4,415
Views
134
CrossRef citations to date
0
Altmetric
Articles

Wine microbiome: A dynamic world of microbial interactions

, , , , , & show all

References

  • Aitchison, J. (2003). The Statistical Analysis of Compositional Data. The Blackburn Press, Caldwell, NJ.
  • Albergaria, H., Francisco, D., Gori, K., Arneborg, N. and Gírio, F. (2010). Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains. Appl. Microbiol. Biotechnol. 86:965–972.
  • Alexandre, H., Costello, P. J., Remize, F., Guzzo, J. and Guilloux-Benatier, M. (2004). Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: Current knowledge and perspectives. Int. J. Food Microbiol. 93:141–154.
  • Araújo, W. L., Maccheroni, W., Aguilar-Vildoso, C. I., Barroso, P. A., Saridakis, H. O. and Azevedo, J. L. (2001). Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can. J. Microbiol. 47:229–236.
  • Aredes Fernández, P. A., Farías, M. E. and de Nadra, M. C. M. (2010). Interaction between Oenococcus oeni and Lactobacillus hilgardii isolated from wine. Modification of available nitrogen and biogenic amine production. Biotechnol. Lett. 32:1095–1102.
  • Arnink, K. and Henick-Kling, T. (2005). Influence of Saccharomyces cerevisiae and Oenococcus oeni strains on successful malolactic conversion in wine. Am. J. Enol. Vitic. 56:228–237.
  • Barata, A., Malfeito-Ferreira, M. and Loureiro, V. (2012a). The microbial ecology of wine grape berries. Int. J. Food. Microbiol. 153:243–259.
  • Barata, A., Malfeito-Ferreira, M. and Loureiro, V. (2012b). Changes in sour rotten grape berry microbiota during ripening and wine fermentation. Int. J. Food Microbiol. 154:152–161.
  • Barata, A., Seborro, F., Belloch, C., Malfeito-Ferreira, M. and Loureiro, V. (2008). Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. J. Appl. Microbiol. 104:1182–1191.
  • Barbe, J. C., De Revel, G., Joyeux, A., Bertrand, A. and Lonvaud-Funel, A. (2001). Role of botrytized grape micro-organisms in SO2 binding phenomena. J. Appl. Microbiol. 90:34–42.
  • Bartowsky, E. J. and Henschke, P. A. (2008). Acetic acid bacteria spoilage of bottled red wine—a review. Int. J. Food Microbiol. 125:60–70.
  • Bauer, R. and Dicks, L. M. T. (2004). Control of malolactic fermentation in wine. A review. S. Afr. J. Enol. Viticulture. 25:74–88.
  • Bauer, R., Nel, H. A. and Dicks, L. M. T. (2003). Pediocin PD-1 as a Method to Control Growth of Oenococcus oeni in Wine. Am J Enol Vitic. 54:86–91.
  • Bayrock, D. P. and Ingledew, W. M. (2004). Inhibition of yeast by lactic acid bacteria in continuous culture: Nutrient depletion and/or acid toxicity? J. Ind. Microbiol. Biotechnol. 31:362–368.
  • Beltran, G., Torija, M. J., Novo, M., Ferrer, N., Poblet, M., Guillamon, J. M., Rozes, N. and Mas, A. (2002). Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst. Appl. Microbiol. 25:287–293.
  • Bevan, E. A. and Makover, M. (1963). The physiological basis of killer character in yeast. In: Genetics Today: Xth International Congress for Genetics, pp. 53–58. Geets, S. J., Ed., Pergamon Press, Oxford.
  • Bisson, L. F. (1999). Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50:107–119.
  • Bisson, L. F. and Joseph, C. M. L. (2009). Fungi of grapes. In: Biology of Microorganisms on Grapes, in Must and in Wine, pp. 47–60. König, H., Unden, G. and Fröhlich, J., Eds., Springer-Verlag, Berlin, Heidelberg.
  • Bleve, G., Grieco, F., Cozzi, G., Logrieco, A. and Visconti, A. (2006). Isolation of epiphytic yeasts with potential for biocontrol of Aspergillus carbonarius and A. niger on grape. Int. J. Food Microbiol. 108:204–209.
  • Boido, E., Lloret, A., Medina, K., Carrau, F. and Dellacassa, E. (2002). Effect of beta-glycosidase activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. J. Agric. Food Chem. 50:2344–2349.
  • Bokulich, N. A., Ohta, M., Richardson, P. M. and Mills, D. A. (2013). Monitoring seasonal changes in winery-resident microbiota. PLoS ONE. 8:e66437.
  • Bon, E., Delaherche, A., Bilhère, E., De Daruvar, A., Lonvaud-Funel, A. and Le Marrec, C. (2009). Oenococcus oeni genome plasticity is associated with fitness. Appl. Environ. Microbiol. 75:2079–2090.
  • Bonnin-Jusserand, M., Grandvalet, C., Rieu, A., Weidmann, S. and Alexandre, H. (2012). Tyrosine-containing peptides are precursors of tyramine produced by Lactobacillus plantarum strain IR BL0076 isolated from wine. BMC Microbiol. 12:199.
  • Borodina, I. and Nielsen, J. (2005). From genomes to in silico cells via metabolic networks. Curr. Opin. Biotechnol. 16:350–355.
  • Branco, P., Francisco, D., Chambon, C., Hébraud, M., Arneborg, N., Almeida, M. G., Caldeira, J. and Albergaria, H. (2014). Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl. Microbiol. Biotechnol. 98:843–853.
  • Britz, T. J. and Tracey, R. P. (1990). The combination effect of pH, SO2, ethanol and temperature on the growth of Leuconostoc oenos. J. Appl. Microbiol. 68:23–31.
  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3:238–250.
  • Byczkowski, J. Z. and Gessner, T. (1988). Biological role of superoxide ion-radical. Int. J. Biochem. 20:569–580.
  • Cadez, N., Zupan, J. and Raspor, P. (2010). The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10:619–630.
  • Capozzi, V., Ladero, V., Beneduce, L., Fernández, M., Alvarez, M. A., Benoit, B., Laurent, B., Grieco, F. and Spano, G. (2011). Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol. 28:434–439.
  • Capucho, I. and Romão, M. V. S. (1994). Effect of ethanol and fatty acids on malolactic activity of Leuconostoc oenos. Appl. Microbiol. Biotechnol. 42:391–395.
  • Caridi, A. and Ramondino, D. (1999). Biodiversita fenotipica in ceppi di Hanseniaspora di origine enologica. Enotecnico. 45:71–74.
  • Carreté, R., Vidal, M. T., Bordons, A. and Constantí, M. (2002). Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS Microbiol. Lett. 211:155–159.
  • Castellari, L., Zambonelli, C., Passarelli, P., Tini, V. and Coloretti, F. (2002). Study of the main characteristics of oenological yeast strains from the CATEV-DIPROVAL collection. Vignevini. 29:91–95.
  • Castoria, R., De Curtis, F., Lima, G., Caputo, L., Pacifico, S. and De Cicco, V. (2001). Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: Study on its modes of action. Postharvest. Biol. Technol. 22:7–17.
  • Cataldi, T. R., Bianco, G., Fonseca, J. and Schmitt-Kopplin, P. (2013). Perceiving the chemical language of Gram-negative bacteria: Listening by high-resolution mass spectrometry. Analyt. Bioanalyt. Chem. 405:493–507.
  • Cavin, J. (1988). Etude de la flore lactique des vins et de la fermentation malolactique: Aspects physiologiques et technologiques. Thèse de Doctorat, Université de Bourgogne, Dijon, France.
  • Chaffron, S., Rehrauer, H., Pernthaler, J. and von Mering, C. (2010). A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20:947–959.
  • Charles, T. (2010). The potential for investigation of plant-microbe interactions using metagenomics methods. In: Metagenomics: Theory, Methods and Applications, pp. 107–118. Diana, M., Ed., Caister Academic Press, Norfolk.
  • Charoenchai, C., Fleet, G. H., Henschke, P. A. and Todd, B. E. N. T. (1997). Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Austr. J. Grape Wine Res. 3:2–8.
  • Cheraiti, N., Guezenec, S. and Salmon, J. (2005). Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions. Appl. Environ. Microbiol. 71:255–260.
  • Choudhary, S. and Schmidt-Dannert, C. (2010). Applications of quorum sensing in biotechnology. Appl. Microbiol. Biotechnol. 86:1267–1279.
  • Chu-Ky, S., Tourdot-Marechal, R., Marechal, P. and Guzzo, J. (2005). Combined cold, acid, ethanol shocks in Oenococcus oeni: Effects on membrane fluidity and cell viability. Biochim. Biophys. Acta. 1717:118–124.
  • Ciani, M., Comitini, F., Mannazzu, I. and Domizio, P. (2010). Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10:123–133.
  • Ciani, M. and Fatichenti, F. (2001). Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl. Environ. Microbiol. 67:3058–3063.
  • Ciani, M. and Ferraro, L. (1998). Combined use of immobilized Candida stellata cells and Saccharomyces cerevisiae to improve the quality of wines. J. Appl. Microbiol. 85:247–254.
  • Ciani, M., Picciotti, G. and Ferraro, L. (1994). Evaluation of the enological aptitude of some selected wine yeasts. Annali della Facolta di Agraria Universita degli Studi di Perugia. 48:49–58.
  • Cocolin, L., Bisson, L. F. and Mills, D. A. (2000). Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189:81–87.
  • Combina, M., Elía, A., Mercado, L., Catania, C., Ganga, A. and Martinez, C. (2005). Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int. J. Food Microbiol. 99:237–243.
  • Comitini, F. and Ciani, M. (2008). Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol. 58:489–493.
  • Comitini, F., De Ingeniis, J., Ingeniis De, J., Pepe, L., Mannazzu, I. and Ciani, M. (2004). Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 238:235–240.
  • Comitini, F., Ferretti, R., Clementi, F., Mannazzu, I. and Ciani, M. (2005). Interactions between Saccharomyces cerevisiae and malolactic bacteria: Preliminary characterization of a yeast proteinaceous compound(s) active against Oenococcus oeni. J. Appl. Microbiol. 99:105–111.
  • Constanti, M., Poblet, M., Arola, L., Mas, A. and Guillamon, J. M. (1997). Analysis of yeast populations during alcoholic fermentation in a newly established winery. Am. J. Enol. Viticult. 48:339–344.
  • Cordero-Bueso, G., Arroyo, T., Serrano, A., Tello, J., Aporta, I., Vélez, M. D. and Valero, E. (2011). Influence of the farming system and vine variety on yeast communities associated with grape berries. Int. J. Food Microbiol. 145:132–139.
  • Cubaiu, L., Abbas, H., Dobson, A. D. W., Budroni, M. and Migheli, Q. (2012). A Saccharomyces cerevisiae wine strain inhibits growth and decreases Ochratoxin A biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus. Toxins (Basel). 4:1468–1481.
  • Da Silveira, M. G., Golovina, E. A., Hoekstra, F. A., Rombouts, F. M. and Abee, T. (2003). Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl. Environ. Microbiol. 69:5826–5832.
  • Davey, H. M. and Kell, D. B. (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev. 60:641–696.
  • David, V., Terrat, S., Herzine, K., Claisse, O., Rousseaux, S., Tourdot-Maréchal, R., Masneuf-Pomarede, I., Ranjard, L. and Alexandre, H. (2014). High-throughput sequencing of amplicons for monitoring yeast biodiversity in must and during alcoholic fermentation. J. Ind. Microbiol. Biotechnol. 41:811–821.
  • de Azevedo, L. C., Reis, M. M., Motta, L. F., da Rocha, G. O., Silva, L. A. and de Andrade, J. B. (2007). Evaluation of the formation and stability of hydroxyalkylsulfonic acids in wines. J. Agric Food Chem. 55:8670–8680.
  • De La Torre, M. J., Millan, M. C., Perez-Juan, P., Morales, J. and Ortega, J. M. (1999). Indigenous yeasts associated with two Vitis vinifera grape varieties cultured in southern Spain. Microbios. 100:27–40.
  • Dick, K. J., Molan, P. C. and Eschenbruch, R. (1992). The isolation from Saccharomyces cerevisiae of two antibacterial cationic proteins that inhibit malolactic bacteria. Vitis. 31:105–116.
  • Díez, L., Rojo-Bezares, B., Zarazaga, M., Rodríguez, J. M., Torres, C. and Ruiz-Larrea, F. (2012). Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiol. 31:167–172.
  • Diguta, C. F., Rousseaux, S., Weidmann, S., Bretin, N., Vincent, B., Guilloux-Benatier, M. and Alexandre, H. (2010). Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol. Lett. 313:81–87.
  • Dizy, M. and Bisson, L. F. (2000). Proteolytic activity of yeast strains during grape juice fermentation. Am. J. Enol. Vitic. 51:155–167.
  • Doaré-Lebrun, E., El Arbi, A., Charlet, M., Guérin, L., Pernelle, J. J., Ogier, J. C. and Bouix, M. (2006). Analysis of fungal diversity of grapes by application of temporal temperature gradient gel electrophoresis e potentialities and limit of the method. J. Appl. Microbiol. 101:1340–1350.
  • Duan, W., Roddick, F. A., Higgins, V. J. and Rogers, P. J. (2004). A parallel analysis of H2S and SO2 formation by brewing yeast in response to sulfur-containing amino acids and ammonium ions. J. Am. Soc. Brewing Chem. 62:35–41.
  • Dündar, H., Celikbicak, Ö., Salih, B., Bozoglu, T. F. (2014). Large-scale purification of a bacteriocin produced by Leuconostoc mesenteroides subsp. cremoris using diatomite calcium silicate. Turk. J. Biol. 38:611–618.
  • Dunham, M. J. (2007). Synthetic ecology: A model system for cooperation. Proc. Natl. Acad. Sci. USA. 104:1741–1742.
  • Edwards, C. G., Reynolds, A. G., Rodriguez, A. V., Semon, M. J. and Mills, J. M. (1999). Implication of acetic acid in the induction of slow/stuck grape juice fermentations and inhibition of yeast by lactobacillus sp. Am. J. Enol. Vitic. 50:204–210.
  • Eiler, A., Heinrich, F. and Bertilsson, S. (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6:330–342.
  • Etschmann, M. M. W., Bluemke, W., Sell, D. and Schrader, J. (2002). Biotechnological production of 2-phenylethanol. Appl. Microbiol. Biotechnol. 59:1–8.
  • Faith, J. J., McNulty, N. P., Rey, F. E. and Gordon, J. I. (2011). Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science. 333:101–104.
  • Farías, M. E. and Manca de Nadra, M. C. (2000). Purification and partial characterization of Oenococcus oeni exoprotease. FEMS Microbiol. Lett. 185:263–266.
  • Farris, G. A., Mannazzu, I. and Budroni, M. (1991). Identification of killer factor in the yeast genus Metschnikowia. Biotechnol. Lett. 13:297–298.
  • Feist, A. M. and Palsson, B. Ø. (2008). The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26:659–667.
  • Feuillat, M., Bidan, P. and Rosier, Y. (1977). Croissance de bactéries lactiques à partir des principaux constituants azotés du vin. Ann. Technol. Agric. 26:435–447.
  • Fermaud, M., Gravot, E., Blancard, D., Jailloux, F. and Stockel, J. (2000). Association of Drosophilae with microorganisms in Bordeaux vineyards affected by sour rot. Integrat. Control Viticulture IOBC/WPRS Bulletin. 23:55–58.
  • Fernández, P. A. A. and Nadra, M. C. M. D. (2006). Growth response and modifications of organic nitrogen compounds in pure and mixed cultures of lactic acid bacteria from wine. Curr. Microbiol. 52:86–91.
  • Fernández-González, M., Di Stefano, R. and Briones, A. (2003). Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiol. 20:35–41.
  • Fleet, G. H. (1990). Growth of yeast during wine fermentation. J. Wine Res. 1:211–223.
  • Fleet, G. H. (1991). Cell walls. In: The Yeasts, pp. 199–277. Rose, A. H., Harrison, J. S., Eds., Academic Press, New York.
  • Fleet, G. H. (2003). Yeast interactions and wine flavour. Int. J. Food Microbiol. 86:11–22.
  • Fleet, G. H., Lafon-Lafourcade, S. and Ribéreau-Gayon, P. (1984). Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. App. Environ. Microbiol. 48:1034–1038.
  • Fleet, G. H., Prakitchaiwattana, C., Beh, A. and Heard, G. (2002). The yeast ecology of wine grapes. In: Biodiversity and Biotechnology of Wine Yeasts, pp. 1–17. Ciani, M., Ed., Research Signpost, Kerala.
  • Förster, J., Famili, I., Fu, P., Palsson, B. Ø. and Nielsen, J. (2003). Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13:244–253.
  • Francesca, N., Chiurazzi, M., Romano, R., Aponte, M., Settanni, L. and Moschetti, G. (2010). Indigenous yeast communities in the environment of “Rovello bianco” grape variety and their use in commercial white wine fermentation. World J. Microbiol. Biotechnol. 26:337–351.
  • Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M. and Sarniguet, A. (2011). Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 75:583–609.
  • Friedman, J. and Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8:e1002687.
  • G-Alegría, E., López, I., Ruiz, J. I., Sáenz, J., Fernández, E., Zarazaga, M., Dizy, M., Torres, C. and Ruiz-Larrea, F. (2004). High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 230:53–61.
  • Galeote, V., Bigey, F., Beyne, E., Novo, M., Legras, J., Casaregola, S. and Dequin, S. (2011). Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation. PLoS ONE. 6:e17872.
  • Galeote, V., Novo, M., Salema-Oom, M., Brion, C., Valério, E., Gonçalves, P. and Dequin, S. (2010). FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiol. (Reading, Engl ). 156:3754–3761.
  • Garcia, D. E., Baidoo, E. E., Benke, P. I., Pingitore, F., Tang, Y. J., Villa, S. and Keasling, J. D. (2008). Separation and mass spectrometry in microbial metabolomics. Curr. Opin. Microbiol. 11:233–239.
  • Gaur, D. and Wilkinson, S. G. (1996). Structure of the O-specific polysaccharide from Burkholderia vietnamiensis strain LMG 6998. Carbohydr. Res. 295:179–184.
  • Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarella, S. and Marra, E. (2005). Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene. 354:93–98.
  • Giannattasio, S., Guaragnella, N., Zdralević, M. and Marra, E. (2013). Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol. 4:33.
  • Govender, P., Kroppenstedt, S. and Bauer, F. F. (2011). Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression. FEMS Microbiol. Lett. 317:117–126.
  • Grimaldi, A., Bartowsky, E. and Jiranek, V. (2005). A survey of glycosidase activities of commercial wine strains of Oenococcus oeni. Int. J. Food Microbiol. 105:233–244.
  • Guerzoni, E. and Marchetti, R. (1987). Analysis of yeast flora associated with grape sour rot and of the chemical disease markers. Appl. Environ. Microbiol. 53:571–576.
  • Guilloux-Benatier, M. and Chassagne, D. (2003). Comparison of components released by fermented or active dried yeasts after aging on lees in a model wine. J. Agric. Food Chem. 51:746–751.
  • Guilloux-Benatier, M., Chassagne, D., Alexandre, H., Charpentier, C. and Feuillat, M. (2001). Influence of yeast autolysis after alcoholic fermentation on the development of Brettanomyces/Dekkera in wine. J. Int. Sci. Vigne Vin. 35:157–164.
  • Guilloux-Benatier, M. and Feuillat, M. (1991). Utilisation d'adjuvants d'origine levurienne pour améliorer l'ensemencement des vins en bactéries lactiques sélectionnées. Revue française d'œnologie. 132:51–55.
  • Guilloux-Benatier, M., Guerreau, J. and Feuillat, M. (1995). Influence of initial colloid content on yeast macromolecule production and on the metabolism of wine microorganisms. Am. J. Enol. Vitic. 46:486–492.
  • Guilloux-Benatier, M., Pageault, O., Man, A. and Feuillat, M. (2000). Lysis of yeast cells by Oenococcus oeni enzymes. J. Ind. Microbiol. Biotech. 25:193–197.
  • Guilloux-Benatier, M., Remize, F., Gal, L., Guzzo, J. and Alexandre, H. (2006). Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiol. Lett. 263:183–188.
  • Guilloux-Benatier, M., Son, H. S., Bouhier, S. and Feuillat, M. (1993). Activités enzymatiques: Glycosidases et peptidase chez Leuconostoc oenos au cours de la croissance bactérienne. Influence des macromolécules de levures [Osidasic and peptidasic activities in leuconostoc oenos during bacterial growth. Influence of macromolecules of yeasts]. Vitis. 32:51–57.
  • Gutiérrez, A. R., Epifanio, S., Garijo, P., López, R. and Santamaría, P. (2001). Killer yeasts: Incidence in the ecology of spontaneous fermentation. Am. J. Enol. Vitic. 52:352–356.
  • Halil, D., Ömür, C., Bekir, S. and Tahsin Faruk, B. (2014). Large-scale purification of a bacteriocin produced by Leuconostoc mesenteroides subsp. cremoris using diatomite calcium silicate. Turk. J. Biol. 38:1312–1320.
  • Hanly, T. J. and Henson, M. A. (2013). Dynamic metabolic modeling of a microaerobic yeast co-culture: Predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol. Biofuels. 6:44.
  • Heard, G. M. and Fleet, G. H. (1985). Growth of Natural Yeast Flora during the Fermentation of Inoculated Wines. Appl. Environ. Microbiol. 50:727–728.
  • Heard, G. M. and Fleet, G. H. (1988). The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. J. Appl. Microbiol. 65:23–28.
  • Henick-Kling, T. (1993). Malolactic fermentation. In: Wine Microbiology and Biotechnology, pp. 289–326. Fleet, G. H., Ed., Harwood Academic Publishers, Chur, Switzerland.
  • Henick-Kling, T. and Park, Y. H. (1994). Considerations for the use of yeast and bacterial starter cultures: SO2 and timing of inoculation. Am. J. Enol. Vitic. 45:464–469.
  • Holm Hansen, E., Nissen, P., Sommer, P., Nielsen, J. C. and Arneborg, N. (2001). The effect of oxygen on the survival of non-Saccharomyces yeasts during mixed culture fermentations of grape juice with Saccharomyces cerevisiae. J. Appl. Microbiol. 91:541–547.
  • Hugenholtz, P. (2002). Exploring prokaryotic diversity in the genomic era. Genome Biol. 3:REVIEWS0003.
  • Ivey, M., Massel, M. and Phister, T. G. (2013). Microbial interactions in food fermentations. Ann. Rev. Food Sci. Technol. 4:141–162.
  • Izquierdo Cañas, P. M., Pérez-Martín, F., García Romero, E., Seseña Prieto, S. and Palop Herreros, María de los Llanos (2012). Influence of inoculation time of an autochthonous selected malolactic bacterium on volatile and sensory profile of Tempranillo and Merlot wines. Int. J. Food Microbiol. 156:245–254.
  • Jansson, J., Willing, B., Lucio, M., Fekete, A., Dicksved, J., Halfvarson, J., Tysk, C. and Schmitt-Kopplin, P. (2009). Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS ONE. 4:e6386.
  • Jaomanjaka, F., Ballestra, P., Dols-lafargue, M. and Le Marrec, C. (2013). Expanding the diversity of oenococcal bacteriophages: Insights into a novel group based on the integrase sequence. Int. J. Food Microbiol. 166:331–340.
  • Jolly, N. P. (2003). The occurrence of non-Saccharomyces cerevisiae yeast species over three vintages in four vineyards and grape musts from four production regions of the Western Cape. S. Afr. J. Enol. Viticult. 24:35–42.
  • Jolly, N. P., Varela, C. and Pretorius, I. S. (2014). Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14:215–237.
  • Junicke, H., Abbas, B., Oentoro, J., van Loosdrecht, M. and Kleerebezem, R. (2014). Absolute quantification of individual biomass concentrations in a methanogenic coculture. AMB Express. 4:35.
  • Kačániová, M., Hleba, L., Pochop, J., Kádasi-Horáková, M., Fikselová, M. and Rovná, K. (2012). Determination of wine microbiota using classical method, polymerase chain method and Step One Real-Time PCR during fermentation process. J. Environ. Sci. Health B. 47:571–578.
  • Kapetanakou, A. E., Kollias, J. N., Drosinos, E. H. and Skandamis, P. N. (2012). Inhibition of A. carbonarius growth and reduction of ochratoxin A by bacteria and yeast composites of technological importance in culture media and beverages. Int. J. Food Microbiol. 152:91–99.
  • Kassemeyer, H. H. and Berkelmann-Löhnertz, B. (2009). Fungi of grapes. In: Biology of Microorganisms on Grapes, in Must and in Wine, pp. 61–8. König, H., Unden, G. and Fröhlich, J., Eds., Springer-Verlag, Berlin, Heidelberg.
  • Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. and Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature. 474:327–336.
  • Knoll, C., Divol, B. and du Toit, M. (2008). Genetic screening of lactic acid bacteria of oenological origin for bacteriocin-encoding genes. Food Microbiol. 25:983–991.
  • Korakli, M., Pavlovic, M., Gänzle, M. G. and Vogel, R. F. (2003). Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl. Environ. Microbiol. 69:2073–2079.
  • Lafon-Lafourcade, S. (1973). De la fermentescibiliteé malolactique des vins: Interaction levures–Bacteéries. Connaissance de la Vigne et du Vin. 7:203–207.
  • Laforgue, R., Guérin, L., Pernelle, J. J., Monet, C., Dupont, J., Bouix, M. (2009). Evaluation of PCR-DGGE methodology to monitor fungal communities on grapes. J. Appl. Microbiol. 107:1208–1218.
  • Larsen, J. T., Nielsen, J., Kramp, B., Richelieu, M., Bjerring, P., Riisager, M. J., Arneborg, N. and Edwards, C. G. (2003). Impact of different strains of saccharomyces cerevisiae on malolactic fermentation by oenococcus oeni. Am. J. Enol. Vitic. 54:246–251.
  • Larsen, P. E., Collart, F. R., Field, D., Meyer, F., Keegan, K. P., Henry, C. S., McGrath, J., Quinn, J. and Gilbert, J. A. (2011). Predicted relative metabolomic turnover (PRMT): Determining metabolic turnover from a coastal marine metagenomic dataset. Microb. Inform. Exp. 1:4.
  • LeBlanc, J. G., Laiño, J. E., del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., de Valdez, G. F., de Giori, G. S. and Sesma, F. (2011). B-group vitamin production by lactic acid bacteria–current knowledge and potential applications. J. Appl. Microbiol. 111:1297–1309.
  • Llaubères, R. M., Richard, B., Lonvaud, A., Dubourdieu, D. and Fournet, B. (1990). Structure of an exocellular beta-D-glucan from Pediococcus sp., a wine lactic bacteria. Carbohydr. Res. 203:103–107.
  • Longo, E., Cansado, J., Agrelo, D. and Villa, T. G. (1991). Effect of climatic conditions on yeast diversity in grape musts from Northwest Spain. Am. J. Enol. Vitic. 42:141–144.
  • Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek. 76:317–331.
  • Lonvaud-Funel, A., Joyeux, A. and Dessens, C. (1988). Inhibition of malolactic fermentation of wines by products of yeast metabolism. J. Sci. Food. Agric. 44:183–191.
  • Lonvaud-Funel, A. and Joyeux, A. (1993). Antagonism between lactic acid bacteria of wines: Inhibition of Leuconostoc oenos by Lactobacillus plantarum and Pediococcus pentosaceus. Food Microbiol. 10:411–419.
  • Lopes, C. A. and Sangorrín, M. P. (2010). Optimization of killer assays for yeast selection protocols. Rev. Argent. Microbiol. 42:298–306.
  • Lucchini, J. J., Bonnaveiro, N., Cremieux, D. A. and Goffic, F. L. (1993). Mechanism of bactericidal action of phenethyl alcohol in Escherichia coli. Curr. Microbiol. 27:295–300.
  • Mahadevan, R., Edwards, J. S. and Doyle, F. J. (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83:1331–1340.
  • Marcotte, E. M. (2001). The path not taken. Nat. Biotech. 19:626–627.
  • Martins, G., Miot-Sertier, C., Lauga, B., Claisse, O., Lonvaud-Funel, A., Soulas, G. and Masneuf-Pomarède, I. (2012). Grape berry bacterial microbiota: Impact of the ripening process and the farming system. Int. J. Food Microbiol. 158:93–100.
  • Martins, G., Vallance, J., Mercier, A., Albertin, W., Stamatopoulos, P., Rey, P., Lonvaud, A. and Masneuf-Pomarède, I. (2014). Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int. J. Food Microbiol. 177:21–28.
  • Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W. and Heijnen, J. J. (2007). Microbial metabolomics: Past, present and future methodologies. Biotechnol. Lett. 29:1–16.
  • Medina, K., Boido, E., Dellacassa, E. and Carrau, F. (2012). Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Int. J. Food Microbiol. 157:245–250.
  • Mendes, F., Sieuwerts, S., de Hulster, E., Almering, M. J. H., Luttik, M. A. H., Pronk, J. T., Smid, E. J., Bron, P. A. and Daran-Lapujade, P. (2013). Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Appl. Environ. Microbiol. 79:5949–5961.
  • Mendoza, L. M., Merín, M. G., Morata, V. I. and Farías, M. E. (2011). Characterization of wines produced by mixed culture of autochthonous yeasts and Oenococcus oeni from the northwest region of Argentina. J. Ind. Microbiol. Biotechnol. 38:1777–1785.
  • Mendoza, L. M., Nadra, M. C. M. D. and Farías, M. E. (2007). Kinetics and metabolic behavior of a composite culture of Kloeckera apiculata and Saccharomyces cerevisiae wine related strains. Biotechnol. Lett. 29:1057–1063.
  • Milanović, V., Comitini, F. and Ciani, M. (2013). Grape berry yeast communities: Influence of fungicide treatments. Int. J. Food Microbiol. 161:240–246.
  • Mills, D. A., Rawsthorne, H., Parker, C., Tamir, D. and Makarova, K. (2005). Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol. Rev. 29:465–475.
  • Mortimer, R. K. (2000). Kloeckera apiculata controls the rates of natural fermentation. Riv. Vitic. Enol. 53:61–68.
  • Mounier, J., Monnet, C., Vallaeys, T., Arditi, R., Sarthou, A., Helias, A. and Irlinger, F. (2008). Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol. 74:172–181.
  • Musmanno, R. A., Di Maggio, T. and Coratza, G. (1999). Studies on strong and weak killer phenotypes of wine yeasts: Production, activity of toxin in must, and its effect in mixed culture fermentation. J. Appl. Microbiol. 87:932–938.
  • Narendranath, N. V., Hynes, S. H., Thomas, K. C. and Ingledew, W. M. (1997). Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl. Environ. Microbiol. 63:4158–4163.
  • Nehme, N., Mathieu, F. and Taillandier, P. (2008). Quantitative study of interactions between Saccharomyces cerevisiae and Oenococcus oeni strains. J. Ind. Microbiol. Biotechnol. 35:685–693.
  • Nehme, N., Mathieu, F. and Taillandier, P. (2010). Impact of the co-culture of Saccharomyces cerevisiae-Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiol. 27:150–157.
  • Neve, H. and Josephsen, J. (2004). Bacteriophage and antiphage mechanisms of lactic acid bacteria. In: Lactic Acid Bacteria, pp. 165–186. Salminen, S., von Wright, A. and Ouwehand, A., Eds., CRC Press, Danvers, MA.
  • Nishihara, H., Kio, K. and Imamura, M. (2000). Possible mechanism of co-flocculation between non-flocculent yeasts. J. Inst. Brew. 106:7–10.
  • Nisiotou, A. A. and Nychas, G. E. (2007). Yeast populations residing on healthy or botrytis-infected grapes from a vineyard in Attica, Greece. Appl. Environ. Microbiol. 73:2765–2768.
  • Nisiotou, A. A., Rantsiou, K., Iliopoulos, V., Cocolin, L. and Nychas, G. J. (2011). Bacterial species associated with sound and Botrytis-infected grapes from a Greek vineyard. Int. J. Food. Microbiol. 145:432–436.
  • Nissen, P., Nielsen, D. and Arneborg, N. (2003). Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism. Yeast. 20:331–341.
  • Nissen, P., Nielsen, D. and Arneborg, N. (2004). The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures. Appl. Microbiol. Biotechnol. 64:543–550.
  • Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J., Wincker, P., Casaregola, S. and Dequin, S. (2009). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl. Acad. Sci. USA. 106:16333–16338.
  • Ochman, H., Lawrence, J. G. and Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature. 405:299–304.
  • Oro, L., Ciani, M. and Comitini, F. (2014). Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J. Appl. Microbiol. 116:1209–1217.
  • Osborne, J. P. and Edwards, C. G. (2006). Inhibition of malolactic fermentation by Saccharomyces during alcoholic fermentation under low- and high-nitrogen conditions: A study in synthetic media. 12:69–78.
  • Osborne, J. P. and Edwards, C. G. (2007). Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation. Int. J. Food Microbiol. 118:27–34.
  • Osborne, J. P., Mira de Orduña, R., Pilone, G. J. and Liu, S. Q. (2000). Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiol. Lett. 191:51–55.
  • Park, H. and Bakalinsky, A. T. (2000). SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast. 16:881–888.
  • Patynowski, R. J., Jiranek, V. and Markides, A. J. (2002). Yeast viability during fermentation and sur lie ageing of a defined medium and subsequent growth of Oenococcus oeni. Aust. J. Grape Wine Res. 8:62–69.
  • Peng, X., Sun, J., Iserentant, D., Michiels, C. and Verachtert, H. (2001). Flocculation and coflocculation of bacteria by yeasts. Appl. Microbiol. Biotechnol. 55:777–781.
  • Pérez, F., Ramírez, M. and Regodón, J. A. (2001). Influence of killer strains of Saccharomyces cerevisiae on wine fermentation. Antonie Van Leeuwenhoek. 79:393–399.
  • Pina, C., Santos, C., Couto, J. A. and Hogg, T. (2004). Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiol. 21:439–447.
  • Poblet-Icart, M., Bordons, A. and Lonvaud-Funel, A. (1998). Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr. Microbiol. 36:365–369.
  • Pommier, S., Strehaiano, P. and Délia, M. L. (2005). Modelling the growth dynamics of interacting mixed cultures: A case of amensalism. Int. J. Food Microbiol. 100:131–139.
  • Ponsone, M. L., Chiotta, M. L., Combina, M., Dalcero, A. and Chulze, S. (2011). Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. Int. J. Food Microbiol. 151:70–77.
  • Prakitchaiwattana, C. J., Fleet, G. H. and Heard, G. M. (2004). Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res. 4:865–877.
  • Price, N. D., Papin, J. A., Schilling, C. H. and Palsson, B. O. (2003). Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21:162–169.
  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., MetaHIT Consortium, Bork, P., Ehrlich, S. D. and Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65.
  • Quirós, C., Herrero, M., García, L. A. and Díaz, M. (2009). Quantitative approach to determining the contribution of viable-but-nonculturable subpopulations to malolactic fermentation processes. Appl. Environ. Microbiol. 75:2977–2981.
  • Quirós, C., Herrero, M., García, L. A. and Díaz, M. (2012). Effects of SO2 on lactic acid bacteria physiology when used as a preservative compound in malolactic fermentation. J. Inst. Brew. 118:89–96.
  • Raes, J. and Bork, P. (2008). Molecular eco-systems biology: Towards an understanding of community function. Nat. Rev. Microbiol. 6:693–699.
  • Raes, J., Letunic, I., Yamada, T., Jensen, L. J. and Bork, P. (2011). Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol. Syst. Biol. 7:473.
  • Ram, R. J., Verberkmoes, N. C., Thelen, M. P., Tyson, G. W., Baker, B. J., Blake, R. C., Shah, M., Hettich, R. L. and Banfield, J. F. (2005). Community proteomics of a natural microbial biofilm. Science. 308:1915–1920.
  • Rankine, B. C. and Pocock, K. F. (1969). Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J. Sci. Food Agric. 20:104–109.
  • Raspor, P., Milek, D. M., Polanc, J., Mozina, S. S. and Cadez, N. (2006). Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. Int. J. Food Microbiol. 109:97–102.
  • Rastogi, G. and Sani, R. K. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Microbes and Microbial Technology, pp. 29–57. Ahmad, I., Ahmad, F. and Pichtel, J., Eds., Springer, New York.
  • Reguant, C., Bordons, A., Arola, L. and Rozès, N. (2000). Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. J. Appl. Microbiol. 88:1065–1071.
  • Rementeria, A., Rodriguez, J. A., Cadaval, A., Amenabar, R., Muguruza, J. R., Hernando, F. L. and Sevilla, M. J. (2003). Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int. J. Food Microbiol. 86:201–207.
  • Remize, F., Gaudin, A., Kong, Y., Guzzo, J., Alexandre, H., Krieger, S. and Guilloux-Benatier, M. (2006). Oenococcus oeni preference for peptides: Qualitative and quantitative analysis of nitrogen assimilation. Arch. Microbiol. 185:459–469.
  • Renault, P. E., Albertin, W. and Bely, M. (2013). An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Appl. Microbiol. Biotechnol. 97:4105–4119.
  • Renouf, V., Claisse, O. and Lonvaud-Funel, A. (2005). Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust. J. Grape Wine Res. 11:316–327.
  • Renouf, V., Claisse, O. and Lonvaud-Funel, A. (2007). Inventory and monitoring of wine microbial consortia. Appl. Microbiol. Biotechnol. 75:149–164.
  • Renouf, V. and Murat, M. L. (2008). L'utilisation de levains malolactiques pour une meilleure maîtrise du risque Brettanomyces. Rev. Œnol. 126:11–15.
  • Ribereau-Gayon, J. and Peynaud, E. (1961). Traiteé d'Oenologie II, Librairie Polytechnique Beéranger, Zwickau, Allemagne.
  • Richard, G., Yu, S., Monsan, P., Remaud-Simeon, M. and Morel, S. (2005). A novel family of glucosyl 1,5-anhydro-d-fructose derivatives synthesised by transglucosylation with dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr. Res. 340:395–401.
  • Ritt, J. F., Guilloux-Benatier, M., Guzzo, J., Alexandre, H. and Remize, F. (2008). Oligopeptide assimilation and transport by Oenococcus oeni. J. Appl. Microbiol. 104:573–580.
  • Rodriguez, A. V. and Nadra, M. C. M. D. (1995). Production of hydrogen peroxide by Lactobacillus hilgardii and its effect on Leuconostoc oenos growth. Curr. Microbiol. 30:23–25.
  • Rojo-Bezares, B., Sáenz, Y., Navarro, L., Zarazaga, M., Ruiz-Larrea, F. and Torres, C. (2007). Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol. 24:482–491.
  • Rosenthal, A. Z., Matson, E. G., Eldar, A. and Leadbetter, J. R. (2011). RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J. 5:1133–1142.
  • Rosi, I., Fia, G. and Canuti, V. (2003). Influence of different pH values and inoculation time on the growth and malolactic activity of a strain of Oenococcus oeni. Aust. J. Grape Wine Res. 9:194–199.
  • Rosi, I., Vinella, M. and Domizio, P. (1994). Characterization of beta-glucosidase activity in yeasts of oenological origin. J. Appl. Bacteriol. 77:519–527.
  • Rossouw, D., Du Toit, M. and Bauer, F. F. (2012). The impact of co-inoculation with Oenococcus oeni on the trancriptome of Saccharomyces cerevisiae and on the flavour-active metabolite profiles during fermentation in synthetic must. Food Microbiol. 29:121–131.
  • Roullier-Gall, C., Lucio, M., Noret, L., Schmitt-Kopplin, P. and Gougeon, R. D. (2014). How subtle is the “Terroir” effect? Chemistry-related signatures of two “Climats de Bourgogne.”. PloS One. 9:e97615.
  • Rousseaux, S., Diguta, C. F., Radoï-Matei, F., Alexandre, H. and Guilloux-Bénatier, M. (2014). Non-Botrytis grape-rotting fungi responsible for earthy and moldy off-flavors and mycotoxins. Food Microbiol. 38:104–121.
  • Rudi, K., Zimonja, M., Trosvik, P. and Naes, T. (2007). Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int. J. Food Microbiol. 120:95–99.
  • Sabate, J., Cano, J., Esteve-Zarzoso, B. and Guillamón, J. M. (2002). Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol. Res. 157:267–274.
  • Saerens, S. M. G., Delvaux, F. R., Verstrepen, K. J. and Thevelein, J. M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. 3:165–177.
  • Sadoudi, M., Tourdot-Maréchal, R., Rousseaux, S., Steyer, D., Gallardo-Chacón, J., Ballester, J., Vichi, S., Guérin-Schneider, R., Caixach, J. and Alexandre, H. (2012). Yeast-yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 32:243–253.
  • Salma, M., Rousseaux, S., Sequeira-Le Grand, A., Divol, B. and Alexandre, H. (2013). Characterization of the viable but non culturable (VBNC) state of Saccharomyces cerevisiae. PLOS One. 8:e77600.
  • Santos, A., San Mauro, M., Bravo, E. and Marquina, D. (2009). PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis. Microbiol. (Reading, Engl ). 155:624–634.
  • Santos, J., Sousa, M. J., Cardoso, H., Inacio, J., Silva, S., Spencer-Martins, I. and Leao, C. (2008). Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations. Microbiology. 154:422–430.
  • Schmid, F., Moser, G., Müller, H. and Berg, G. (2011). Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Appl. Environ. Microbiol. 77:2188–2191.
  • Schmidt, T. M., DeLong, E. F. and Pace, N. R. (1991). Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173:4371–4378.
  • Segata, N., Boernigen, D., Tickle, T. L., Morgan, X. C., Garrett, W. S. and Huttenhower, C. (2013). Computational meta'omics for microbial community studies. Mol. Syst. Biol. 9:666.
  • Setati, M. E., Jacobson, D., Andong, U. and Bauer, F. (2012). The vineyard yeast microbiome, a mixed model microbial map. PLoS ONE. 7:e52609.
  • Shelburne, S. A., Olsen, R. J., Suber, B., Sahasrabhojane, P., Sumby, P., Brennan, R. G. and Musser, J. M. (2010). A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection. PLoS Pathog. 6:e1000817.
  • Shimizu, K. (1993). Killer yeasts. In: Wine Microbiology and Biotechnology, pp. 243–264. Fleet, G. H., Ed., Harwood Academic Publishers, Chur, Switzerland.
  • Sieuwerts, S., de Bok, F. A. M., Hugenholtz, J. and van Hylckama Vlieg, J. E. T. (2008). Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Appl. Environ. Microbiol. 74:4997–5007.
  • Sipiczki, M. (2006). Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 72:6716–6724.
  • Smid, E. J. and Lacroix, C. (2013). Microbe–microbe interactions in mixed culture food fermentations. Curr. Opin. Biotechnol. 24:148–154.
  • Sosa, O. A., de Nadra, M. C. M. and Farías, M. E. (2008). Modification by glucose of the flocculent phenotype of a Kloeckera apiculata wine strain. J. Ind. Microbiol. Biotechnol. 35:851–857.
  • Spano, G., Russo, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., Coton, E., Coton, M., Barnavon, L., Bach, B., Rattray, F., Bunte, A., Magni, C., Alvarez, M., Fernandez, M. P., Ladero, V. M., Lopez, P., Fernández de Palencia, P., Corbi, A., Trip, H. and Lolkema, J. S. (2010). Risk assessment of biogenic amines in fermented food. Europ. J. Clin. Res. 3:95–100.
  • Steel, C. C., Blackman, J. W. and Schmidtke, L. M. (2013). Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 61:5189–5206.
  • Stefanini, I., Dapporto, L., Legras, J., Calabretta, A., Paola, M. D., Filippo, C. D., Viola, R., Capretti, P., Polsinelli, M., Turillazzi, S. and Cavalieri, D. (2012). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. PNAS. 109:13398–13403.
  • Stevic, S. (1962). The significance of bees (Apis sp.) and wasps (Vespa sp.) as carriers of yeast for the micoflora of grapes and the quality of wine. Arkhiv. za Poljjoprivredne Nauke. 50:80–92.
  • Stolyar, S., Van Dien, S., Hillesland, K. L., Pinel, N., Lie, T. J., Leigh, J. A. and Stahl, D. A. (2007). Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3:92.
  • Streit, W. R. and Schmitz, R. A. (2004). Metagenomics—the key to the uncultured microbes. Curr. Opin. Microbiol. 7:492–498.
  • Suzzi, G., Romano, P. and Zambonelli, C. (1985). Saccharomyces strain selection in minimizing SO2 requirement during vinification. Am. J. Enol. Vitic. 36:199–202.
  • Taillandier, P., Lai, Q. P., Julien-Ortiz, A. and Brandam, C. (2014). Interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in wine fermentation: Influence of inoculation and nitrogen content. World J. Microbiol. Biotechnol. 30:1959–1967.
  • Tello, J., Cordero-Bueso, G., Aporta, I., Cabellos, J. M. and Arroyo, T. (2012). Genetic diversity in commercial wineries: Effects of the farming system and vinification management on wine yeasts. J. Appl. Microbiol. 112:302–315.
  • Terrade, N. and Mira de Orduña, R. (2009). Determination of the essential nutrient requirements of wine-related bacteria from the genera Oenococcus and Lactobacillus. Int. J. Food Microbiol. 133:8–13.
  • Tofalo, R., Schirone, M., Telera, G. C., Manetta, A. C., Corsetti, A. and Suzzi, G. (2011). Influence of organic viticulture on non-Saccharomyces wine yeast populations. Ann. Microbiol. 61:57–66.
  • Tourdot-Maréchal, R., Fortier, L. C., Guzzo, J., Lee, B. and Diviès, C. (1999). Acid sensitivity of neomycin-resistant mutants of Oenococcus oeni: A relationship between reduction of ATPase activity and lack of malolactic activity. FEMS Microbiol. Lett. 178:319–326.
  • Türkel, S. and Ener, B. (2009). Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z Naturforsch, C, J Biosci. 64:405–410.
  • Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight, R. and Gordon, J. I. (2007). The human microbiome project: Exploring the microbial part of ourselves in a changing world. Nature. 449:804–810.
  • Ultee, A., Wacker, A., Kunz, D., Löwenstein, R. and König, H. (2013). Microbial succession in spontaneously fermented grape must before, during and after stuck fermentation. S. Afr. J. Enol. Viticult. 34:68–78.
  • Vasserot, Y., Caillet, S. and Maujean, A. (1997). Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. Am. J. Enol. Vitic. 48:433–437.
  • Verachtert, H., Shanta Kumara, H. M. C. and Dawoud, E. (1990). Yeasts in mixed cultures with emphasis on lambic beer. In: Yeast: Biotechnology and Biocatalysis, pp. 429–449. Verachtert, H. and de Mot, R., Eds., Marcel Dekker, New York.
  • Vuuren, H. J. J. V. and Jacobs, C. J. (1992). Killer yeasts in the wine industry: A review. Am. J. Enol. Vitic. 43:119–128.
  • Walker, A., Pfitzner, B., Neschen, S., Kahle, M., Harir, M., Lucio, M., Moritz, F., Tziotis, D., Witting, M., Rothballer, M., Engel, M., Schmid, M., Endesfelder, D., Klingenspor, M., Rattei, T., Zu-Cestell, W., de Angelis, M. H., Hartmann, A. and Schmitt-Kopplin, P. (2014). Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 8:2380–2396.
  • Wells, A. and Osborne, J. P. (2012). Impact of acetaldehyde- and pyruvic acid-bound sulphur dioxide on wine lactic acid bacteria. Lett. Appl. Microbiol. 54:187–194.
  • Werner, J. J., Knights, D., Garcia, M. L., Scalfone, N. B., Smith, S., Yarasheski, K., Cummings, T. A., Beers, A. R., Knight, R. and Angenent, L. T. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA. 108:4158–4163.
  • Wibowo, D., Fleet, G. H., Lee, T. H. and Eschenbruch, R. E. (1988). Factors affecting the induction of malolactic fermentation in red wines with Leuconostoc oenos. 64:421–428.
  • Wilmes, P. and Bond, P. L. (2006). Metaproteomics: Studying functional gene expression in microbial ecosystems. Trends Microbiol. 14:92–97.
  • Witting, M. and Schmitt-Kopplin, P. (2014). Technical perquisites for successful data fusion and visualization. In: Fundamentals of Advanced Omics Technologies: From Genes to Metabolites, pp. 421–441. Simó, C., Cifuentes, A. and García-Cañas, V., Eds., Newnes, Amsterdam.
  • Young, T. W. (1987). Killer yeasts. In: The Yeasts, pp. 131. Rose, A. H., Harrison, J. S., Eds., Academic Press, New York.
  • Yurdugül, S. and Bozoglu, F. (2002). Studies on an inhibitor produced by lactic acid bacteria of wines on the control of malolactic fermentation. Eur. Food Res. Technol. 215:38–41.
  • Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R. and Lovley, D. R. (2011). Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5:305–316.
  • Zomorrodi, A. R. and Maranas, C. D. (2012). OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol. 8:e1002363.
  • Zott, K., Thibon, C., Bely, M., Lonvaud-Funel, A., Dubourdieu, D. and Masneuf-Pomarede, I. (2011). The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. Int. J. Food Microbiol. 151:210–215.
  • Zupan, J., Avbelj, M., Butinar, B., Kosel, J., Šergan, M. and Raspor, P. (2013). Monitoring of quorum-sensing molecules during minifermentation studies in wine yeast. J. Agric. Food Chem. 61:2496–2505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.