Park, Y., and McClements, D. J. (2012a). Modulation of lipid digestibility using structured emulsion-based delivery systems: Comparison of in vivo and in vitro measurements. Food Funct. 3:528–536.
  • Li, Y., Xiao, H., and McClements, D. J. (2012b). Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility. Food Biophysics. 7:341–353.
  • Li, Y., Zheng, J., Xiao, H., and McClements, D. J. (2012c). Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocolloids. 27:517–528.
  • Loren, N., Langton, M., and Hermansson, A. M. (2007). Confocal fluorescence microscopy for structure characterization. In: Understanding and Controlling the Microstructure of Complex Foods, pp. 232–260. McClements, D. J., Ed., Woodhead Publishing Cambridge, UK.
  • Lutz, R., Aserin, A., Wicker, L., and Garti, N. (2009). Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids Surfaces B-Biointerfaces. 74:178–185.
  • Macfarlane, G. T., and Macfarlane, S. (2007). Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr. Opin. BioTechnol. 18:156–162.
  • Maher, P. G., Roos, Y. H., and Fenelon, M. A. (2014). Physicochemical properties of spray dried nanoemulsions with varying final water and sugar contents. J. Food Eng. 126:113–119.
  • Mantle, M. D. (2013). NMR and MRI studies of drug delivery systems. Curr. Opin. Colloid. Interface Sci. 18:214–227.
  • Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., and Assis, O. B. G. (2013). Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J. Food Sci. 78:N98–N104.
  • Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., and Graves, S. M. (2006). Nanoemulsions: Formation, structure, and physical properties. J. Phys.-Condensed Matter. 18:R635–R666.
  • Mathias, N. R. and Crison, J. (2012). The use of modeling tools to drive efficient oral product design. Aaps J. 14:591–600.
  • Mauricio-Iglesias, M., Guillard, V., Gontard, N., and Peyron, S. (2009). Application of FTIR and Raman microspectroscopy to the study of food/packaging interactions. Food Addit. Contam. Part a-Chem. Anal. Control Expo. Risk Assess. 26:1515–1523.
  • McClements, D. J. (1997). Ultrasonic characterization of foods and drinks: Principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37:1–46.
  • McClements, D. J. (2005). Food Emulsions: Principles, Practice, and Techniques, 2nd Edition. CRC Press, Boca Raton.
  • McClements, D. J. (2007). Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 47:611–649.
  • McClements, D. J. (2013). Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Prog. Lipid Res. 52:409–423.
  • McClements, D. J. (2014). Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds. CRC Press, Boca Raton, FL.
  • McClements, D. J. and Decker, E. A. (2000). Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. J. Food Sci. 65:1270–1282.
  • McClements, D. J. and Li, Y. (2010a). Review of in vitro digestion models for rapid screening of emulsion-based systems. Food Funct. 1:32–59.
  • McClements, D. J. and Li, Y. (2010b). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 159:213–228.
  • McClements, D. J. and Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51:285–330.
  • McClements, D. J. and Xiao, H. (2012). Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct. 3:202–220.
  • McClements, D. J., Decker, E. A., and Park, Y. (2009a). Controlling lipid bioavailability through physicochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 49:48–67.
  • McClements, D. J., Decker, E. A., Park, Y., and Weiss, J. (2009b). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 49:577–606.
  • McFearin, C. L., Sankaranarayanan, J., and Almutairi, A. (2011). Application of fiber-optic attenuated total reflection-FT-IR methods for in situ characterization of protein delivery systems in real time. Anal. Chem. 83:3943–3949.
  • Mertz, J. (2009). Introduction to Optical Microscopy Roberts and Company Publishers, Greenwood Village, Colorado.
  • Miao, S., Zhao, X., and Cronin, K. (2014). Use of sugars to improve quality of dried colloidal nanoemulsions. J. Food Eng. 123:136–142.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D. J., Menard, O., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Weitschies, W., and Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct. 5:1113–1124.
  • Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G., and Veld, J. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microb. BioTechnol. 53:108–114.
  • Moreno-Bautista, G. and Tam, K. C. (2011). Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids Surfaces a-Physicochem. Eng. Aspects. 389:299–303.
  • Morris, V. J., Gunning, A. P., and Kirby, A. R. (1999). Atomic Force Microscopy for Biologists Imperial College Press, London, UK.
  • Murphy, D. B. (2012). Fundamentals of light microscopy and electronic imaging. John Wiley & Sons, New York, NY.
  • Nielsen, S. S. (2010). Food Analysis, 4th Edition. Springer, New York, NY.
  • Oliver, A. L.-S., Croteau, M.-N., Stoiber, T. L., Tejamaya, M., Romer, I., Lead, J. R., and Luoma, S. N. (2014). Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis? Environ. Pollut. (Barking, Essex :1987). 189:87–91.
  • Ouwehand, A. C., Tiihonen, K., Makelainen, H., Rautonen, N., Hasselwander, O., and Sworn, G. (2009). Non-starch polysaccharides in the gastrointestinal tract. In: Designing functional foods: Measuring and controlling food structure breakdown and nutrient absorption, pp. 126–147. McClements, D. J. and Decker, E. A., Eds., CRC Press, Boca Raton, FL.
  • Ozturk, B., Argin, S., Ozilgen, M, and McClements, D. J. (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem. 188:256–263.
  • Pan, K., Chen, H. Q., Davidson, P. M., and Zhong, Q. X. (2014). Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. J. Agric. Food Chem. 62:1649–1657.
  • Panya, A., Laguerre, M., Bayrasy, C., Lecomte, J., Villeneuve, P., McClements, D. J., and Decker, E. A. (2012). An investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in oil-in-water emulsions. J. Agric. Food Chem. 60:2692–2700.
  • Paques, J. P., Sagis, L. M. C., van Rijn, C. J. M., and van der Linden, E. (2014). Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocolloids. 40:182–188.
  • Paques, J. P., van der Linden, E., van Rijn, C. J. M., and Sagis, L. M. C. (2013). Alginate submicron beads prepared through w/o emulsification and gelation with CaCl2 nanoparticles. Food Hydrocolloids. 31:428–434.
  • Pawley, J. (2006). Handbook of Biological Confocal Microscopy, Third Edition. Springer, New York, N.Y.
  • Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Res. 2:123–131.
  • Perry, P. A., Fitzgerald, M. A., and Gilbert, R. G. (2006). Fluorescence recovery after photobleaching as a probe of diffusion in starch systems. Biomacromolecules. 7:521–530.
  • Pflaum, T., Konitzer, K., Hofmann, T., and Koehler, P. (2013). Analytical and sensory studies on the release of sodium from wheat bread crumb. J. Agric. Food Chem. 61:6485–6494.
  • Plucknett, K. P., Pomfret, S. J., Normand, V., Ferdinando, D., Veerman, C., Frith, W. J., and Norton, I. T. (2001). Dynamic experimentation on the confocal laser scanning microscope: Application to soft-solid, composite food materials. J. Microsc.-Oxford. 201:279–290.
  • Pornwilard, M. M., Somchue, W., Shiowatana, J., and Siripinyanond, A. (2014). Flow field-flow fractionation for particle size characterization of selenium nanoparticles incubated in gastrointestinal conditions. Food Res. Int. 57:203–209.
  • Porter, C. J. H., and Charman, W. N. (2001). In vitro assessment of oral lipid based formulations. Adv. Drug Del. Rev. 50:S127–S147.
  • Pouton, C. W., and Porter, C. J. H. (2008). Formulation of lipid-based delivery systems for oral administration. Adv. Drug Del. Rev. 60:625–637.
  • Qian, C., Decker, E. A., Xiao, H., and McClements, D. J. (2012). Solid lipid nanoparticles: Effect of carrier oil and emulsifier type on phase behavior and physical stability. J. Am. Oil Chem. Soc. 89:17–28.
  • Rao, J. J. and McClements, D. J. (2011). Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocolloids. 25:1413–1423.
  • Rao, J. J., Decker, E. A., Xiao, H., and McClements, D. J. (2013). Nutraceutical nanoemulsions: Influence of carrier oil composition (digestible versus indigestible oil) on -carotene bioavailability. J. Sci. Food Agri. 93:3175–3183.
  • Raynes, J. K., Carver, J. A., Gras, S. L., and Gerrard, J. A. (2014). Protein nanostructures in food—Should we be worried? Trends Food Sci. Technol. 37:42–50.
  • Reboul, E., Richelle, M., Perrot, E., Desmoulins-Malezet, C., Pirisi, V., and Borel, P. (2006). Bioaccessibility of carotenoids and vitamin E from their main dietary sources. J. Agric. Food Chem. 54:8749–8755.
  • Relkin, P., Shukat, R., Bourgaux, C., and Meneau, F. (2011). Nanostructures and polymorphisms in protein stabilised lipid nanoparticles, as food bioactive carriers: Contribution of particle size and adsorbed materials. 11th Int. Cong. Eng. Food (Icef11). 1:246–250.
  • Rummey, C. J. and Rowland, I. R. (1992). In vivo and in vitro models of the human colonic flora.. Crit. Rev. Food Sci. Nutr. 31:299–331.
  • Russ, J. C. (2004). Image analysis of Food Microstructure. CRC Press, Boca Raton, FL.
  • Russ, J. C. (2011). The Image Processing Handbook, Sixth Edition. CRC Press, Boca Raton, FL.
  • Salminen, H., Helgason, T., Aulbach, S., Kristinsson, B., Kristbergsson, K., and Weiss, J. (2014). Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J. Colloid Interface Sci. 426:256–263.
  • Salminen, H., Helgason, T., Kristinsson, B., Kristbergsson, K., and Weiss, J. (2013). Formation of solid shell nanoparticles with liquid omega-3 fatty acid core. Food Chem.. 141:2934–2943.
  • Sanguansri, P. and Augustin, M. A. (2006). Nanoscale materials development—a food industry perspective. Trends Food Sci. Technol. 17:547–556.
  • Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., and Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Properties. 10:661–673.
  • Shukat, R., Bourgaux, C., and Relkin, P. (2012). Crystallisation behaviour of palm oil nanoemulsions carrying vitamin E. J. Thermal Anal. Calorimetry. 108:153–161.
  • Silalai, N. and Roos, Y. H. (2010). Roles of water and solids composition in the control of glass transition and stickiness of milk powders. J. Food Sci. 75:E285–E296.
  • Singh, G., Stephan, C., Westerhoff, P., Carlander, D., and Duncan, T. V. (2014). Measurement methods to detect, characterize, and quantify engineered nanomaterials in foods. Compr. Rev. Food Sci. Food Safety. 13:693–704.
  • Sitterberg, J., Ozcetin, A., Ehrhardt, C., and Bakowsky, U. (2010). Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur. J. Pharm. Biopharm. 74:2–13.
  • Solval, K. M., Rodezno, L. A. E., Moncada, M., Bankston, J. D., and Sathivel, S. (2014). Evaluation of chitosan nanoparticles as a glazing material for cryogenically frozen shrimp. Lwt-Food Sci. Technol. 57:172–180.
  • Souto-Maior, J. F. A., Reis, A. V., Pedreiro, L. N., and Cavalcanti, O. A. (2009). Phosphated crosslinked pectin as a potential excipient for specific drug delivery: Preparation and physicochemical characterization. Polym. Int. 59:127–135.
  • Stewart, S., Priore, R. J., Nelson, M. P., and Treado, P. J. (2012). Raman imaging. In: Annual Review of Analytical Chemistry, Vol 5, pp. 337–360. Cooks, R. G. and Yeung, E. S., Eds., Annual Reviews, Palo Alto.
  • Stockmann, K. and Schwarz, K. (1999). Partitioning of low molecular weight compounds in oil-in-water emulsions. Langmuir. 15:6142–6149.
  • Szakal, C., Roberts, S. M., Westerhoff, P., Bartholomaeus, A., Buck, N., Illuminato, I., Canady, R., and Rogers, M. (2014). Measurement of nanomaterials in foods: Integrative consideration of challenges and future prospects. Acs Nano. 8:3128–3135.
  • Szalal, C., Tsytsikova, L., Carlander, D., and Duncan, T. V. (2014). Measurement methods for the oral uptake of engineered nanomaterials from human dietary sources: Summary and outlook. Compr. Rev. Food Sci. Food Safety. 13:669–678.
  • Tan, Y., Xu, K., Niu, C., Liu, C., Li, Y. L., Wang, P. X., and Binks, B. P. (2014). Triglyceride-water emulsions stabilised by starch-based nanoparticles. Food Hydrocolloids. 36:70–75.
  • Troncoso, E., Aguilera, J. M., and McClements, D. J. (2012). Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocolloids. 27:355–363.
  • van Aken, G. A. (2010). Relating food emulsion structure and composition to the way it is processed in the gastrointestinal tract and physiological responses: What are the opportunities? Food Biophysics. 5:258–283.
  • van der Linden, E., Sagis, L., and Venema, P. (2003). Rheo-optics and food systems. Curr. Opin. Colloid. Interface Sci. 8:349–358.
  • Velikov, K. P. and Pelan, E. (2008). Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter. 4:1964–1980.
  • Venema, K., Havenaar, R., and Minekus, M. (2009). Improving In vitro simulation of the stomach and intestines. In: Designing Functional Foods: Measuring and Controlling Food Structure Breakdown and Nutrient Absorption, pp. 314–339. McClements, D. J. and Decker, E. A., Eds., CRC Press, Boca Raton, FL.
  • Versantvoort, C. H. M., Ondrewater, R. C. A., Duizer, E., Van de Sandt, J. J. M., Gilde, A. J., and Groten, J. P. (2003). Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: comparison of active and passive transport with the human colon carcinoma Caco-2 cell line (vol 11, pg 335, 2002). Environ. Toxicol. Pharmacol. 13:55–55.
  • Vors, C., Capolino, P., Guerin, C., Meugnier, E., Pesenti, S., Chauvin, M.-A., Monteil, J., Peretti, N., Cansell, M., Carriere, F., and Michalski, M.-C. (2012). Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food Funct. 3:537–546.
  • Williams, H. D., Anby, M. U., Sassene, P., Kleberg, K., Bakala-N'Goma, J. C., Calderone, M., Jannin, V., Igonin, A., Partheil, A., Marchaud, D., Jule, E., Vertommen, J., Maio, M., Blundell, R., Benameur, H., Carriere, F., Mullertz, A., Pouton, C. W., and Porter, C. J. H. (2012). Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV Formulations during in vitro digestion. Mol. Pharm. 9:3286–3300.
  • Yada, R. Y., Buck, N., Canady, R., DeMerlis, C., Duncan, T. V., Janer, G., Juneja, L., Lin, M., McClements, D. J., Noonan, G., Oxley, J., Sabilov, C., Tystsikova, L., Vazquez-Campos, S., Yourick, J., Zhong, Q. X., and Thurmond, S. (2014). Engineered nanoscale food ingredients: Evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract. Compr. Rev. Food Sci. Food Safety. 13:730–744.
  • Yang, L. (2008). Biorelevant dissolution testing of colon-specific delivery systems activated by colonic microflora. J. Control. Release. 125:77–86.
  • Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., and Zhong, F. (2014). Cellular uptake of beta-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization-evaporation method. J. Agric. Food Chem. 62:1096–1104.
  • Yoo, J. Y. and Chen, X. D. (2006a). GIT Physicochemical modeling - A critical review. Int. J. Food Eng. 2:12.
  • Yoo, J. Y. and Chen, X. D. (2006b). GIT physicochemical modeling—A critical review. Int. J. Food Eng. 2:4.
  • Zhang, J. S., Taylor, E. W., Wan, X. C., and Peng, D. G. (2012). Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. In. J. Nanomed. 7:815–825.
  • Zou, T., Percival, S. S., Cheng, Q., Li, Z., Rowe, C. A., and Gu, L. W. (2012). Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins-gelatin-chitosan nanoparticles. Eur. J. Pharm. Biopharm. 82:36–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.