2,241
Views
92
CrossRef citations to date
0
Altmetric
Articles

Food structure: Its formation and relationships with other properties

, &

References

  • Acevedo, N. C., Briones, V. B. P. and Aguilera, J. M. (2008). Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs. J. Food Eng. 85(2):222–231.
  • Achanta, S. O. and Martin, R. (1996). Predicting the quality of dehydrated foods and biopolymers—Research needs and opportunities. Dry. Technol. 14(6):1329–1368.
  • Adapa, P. K., Sokhansanj, S. and Schoenau, G. J. (2002). Performance study of a re-circulating cabinet dryer using a household dehumidifier. Dry. Technol. 20(8):1673–1689.
  • Aguilera, J. M. (2000). Microstructure and food product engineering. J. Food Technol. 54(11):56–X.
  • Aguilera, J. M. (2005). Why food microstructure? J. Food Eng. 67(1–2):3–11.
  • Aguilera, J. M. (2006). Seligman lecture 2005 food product engineering: Building the right structures. J. Sci. Food Agric. 86:1147–1155.
  • Aguilera, J. M. and Chiralt, A. F. P. (2003). Food dehydration and product structure. Trend Food Sci. Technol. 14(10):432–437.
  • Aguilera, J. M. and Lillford, P. J. (2007). Food Materials Science: Principles and Practice. Springer, Dordrecht.
  • Aguilera, J. M. and Lillford, P. J., Eds. (2008). Food materials science. In: Food Engineering Series. Springer, New York, USA.
  • Aguilera, J. M. and Stanley, D. W., Eds. (1999). Microstructural Principles of Food Processing and Engineering Gaitherburg. Aspen Publishers, Inc., Maryland.
  • Aguilera, J. M., Stanley, D. W. and Baker, K. W. (2000). New dimensions in microstructure of food products. Trend Food Sci. Technol. 11(1):3–9.
  • Alamar, M. C., Vanstreels, E., Oey, M. L., Moltó, E. and Nicolaï, B. M. (2008). Micromechanical behaviour of apple tissue in tensile and compression tests: Storage conditions and cultivar effect. J. Food Eng. 86(3):324–333.
  • Alemrajabi, A. A., Rezaee, F., Mirhosseini, M. and Esehaghbeygi, A. (2011). Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying process. Dry. Technol. 30(1):88–96.
  • Alvarez, C. A., Aguerre, R., G-omez, R., Vidales, S., Alzamora, S. M. and Gerschenson, L. N. (1995). Air dehydration of strawberries: Effects of blanching and osmotic pretreatments on the kinetics of moisture transport. J. Food Eng. 25:167–178.
  • Alzamora, S. M., Castro, M. A., Nieto, A. B., Vidales, S. L. and Salvatori, D. M. (2000). The Role of Tissue Microstructure in the Textural Characteristics of Minimally Processed Fruits. Aspen Publishers Inc., Maryland.
  • Anese, M., Manzocco, L., Panozzo, A., Beraldo, P., Foschia, M. and Nicoli, M. C. (2012). Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res. Int. 46(1):50–54.
  • Armand, M., Pasquier, B., Andre, M., Borel, P., Senft, M., Peyrot, J., Salducci, J., Portugal, H., Jaussan, V. and Lairon, D. (1999). Digestion and absorption of fat emulsions with different droplet sizes in the human digestive tract. Am. J. Clin. Nutr. 70:1096–1106.
  • Askari, G. R., Emam-Djomeh, Z. and Mousavi, S. M. (2009). An investigation of the effects of drying methods and conditions on drying characteristics and quality attributes of agricultural products during hot air and hot air/microwave-assisted dehydration. Dry. Technol. 27(7–8):831–841.
  • Badwaik, L. S., Choudhury, S., Borah, P. K., Sit, N. and Deka, S. C. (2013). Comparison of kinetics and other related properties of bamboo shoot drying pretreated with osmotic dehydration. J. Food Process. Preserv. 38(3):1171–1180.
  • Baer, E., Cassidy, J. J. and Hiltner, A. (1991). Hierarchical structures of collagen composite systems: Lessons from biology. In: ACS Symposium Series 489. American Chemical Society, Washington, DC.
  • Baines, Z. V. and Morris, E. R. (1987). Flavour-taste perception in thickened systems: The effect of guar gum above and below c*. Food Hydrocoll. 1(3):197–205.
  • Bakker, J. and Mela, D. J. (1996). Effect of emulsion structure on flavor release and taste perception. ACS Symp. Ser. 633:36–47.
  • Becker, B. R. and Fricke, B. A. (1999). Food thermophysical property models. Int. Commun. Heat Mass Transf. 26(5):627–636.
  • Bhandari, B., Ed. (2012). Food Materials Science and Engineering. Wiley-Blackwell, Chicester.
  • Bhapatkar, D., Hamaker, B. R. and Campanella, O. H., Eds. (2012). Micro to Macro Level Structure of Food Materials Food Materials Science and Engineering. Wiley-Blackwell, Chicester.
  • Boland, A. B., Delahunty, C. M. and S.M., V. R. (2006). Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception. J. Food Chem. 96:452–460.
  • Bolin, H. R. and Huxsoll, C. C. (1987). Scanning electron microscope/image analyzer determination of dimensional postharvest changes in fruit cells. J. Food Sci. 52(6):1649–1650.
  • Botha, G. E., Oliveira, J. C. and Ahrné, L. (2012). Quality optimisation of combined osmotic dehydration and microwave assisted air drying of pineapple using constant power emission. Food Bioprod. Process. 90:171–179.
  • Brennan, J. G. (1994). Food Dehydration: A Dictionary and Guide. Oxford, Butterworth–Heinemann.
  • Bruin, S. and Luyben, K. A. M., Eds. (1990). Drying of Food Materials: A Review of Recent Developments Advances in Drying. Hemisphere Publishing Corp, Washington, DC.
  • Brown, Z. K., Fryer, P. J., Norton, I. T., Bakalis, S. and Bridson, R. H. (2008). Drying of foods using supercritical carbon dioxide— Investigations with carrot. Innov. Food Sci. Emerg. Technol. 9(3):280–289.
  • Carson, J. K., Lovatt, S. J., Tanner, D. J. and Cleland, A. C. (2005). Thermal conductivity bounds for isotropic porous materials. Int. J. Heat Mass Transf. 48:2150–2158.
  • Cayot, N., Pretot, F., Doublier, J. L., Meunier, J. M. and Guichard, E. (2004). Release of isoamyl acetate from starch pastes of various structures: Thermodynamic and kinetic parameters. J. Agric. Food Chem. 52:5436–5442.
  • Ceaglske, N. H. and Hougen, O. A. (1937). Drying granular solids. Ind. Eng. Chem. 29(7):805–813.
  • Charles, M., Rosselin, V., Beck, L., Sauvageot, F. and Guichard, E. (2000). Flavor release from salad dressings: Sensory and physicochemical approaches in relation with the structure. J. Agric. Food Chem. 48(5):1810–1816.
  • Chassagne-Berces, S., Poirier, C., Devaux, M. F., Fonseca, F., Lahaye, M., Pigorini, G., Girault, C., Marin, M. and Guillon, F. (2009). Changes in texture, cellular structure and cell wall composition in apple tissue as a result of freezing. Food Res. Int. 42:788–797.
  • Chen, L. and Opara, U. L. (2013). Approaches to analysis and modeling texture in fresh and processed foods—A review. J. Food Eng. 119:497–507.
  • Cnossen, A. G. and Siebenmorgen, T. (2000). The glass transition temperature concept in rice drying and tempering: Effect on milling quality. Am. Soc. Agric. Eng. 43(6):1661–1667.
  • Damoderan, S., Ed. (1996). Amino Acids, Peptides and Proteins. Food Chemistry. Marcel Dekker, New York.
  • Datta, A. K. (2007). Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J. Food Eng. 80(1):80–95.
  • Datta, A. K., Sahin, S. S. and Gülüm, O. K. S. (2007). Porous media characterization of breads baked using novel heating modes. J. Food Eng. 79(1):106–116.
  • De Roos, K. B. (2003). Effect of texture and microstructure on flavour retention and release. Int. Dairy J. 13(593–605).
  • Decker, M., Park, D. J. and Yeonhwa, E. A. (2008). Controlling lipid bioavailability through physicochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 49(1):48–67.
  • Delgado, A. E. and Sun, D. W. (2001). Heat and mass transfer models for predicting freezing process—A review. J. Food Eng. 46:277–285.
  • Fanta, S. W., Abera, M. K., Aregawi, W. A., Ho, Q. T., Verboven, P., Carmeliet, J. and Nicolai, B. M. (2014). Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration. J. Food Eng. 124:86–96.
  • Feng, H., Yin, Y. and Tang, J. (2012). Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling. Food Eng. Rev. 4(2):89–106.
  • Fernandes, F. A. N., Gallão, M. I. and Odrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J. Food Eng. 90(2):186–190.
  • Fikiin, K. A. and Fikiin, A. G. (1999). Predictive equations for thermophysical properties and enthalpy during cooling and freezing of food materials. J. Food Eng. 40:1–6.
  • Fornal, J. (1998). The changes of plant materials microstructure during processing. Pol. J. Food Nutr. Sci. 7(3):9–23.
  • Fryer, P. J. A. B. S. (2012). Heat transfer to foods: Ensuring safety and creating microstructure. J. Heat Transf. 134(3):031021–031021.
  • Fu, X. Y., Xue, C. H., Miao, B. C., Li, Z. J. and Zhang, Y. Q. (2007). Effect of processing steps on the physico-chemical properties of dried-seasoned squid. Food Chem. 103(2):287–294.
  • Funebo, T., Ahrne´, L., Kidman, S., Langton, M. and Skjo ldebrand, C. (2000). Microwave heat treatment of apple before air dehydration-effect on physical properties and microstructure. J. Food Eng. 46:173–182.
  • Genskow, L. R. (1998). Considerations in drying consumer products. In: Proceedings of the Fourth International Drying Symposium. M. A. Roques, Mujumdar, A.S.,. Versailles: 39–46.
  • Ghosh, S. and Dimiduk, D. (2011). Computational Methods for Microstructure-Property Relationships. Springer, New York.
  • Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. J. R. Soc. Interf. 9(76):2749–2766.
  • Giri, S. K. and Prasad, S. (2007). Drying kinetics and re-hydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 78:512–521.
  • Gorling, P. (1958). Physical Phenomena during the Drying of Foodstuffs. In Fundamental Aspect of Dehydration of Foodstuffs. MacMillan: New York.
  • Grabowski, S., Marcotte, M., Poiner, M. and Kudra, T. (2002). Drying characteristics of osmotically pre-trteated cranberries-energy and quality aspects. Dry. Technol. 20(10):1989–2004.
  • Gumeta-Chavez, C., Chanona-Perez, J. J., Mendoza-Perez, J. A., Terres-Rojas, E., Garibay-Febles, V. and Gutierrez-Lopez, G. F. (2011). Shrinkage and deformation of Agave atrovirens Karw tissue during convective drying: Influence of structural arrangements. Dry. Technol. 29(6):612–623.
  • Halder, A., Dhall, A. and Datta, A. K. (2011). Modeling transport in porous media with phase change: Applications to food processing. J. Heat Transf. 133(3):031010–13.
  • Hallström, B. (1990). Mass transport of water in foods — A consideration of the engineering aspects. J. Food Eng. 12(1):45–52.
  • Hansmann, C. F. and Joubert, E. (1998). Dehydration of peaches without sulphurdioxide. Dry. Technol. 16(1):101–121.
  • Heath, M. R. and Lucas, P. W. (1987). Mastication: the need for collaborative research. J. Texture Stud. 18(111–123).
  • Heertje, I. (1993). Structure and function of food products: A review. Food Struct. 12:187–194.
  • Henry, P. S. H. (1948). The diffusion of moisture and heat through textiles. Discuss Faraday Soc. 3:243–257.
  • Hernando, I., Munamera, P. and Lluch, M. A. (2000). Microstructural characterization of Burgos cheese using different microscopy techniques. Food Sci. Technol. 6(2):151–157.
  • Huang, L. L., Zhang, M., Wang, L. P., Mujumdar, A. S. and Sun, D. F. (2012). Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT Food Sci. Technol. 47:183–188.
  • Huang, L. L., Zhang, M. M. A. S. and Sun, X. L. (2011). Comparison of four drying methods for re-structured mixed potato with apple chips. J. Food Eng. 103:279–284.
  • Ilker, R. and Szczesniak, A. S. (1990). Structural and chemical bases for texture of plant foodstuffs. J. Texture Stud. 21(1):1–36.
  • Joardder, M. U. H., Kumar, C. and Karim, M. A. (2013a). Better understanding of food material on the basis of water distribution using thermogravimetric analysis. In: International Conference on Mechanical, Industrial and Materials Engineering (ICMIME2013). Rajshahi, Bangladesh.
  • Joardder, M. U. H., Kumar, C. and Karim, M. A. (2013b). Effect of moisture and temperature distribution on dried food microstucture and porosity. In: Proceedings of From Model Foods to Food Models: The DREAM Project International Conference.
  • Joardder, M. U. H., Kumar, C. and Karim, M. A. (2013c). Effect of temperature distribution on predicting quality of microwave dehydrated food. J. Mech. Eng. Sci. 5:562–568.
  • Joardder, M. U. H., Kumar, C., Karim, M. A. and Brown, R. J. (2013d). Determination of effective moisture diffusivity of banana using Thermogravimetric analysis. In: International Conference on Mechanical Engineering. Dhaka, Bangladesh.
  • Joardder, M. U. H., Kumar, C., Karim, M. A. and Brown, R. J. (2013e). Fractal dimension of dried foods: A correlation between microstructure and porosity. In: Food Structures, Digestion and Health International Conference. Melbourne, Australia.
  • Joardder, M. U. H., Kumar, C., Karim, M. A. and Brown, R. J. (2014). Effect of cell charecteristics of plant tissue on porosity and shrinkage during drying. In: International conference on food properties. Kuala Lumpur, Malaysia.
  • Kaláb, M. A.-W. P. and Miller, S. S. (1995). Microscopy and other imaging technique in food structure analysis. Trend Food Sci. Technol. 6(6):177–186.
  • Karathanos, V., Anglea, S. and Karel, M. (1993). Collapse of structure during drying of celery. Dry. Technol. 11(5):1005–1023.
  • Karathanos, V. T., Anglea, S. A. and Karel, M. (1996). Structural collapse of plant materials during freeze-drying. J. Therm. Anal. 47(5):1451–1461.
  • Karel, M. and Lund, D. B. (2003). Physical Principles of Food Preservation. Marcel Dekker, New York.
  • Karim, M. A. and Hawlader, M. N. A. (2005a). Drying characteristics of banana: Theoretical modelling and experimental validation. J. Food Eng. 70(1):35–45.
  • Karim, M. A. and Hawlader, M. N. A. (2005b). Mathematical modelling and experimental investigation of tropical fruits drying. Int. J. Heat Mass Transf. 48(23–24):4914–4925.
  • Keey, R. B. (1970). Drying Principles and Practice. Pergamon Press, Oxford.
  • Kerdpiboon, S., Devahastin, S. and Kerr, W. L. (2007). Comparative fractal characterization of physical changes of different food products during drying. J. Food Eng. 83(4):570–580.
  • Khalloufi, S. and Ratti, C. (2003). Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure. J. Food Sci. 68(3):892–903.
  • Khraisheh, M. A. M., Cooper, T. J. R. and Magee, T. R. A. (1997). Microwave and air drying I. Fundamental considerations and assumptions for the simplified thermal calculations of volumetric power absorption. J. Food Eng. 33:207–219.
  • Khraisheh, M. A. M., McMinn, W. A. M. and Magee, T. R. A. (2004). Quality and structural changes in starchy foods during microwave and convective drying. Food Res. Int. 37(5):497–503.
  • Kidmose, U. and Martens, H. J. (1999). Changes in texture, microstructure and nutritional quality of carrot slices during blanching and freezing. J. Sci. Food Agric. 79(12):1747–1753.
  • Kravchuk, O., Torley, P. and Stokes, J. R. (2012). Food Texture is Only Partly Rheology. Wiley-Blackwell, Oxford, UK.
  • Krokida, M. K., Karathanos, V. T. and Maroulis, Z. B. (1998a). Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J. Food Eng. 35(4):369–380.
  • Krokida, M. K., Tsami, E. and Maroulis, Z. B. (1998b). Kinetics of color changes during drying of some fruits and vegetables. Dry. Technol. 16(3–5):667–685.
  • Krokida, M. K., Zogzas, N. P. and Maroulis, Z. B. (1997). Modelling shrinkage and porosity during vacuum dehydration. Int. J. Food Sci. Technol. 32(6):445–458.
  • Kumar, C., Karim, M. A. and Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. J. Food Eng. 121(0):48–57.
  • Lafarge, C., Bard, M. H., Breuvart, A., Doublier, J. L. and Cayot, N. (2008). Influence of the structure of cornstarch dispersions on kinetics of aroma release. 73(2):S104–S109.
  • Langton, M., Åström, A. H. and Anne-Marie,   (1997). Influence of the microstructure on the sensory quality of whey protein gels. Food Hydrocoll. 11(2):217–230.
  • Laurienzo, P., Cammarota, G., Di Stasio, M., Gentile, G., Laurino, C. and Volpe, M. G. (2013). Microstructure and olfactory quality of apples de-hydrated by innovative technologies. J. Food Eng. 116(3):689–694.
  • Lewicki, P. P. and Duszczyk, E. (1998). Color changes of selected vegetables during convective air drying. Int. J. Food Prop. 1(3):263–273.
  • Lewicki, P. P. and Pawlak, G. (2003a). Effect of drying on microstructure of plant tissue. Dry. Technol. 21(4).
  • Lewicki, P. P. and Pawlak, G. (2003b). Effect of drying on moisture of plant tissue. Dry. Technol. 21(4):657–683.
  • Lewis, W. K. (1921). The rate of drying of solid materials. J. Ind. Eng. Chem. 13(5):427–432.
  • Lian, Y. (2001). Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48(1):27–42.
  • Lin, T. M., Durance, D., Timothy, S. and Christine, H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res. Int. 31(2):111–117.
  • Lozano, J. E., Rotstein, E. and Urbicain, M. J. (1983). Shrinkage, porosity and bulk density of foodstuffs at changing moisture contents. J. Food Sci. 51:113–120.
  • Lucas, P. W., Prinz, J. F., Agrawal, K. R. and Bruce, I. C. (2002). Food physics and oral physiology. Food Qual. Prefer. 13:203–213.
  • Man, D. (2004). Shelf Life. Blackwell Science, London.
  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot- air and microwave drying. J. Food Eng. 48:177–182.
  • Mayor, L. and Sereno, A. M. (2004). Modelling shrinkage during convective drying of food materials: a review. J. Food Eng. 61(3):373–386.
  • McKenna, B. M., Lyng, J., Brunton, N. and Shirsat, N. (2006). Advances in radio frequency and ohmic heating of meats. J. Food Eng. 77:215–229.
  • Mcminn, W. A. M. and Magee, T. R. A. (1976). Physical characteristics of dehydrated potatoes. Part II. J. Food Eng. 33:49–55.
  • Mezzenga, R., Schurtenberger, P., Burbidge, A. and Michel, M. (2005). Understanding foods as soft materials. Nat. Mater. 4(10):729–740.
  • Mounir, S., Besombes, C., Al-Bitar, N. and Allaf, K. (2011). Study of instant controlled pressure drop DIC treatment in manufacturing snack and expanded granule powder of apple and onion. Dry. Technol. 29(3):331–341.
  • Nejad, M. K., Tabil, L. G., Mortazavi, A. and Kordi, A. S. (2003). Effect of drying methods on quality of Pistachio nuts. Dry. Technol. 21(5):821–838.
  • Nieto, A. B., Salvatori, D. M., Castro, M. A. and Alzamora, S. M. (2004). Structural changes in apple tissue during glucose and sucrose osmotic dehydration: Shrinkage, porosity, density and microscopic features. J. Food Eng. 61(2):269–278.
  • Norton, I., Moore, S. and Fryer, P. (2007). Understanding food structuring and breakdown: Engineering approaches to obesity. Obes. Rev. 8:83–88.
  • Oikonomopoulou, V. P. and Krokida, M. K. (2012). Structural properties of dried potatoes, mushrooms, and strawberries as a function of freeze-drying pressure. Dry. Technol. 30(4):351–361.
  • Oikonomopoulou, V. P. and Krokida, M. K. (2013). Novel aspects of formation of food structure during drying. Dry. Technol. 31(9):990–1007.
  • Panyawong, S. and Devahastin, S. (2007). Determination of deformation of a food product undergoing different drying methods and conditions via evolution of a shape factor. J. Food Eng. 78(1):151–161.
  • Parada, J. and Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 72(2):R21–R32.
  • Pei, F. Y., Shi, W. J., Sun, Y., Mariga, Y., Zhao, A. M., Fang, L., Ma, Y., An, N., Hu, X. X. and Qiu-hui,   (2014). Comparison of freeze-drying with three different combinations of drying methods and their influence on colour, texture, microstructure and nutrient retention of button mushroom (agaricus bisporus) slices. Food Bioproc. Technol. 7:1–9.
  • Potter, N. N. and Hotchkiss, J. H. (1998). Food Dehydration and Concentration. Aspen Publishers, Maryland.
  • Prothon, F., Ahrné, L. and Sjöholm, I. (2003). Mechanisms and prevention of plant tissue collapse during dehydration: A critical review. Crit. Rev. Food Sci. Nutr. 43(4):447–479.
  • Puig, A., Perez-Munuera, I., Carcel, J. A., Hernando, I. and Garcia-Perez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food Bioprod. Process. 90(4):624–632.
  • Rahman, M. S. (2001). Towards prediction of porosity in food foods during drying: A brief review. Dry. Technol. 19(1):3–15.
  • Rahman, M. S. (2008). Dehydration and microstructure. In: Advances in Food Dehydration. CRC Press, Boca Raton, Florida, USA, pp. 97–122.
  • Rajchert, W. D. and Rzace, M. (2009). Effect of drying method on the microstructure and physical properties of dried apples. Dry. Technol. 27:903–909.
  • Ramana, S. V., Wright, C. J. and Taylor, A. J. (1992). Measurement of firmness in carrot tissue during cooking using dynamic, static and sensory tests. J. Sci. Food Agric. 60(3):369–375.
  • Ramos, I. N., Silva, C. L. M., Sereno, A. M. and Aguilera, J. M. (2004). Quantification of microstructural changes during first stage air drying of grape tissue. J. Food Eng. 62(2):159–164.
  • Redgwell, R. J., MacRae, E., Hallett, I., Fischer, M., Perry, J. and Harker, R. (1997). In vivo and in vitro swelling of cell walls during fruit ripening. Planta. 203:162–173.
  • Reeve, R. M. (1970). Relationships of histological structure to texture of fresh and processed fruits and vegetables. J. Texture Stud. 1(3):247–284.
  • Reyes, A., Alvarez, P. I. and Marquard, F. H. (2002). Drying of carrots in fluidized bed. I. Effect of drying conditions and modelling. Dry. Technol. 20(7):1463–1483.
  • Riva, M., Campolongo, S., Leva, A. A., Maestrelli, A. and Torreggiani, D. (2005). Structure-property relationships in osmo-air-dehydrated apricot cubes. Food Res. Int. 38(5):533–542.
  • Rojas, A. M., Delbon, M., Marangoni, A. G. and Gerschenson, L. N. (2002). Contribution of cellular structure to the large and small deformation rheological behavior of kiwifruit. J. Food Sci. 67(6):2143–2148.
  • Romano, G., Argyropoulos, D., Nagle, M., Khan, M. T. and Müller, J. (2012). Combination of digital images and laser light to predict moisture content and color of bell pepper simultaneously during drying. J. Food Eng. 109(3):438–448.
  • Roos, Y. H. (1995). Phase Transition in Foods. Academic Press, San Diego, CA, USA.
  • Roos, Y. H., Ed. (2012). Materials science of freezing and frozen foods. In: Food Materials Science and Engineering. Wiley-Blackwell, Chicester.
  • Sabarez, H. T., Gallego-Juarez, J. A. and Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Dry. Technol. 30(9):989–997.
  • Santos, P. H. S. and Silva, M. A. (2008). Retention of vitamin C in drying processes of fruits and vegetables—A review. Dry. Technol. 26(12):1421–1437.
  • Saravacos, G. D., Ed. (2005). Mass transfer properties of foods. In: Engineering Properties of Foods. Marcel Dekker, New York.
  • Sensoy, I. (2014). A review on the relationship between food structure, processing, and bioavailability. Crit. Rev. Food Sci. Nutr. 54(7):901–910.
  • Seuvre, A. M., Philippe, E., Rochard, S. and Voilley, A. (2006). Retention of aroma compounds in food matrices of similar rheological behavior and different compositions. J. Food Chem. 96:104–114.
  • Sharma, R., Ed. (2012). Food structure and delivery of nutrients. In: Food Materials Science and Engineering. Wiley-Blackwell, Chicester.
  • Sherwood, T. K. (1929a). The drying of solids—I. Ind. Eng. Chem. 21(1):12–16.
  • Sherwood, T. K. (1929b). The drying of solids—II. Ind. Eng. Chem. 21(10):976–980.
  • Sjöholm, I. and Gekas, V. (1995). Apple shrinkage upon drying. J. Food Eng. 25(1):123–130.
  • Slade, L. and Levine, H. (1991). A food polymer science approach to structure-property relationships in aqueous food systems: Non-equilibrium behavior of carbohydrate-water systems. Adv. Exp. Med. Biol. 302:29–101.
  • Somjai, T., Achariyaviriya, S., Achariyaviriya, A. and Namsanguan, K. (2009). Strategy for longan drying in two-stage superheated steam and hot air. J. Food Eng. 95(2):313–321.
  • Sosa-Morales, M. E., Valerio-Junco, L., López-Malo, A. and García, H. S. (2010). Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT Food Sci. Technol. 43(8):1169–1179.
  • Srikiatden, J. and Roberts, J. S. (2007). Moisture transfer in solid food materials: A review of mechanisms, models, and measurements. Int. J. Food Prop. 10(4):739–777.
  • Stevenson, R. J., Chen, X. D. and Mills, O. E. (1996). Modern analyses and binding studies of flavour volatiles with particular reference to dairy protein products. Food Res. Int. 29(3–4):265–290.
  • Stokes, J. R., Boehm, M. W. and Baier, S. K. (2013). Oral processing, texture and mouthfeel: From rheology to tribology and beyond. Curr. Opin. Colloid Interface Sci. 18(4):349–359.
  • Sweat, V. E., Ed. (1995). Thermal properties of foods. In: Engineering Properties of Foods. Marcel Dekker, New York.
  • Therdthai, N. and Visalrakkij, T. (2012). Effect of osmotic dehydration on dielectric properties, microwave vacuum drying kinetics and quality of mangosteen. Int. J. Food Sci. Technol 47(12):2606–2612.
  • Therdthai, N. and Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J. Food Eng. 91(3):482–489.
  • Tolstoguzov, V. B. (2006). Phase Behaviour in Mixed Polysaccharide Systems. Marcel Dekker, New York.
  • Troncoso, E. and Pedreschi, F. (2007). Modeling of textural changes during drying of potato slices. J. Food Eng. 82(4):577–584.
  • Uddin, M. S., Hawlader, M. N. A. and Hui, X. (2004). A comparative study on heat pump, microwave and freeze drying of fresh fruits. In: Proceedings of the International Drying Symposium 14th -CD-rom Edition, pp. 2035–2042.
  • Van Arsdel, W. B. (1963). Food Dehydration. The Avi Publishing, Connecticut.
  • van der Sman, R. G. M. (2008). Prediction of enthalpy and thermal conductivity of frozen meat and fish products from composition data. J. Food Eng. 84(3):400–412.
  • Varela, P., Salvador, A. and Fiszman, S. (2007). Changes in apple tissue with storage time: Rheological, textural and microstructural analyses. J. Food Eng. 78(2):622–629.
  • Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., Lemus-Mondaca, R. and Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem. 132(1):51–59.
  • Venkatesh, M. S. and Raghavan, G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosyst. Eng. 88(1):1–18.
  • Vincent, J. F. V. (2008). The Composite Structure of Biological Tissue Used for Food. Springer, New York, USA.
  • Voda, A., Homan, N., Witek, M., Duijster, A., van Dalen, G., van der Sman, R., Nijsse, J., van Vliet, L., Henk, V. A. and van Duynhoven, J. (2012). The impact of freeze-drying on microstructure and rehydration properties of carrot. Food Res. Int. 49:687–693.
  • Waananen, K. M., Litchfield, J. B. and Okos, M. R. (1993). Classification of drying models for porous solids. Dry. Technol. 11(1):1–40.
  • Wang, Y., Zhang, M., Mujumdar, A. S. and Mothibe, K. J. (2012). Microwave-assisted pulse-spouted bed freeze-drying of stem lettuce slices—Effect on product quality. Food Bioproc. Technol. 6:1–14.
  • Wilkinson, C., Dijksterhuis, G. B. and Minekus, M. (2000). From food structure to texture. Trends Food Sci. Technol. 11(12):442–450.
  • Wilson, C. E. and Brown, W. E. (1997). Influence of food matrix structure and oral breakdown during mastication on temporal perception of flavor. J. Sens. Stud. 12(1):69–86.
  • Witrowa-Rajchert, D. and Rzaca, M. (2009). Effect of drying method on the microstructure and physical properties of dried apples. Dry. Technol. 27(7):903–909.
  • Wyszecki, G. and Stiles, W. S. (2000). Colour Science – Concepts and Methods, Quantitative Data and Formulae. Wiley-Interscience, New York.
  • Xiong, X., Narsimhan, G. and Okos, M. R. (1992). Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous food. J. Food Eng. 15(3):187–208.
  • Yang, C. S. T. and Atallah, W. A. (1985). Effect of four drying methods on the quality of intermediate moisture lowbush blueberries. J. Food Sci. Technol. 50:1233–1237.
  • Yang, J., Di, Q., Jiang, Q. and Zhao, J. (2010). Application of pore size analyzers in study of Chinese angelica slices drying. Dry. Technol. 28(2):214–221.
  • Zogzas, N. P., Maroulis, Z. B. and Marinos-Kouris, D. (1994). Densities, shrinkage and porosity of some vegetables during air drying. Dry. Technol. 12(7):1653–1666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.