3,432
Views
197
CrossRef citations to date
0
Altmetric
Articles

Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses

, , &

References

  • Agnelli, M. E., Marani, C. M. and Mascheroni, R. H. (2005). Modelling of heat and mass transfer during (osmo) dehydrofreezing of fruits. J. Food Eng. 69(4):415–424.
  • Aleksandrov, V. D., Barannikov, A. A. and Dobritsa, N. V. (2000). Effect of magnetic field on the supercooling of water drops. Inorg. Mater. 36(9):895–898.
  • Alizadeh, E., Chapleau, N., de-Lamballerie, M. and Le-Bail, A. (2008). Impact of Freezing Process on Salt Diffusivity of Seafood: Application to Salmon (Salmo salar) Using Conventional and Pressure Shift Freezing. Food and Bioprocess Technology, 2(3), 257–262.
  • Anese, M., Manzocco, L., Panozzo, A., Beraldo, P., Foschia, M. and Nicoli, M. C. (2012). Effect of radiofrequency assisted freezing on meat microstructure and quality. Food Res. Int. 46(1):50–54.
  • Ashokkuman, M. and Grieser, F. (1999). Ultrasound assisted chemical process. Rev. Chem. Eng. 15(1):41–83.
  • Awad, T. S., Moharramb, H. A., Shaltoutc, O. E., Askerd, D. and Youssefd, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48(2):410–427.
  • Barbin, D., ElMasry, G., Sun, D.-W. and Allen, P. (2012). Near-infrared hyperspectral imaging for grading and classification of pork. Meat Science. 90(1):259–268.
  • Ben Haj Said, L., Bellagha, S. and Allaf, K. (2015). Dehydrofreezing of Apple Fruits: Freezing Profiles, Freezing Characteristics, and Texture Variation. Food and Bioprocess Technology, 9(2), 252–261.
  • Blanda, G., Cerretani, L., Cardinali, A., Barbieri, S., Bendini, A. and Lercker, G. (2009). Osmotic dehydrofreezing of strawberries: Polyphenolic content, volatile profile and consumer acceptance. LWT Food Sci. Technol. 42(1):30–36.
  • Bulut, S. (2014). The Effects of High-Pressure Processing at Low and Subzero Temperatures on Inactivation of Microorganisms in Frozen and Unfrozen Beef Mince Inoculated with Escherichia coli Strain ATCC 25922. Food and Bioprocess Technology, 7(10), 3033–3044.
  • Cárcel, J. A., Benedito, J., Rosselló, C. and Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J. Food Eng. 78:472–479.
  • Chaplin, M. (2013). Water structure and science. Available at http://www1.lsbu.ac.uk/waters./ Accessed August 20, 2014.
  • Chevalier, D., Le-Bail, A. and Ghoul, M. (2001). Evaluation of the ice ratio formed during quasi-adiabatic pressure shift freezing. Int. J. High Press. Res. 21(5):227–235.
  • Chevalier-Lucia, D., Le-Bail, A., Ghoulc, M. and Chourotd, J. M. (2003). High pressure calorimetry at sub-zero temperature: Evaluation of the latent heat and frozen water ratio of gelatin gels. Innov. Food Sci. Emerg. Technol. 4:361–366.
  • Chiralt, A., Martinez-Navarrete, N., Martinez-Monzo, J., Talens, P., Moraga, G., Ayala, A. and Fito, P. (2001). Changes in mechanical properties throughout osmotic processes cryoprotectant effect. J. Food Eng. 49:129–135.
  • Chizhov, V. E. and Nagornov, O. V. (1991). Thermodynamic properties of ice, water and their mixture under high pressure. In: Proceedings of the International Symposium on Glaciers–Oceans–Atmosphere Interactions, pp. 463–470.
  • Chow, R., Blind, R., Chivers, R. and Povey, M. (2005). A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics. 43(4):227–230.
  • Chow, R., Blind, R., Kamp, A., Grocutt, P. and Chivers, R. (2004). The microscopic visualisation of the sonocrystallisation of ice using a novel ultrasonic cold stage. Ultrason. Sonochem. 11(3–4):245–250.
  • Chow, R., Blindt, R., Chivers, R. and Povey, M. (2003). The sonocrystallisation of ice in sucrose solutions: Primary and secondary nucleation. Ultrasonics. 41:595–604.
  • Clark, C. A. and Bihan, D. L. (2000). Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn. Reson. Med. 44:852–859.
  • Cui, Z.-W., Sun, L.-J., Chen, W. and Sun, D.-W. (2008). Preparation of dry honey by microwave-vacuum drying. J. Food Engin. 84(4):582–590.
  • Delgado, A, E, and Sun, D.-W. (2002). Desorption isotherms and glass transition temperature for chicken meat. J. Food Engin. 55(1):1–8. A rticle Number: PII S0206-8774(01)00222-9
  • Delgado, A. E. and Sun, D.-W. (2011). Ultrasound-assisted freezing. In: Ultrasound Technologies for Food and Bioprocessing, pp. 495–509. Feng, H., Barbosa-Cánovas, G. V. and Weiss, J., Eds., Springer, New York.
  • Delgado, A. E., Zheng, L. Y. and Sun, D.-W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food Bioprocess Technol. 2(3):263–270.
  • Desmond, E. M., Kenny, T. A., Ward, P. and Sun D-W. (2000). Effect of rapid and conventional cooling methods on the quality of cooked ham joints. Meat Science 56(3): 271–277.
  • Dodds, J., Espitalier, F., Louisnard, O., Grossier, R., David, R., Hassoun, M., Baillon, F., Gatumel, C. and Lyczko, N. (2007). The effect of ultrasound on crystallisation-precipitation processes: Some examples and a new segregation model. Part. Part. Syst. Char. 24(1):18–28.
  • Dolittle, J. B. and Vali, G. (1975). Heterogeneous freezing nucleation in electric fields. J. Atmos. Sci. 32:375–379.
  • Ellinger, A., Vetterlein, M., Weiss, C., Meißlitzer-Ruppitsch, C., Neumüller, J. and Pavelka, M. (2010). High-pressure freezing combined with in vivo-DAB-cytochemistry: A novel approach for studies of endocytic compartments. J. Struct. Biol. 169(3):286–293.
  • ElMasry, G., Barbin, D. F., Sun, D.-W. and Allen, P. (2012). Meat Quality Evaluation by Hyperspectral Imaging Technique: An Overview. Critical Reviews in Food Science and Nutrition. 52:689–711.
  • Fernandes, F. A. N., Gallão, M. I. and Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT Food Sci. Technol. 41(4):604–610.
  • Fernandes, F. A. N., Gallão, M. I. and Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J. Food Eng. 90:186–190.
  • Fernandes, F. A. N., Oliveira, F. I. P. and Rodrigues, S. (2007). Use of Ultrasound for Dehydration of Papayas. Food and Bioprocess Technology, 1(4), 339–345.
  • Fernández, P. P., Otero, L., Guignon, B. and Sanz, P. D. (2006). High-pressure shift freezing versus high-pressure assisted freezing: Effects on the microstructure of a food model. Food Hydrocoll. 20(4):510–522.
  • Fernández, P. P., Sanz, P. D., Molina-García, A. D., Otero, L., Guignona, B. and Vaudagna, S. R. (2007). Conventional freezing plus high pressure-low temperature treatment: Physical properties, microbial quality and storage stability of beef meat. Meat Sci. 77(4):616–625.
  • Floury, J., Le-Bail, A. and Pham, Q. T. (2008). A three-dimensional numerical simulation of the osmotic dehydration of mango and effect of freezing on the mass transfer rates. J. Food Eng. 85(1):1–11.
  • Fuchigami, M., Teramoto, A. and Jibu, Y. (2006). Texture and structure of pressure-shift-frozen agar gel with high visco-elasticity. Food Hydrocoll. 20(2–3):160–169.
  • Fushigami, M. and Teramoto, A. (2003). Texture and structure of high-pressure-frozen gellan gum gel. Food Hydrocoll. 17(6):895–899.
  • Giraldo, G., Talens, P., Fito, P. and Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. J. Food Eng. 58(1):33–43.
  • Goula, A. M. and Lazarides, H. N. (2012). Modeling of mass and heat transfer during combined processes of osmotic dehydration and freezing (Osmo-Dehydro-Freezing). Chem. Eng. Sci. 82:52–61.
  • Grossier, R., Louisnard, O. and Vargas, Y. (2007). Mixture segregation by an inertial cavitation bubble. Ultrason. Sonochem. 14(4):431–437.
  • Hengl, N., Jin, Y., Pignona, F., Baup, S., Mollard, R., Gondrexon, N., Magnin, A., Michotb, L. and Paineauc, E. (2014). A new way to apply ultrasound in cross-flow ultrafiltration: Application to colloidal suspensions. Ultrason. Sonochem. 21(3):1018–25.
  • Hickling, R. (1965). Nucleation of freezing by cavitation in sub-cooled bismuth and gallium. Nature. 207(4998):742.
  • Hozumi, T., Saito, A., Okawa, S. and Eshita, Y. (2005). Effects of shapes of electrodes on freezing of supercooled water in electric freeze control. Int. J. Refrig. 28(3):389–395.
  • Hozumi, T., Saito, A., Okawa, S. and Watanabe, K. (2003). Effects of electrode materials on freezing of supercooled water in electric freeze control. Int. J. Refrig. 26(5):537–542.
  • Hu, F., Sun, D.-W., Gao, W. H., Zhang, Z. H., Zeng, X. A. and Han, Z. (2013a). Effects of pre-existing bubbles on ice nucleation and crystallization during ultrasound-assisted freezing of water and sucrose solution. Innov. Food Sci. Emerg. Technol. 20:161–166.
  • Hu, S. Q., Liu, G., Li, L., Li, Z. X. and Hou, Y. (2013b). An improvement in the immersion freezing process for frozen dough via ultrasound irradiation. J. Food Eng. 114(1):22–28.
  • Inaba, H., Saitou, T., Tozaki, K. and Hayashi, H. (2004). Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J. Appl. Phys. 96(11):6127–6132.
  • Inada, T., Zhang, X., Yabe, A. and Kozawa, Y. (2001). Active control of phase change from supercooled water to ice by ultrasonic vibration 1. Control of freezing temperature. Int. J. Heat Mass Trans. 44(23):4523–4531.
  • Islam, M. N., Zhang, M., Adhikari, B., Cheng, X. F. and Xu, B. G. (2014). The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. Int. J. Refrig. 42,121–133.
  • Iwasaka, M. and Ueno, S. (1998). Structure of water molecules under 14 T magnetic field. J. Appl. Phys. 83:6459–6461.
  • Jackman, P., Sun, D.-W., Du, C.-J and Allen, P. (2009). Prediction of beef eating qualities from colour, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognition. 42(5):751–763.
  • Jackman, P., Sun, D.-W. and Allen, P. (2009). Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Science. 83(2):187–194.
  • Jackson, T. H., Ungan, A., Critser, J. K. and Gao, D. (1997). Novel microwave technology for cryopreservation of biomaterials by suppression of apparent ice formation. Cryobiology. 34(4):363–372.
  • James, C., Reitz, B., & James, S. J. (2014). The Freezing Characteristics of Garlic Bulbs (Allium sativum L.) Frozen Conventionally or with the Assistance of an Oscillating Weak Magnetic Field. Food and Bioprocess Technology, 8(3), 702–708.
  • James et al. (2015). found that OMF had little significant additional effect on the freezing characteristics, or degree of super-cooling, of garlic bulbs, in comparison with freezing under the same environment without OMF.
  • Jung, D. H., Yang, J. H. and Jhon, M. S. (1999). The effect of an external electric field on the structure of liquid water using molecular dynamics simulations. Chem. Phys. 24:331–337.
  • Kamruzzaman, M., ElMasry, G., Sun, D.-W. and Allen, P. (2012). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovative Food Science and Emergeing Technologies. 16:218–226.
  • Kiani, H., Sun, D.-W. and Zhang, Z. H. (2012). The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere. Ultrason. Sonochem. 19:1238–1245.
  • Kiani, H., Sun, D.-W. and Zhang, Z. H. (2013a). Effects of processing parameters on the convective heat transfer rate during ultrasound assisted low temperature immersion treatment of a stationary sphere. J. Food Eng. 115:384–390.
  • Kiani, H., Sun D.-W., Zhang, Z. H., Al-Rubeai M. and Nacirib, M. (2013b). Ultrasound-assisted freezing of Lactobacillus plantarum subsp. plantarum: The freezing process and cell viability. Innov. Food Sci. Emerg. Technol. 18:138–144.
  • Kiani, H., Zhang, Z., Delgado, A. and Sun, D.-W. (2011). Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Res. Int. 44(9):2915–2921.
  • Kim, S. C., Shin, J. M., Lee, S. W., Kim, C. H., Kwon, Y. C. and Son, K. Y. (2013). Non-freezing refrigerator. U.S. Patent 8,616,008[P], 12–31.
  • Knorr, D., Schlüter, O. and Heinz, V. (1998). Impact of high hydrostatic pressure on phase transition of foods. Food Technol. 52(9):42–45.
  • Kurth, T., Wiedmer, S. and Entzeroth, R. (2012). Improvement of ultrastructural preservation of Eimeria oocysts by microwave-assisted chemical fixation or by high pressure freezing and freeze substitution. Protist. 163(2):296–305.
  • Le-Bail, A., Chevalier, D., Mussa, D. M. and Ghoul, M. (2002). High pressure freezing and thawing of foods: a review. Int. J. Refrig. 25:504–513.
  • Le-Bail, A., Orlowska, M. and Havet, M. (2011). Electrostatic field assisted food freezing. In: Handbook of Frozen Food Processing and Packaging, 2nd ed., pp. 685–692. Sun, D.-W., Ed., Springer, London.
  • Legay, M., Gondrexon, N., Le Person, S., Boldo, P. and Bontemps, A. (2011). Enhancement of heat transfer by ultrasound: Review and recent advances. Int. J. Chem. Eng. 2011:Article ID 670108, 17 pp.
  • Leng, X. J., Zhang, L., Huang, M., Xu, X. L. and Zhou, G. H. (2013). Mass transfer dynamics during high pressure brining of chicken breast. J. Food Eng. 118:296–301.
  • Li, B. and Sun, D.-W. (2002a). Novel methods for rapid freezing and thawing of foods–a review. J. Food Eng. 54(3):175–182.
  • Li, B. and Sun, D.-W. (2002b). Effect of power ultrasound on freezing rate during immersion freezing of potatoes. J. Food Eng. 55(3):277–282.
  • Li, H. Z., Pordesimo, L. and Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 37(7):731–738.
  • Malinowska-Pańczyk, E., Walecka, M., Pawłowicz, R., Tylingo, R. and Kołodziejska, I. (2014). The effect of high pressure at subzero temperature on proteins solubility, drip loss and texture of fish (cod and salmon) and mammal's (pork and beef) meat. Food Sci. Technol. Int. 20(5):383–395.
  • Marani, C. M., Agnellia, M. E. and Mascheronia, R. H. (2007). Osmo-frozen fruits: Mass transfer and quality evaluation. J. Food Eng. 79(4):1122–1130.
  • Mason, T. J., Paniwnyk, L. and Lorimer, J. P. (1996). The use of ultrasound in food technology. Ultrason. Sonochem. 3:253–256.
  • Mochimaru, Y., Kuji, N., Yamada, M., Hamatani, T., Yoshimura, Y., Sankai, T., Kyono, K., Mihara, M., Suzukamo, C. and Kashiwazaki, N. (2008). Effect of magnetic field supplementation during the freezing process for porcine ovarian tissue cryopreservation. In the 19th Annual Meeting of the European Society of Human Reproduction and Embryology. Hum. Reprod. 23(Suppl. 1):361, 146.
  • Molina-García, A. D., Otero, L., Martino, M. N., Zaritzky, N. E., Arabasc, J., Szczepekc, J. and Sanza, P. D. (2004). Ice VI freezing of meat: Supercooling and ultrastructural studies. Meat Sci. 66(3):709–718.
  • Norio, O. and Satoru, K. (2001). Super-quick freezing method and apparatus therefor. U.S. Patent No. US 6250087 B1.
  • Norton, T., Delgado, A., Hogan, E., Grace, P. and Sun, D.-W. (2009). Simulation of high pressure freezing processes by enthalpy method. J. Food Eng. 91(2):260–268.
  • Norton, T. and Sun, D.-W. (2007). Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry. Food and Bioprocess Technology, 1(1), 2–34.
  • Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M. and Witrowa-Rajchert, D. (2014). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem. 144:18–25.
  • Núñez-Mancilla, Y., Vega-Gálvez, A., Pérez-Won, M., Zura, L., García-Segovia, P. and Scala, K. (2013). Effect of Osmotic Dehydration Under High Hydrostatic Pressure on Microstructure, Functional Properties and Bioactive Compounds of Strawberry (Fragaria Vesca). Food and Bioprocess Technology, 7(2), 516–524.
  • Nuñez-Mancilla, Y., Pérez-Won, M., Uribe, E., Vega-Gálveza, A. and Scalac, K. D. (2013). Osmotic dehydration under high hydrostatic pressure: Effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT Food Sci. Technol. 52(2):151–156.
  • Nuñez-Mancilla, Y., Perez-Won, M., Vega-Gálveza, A., Ariasa, V., Tabilo-Munizagac, G., Briones-Labarcaa, V., Lemus-Mondacaa, R. and Di Scalae, K. (2011). Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innov. Food Sci. Emerg. Technol. 12(3):338–343.
  • Okawa, S., Saito, A. and Fukao, T. (1999). Freezing of supercooled water by applying the electric charge. In: Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference. San Diego, California, USA, AJTE99–6356 in CD, March 15–19.
  • Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., and Fernandes, F. A. N. (2010). Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment. Food and Bioprocess Technology, 4(4), 610–615.
  • Orlowska, M., Havet, M. and LeBai, A. (2009). Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res. Int. 42(7):879–884.
  • Otero, L. and Sanz, P. D. (2000). High-pressure shift freezing. Part 1. Amount of ice instantaneously formed in the process. Biotechnol. Prog. 16(6):1030–1036.
  • Otero, L. and Sanz, P. D. (2003). Modelling heat transfer in high pressure food processing: A review. Innov. Food Sci. Emerg. Technol. 4(2):121–134.
  • Otero, L. and Sanz, P. D. (2006). High-pressure-shift freezing: Main factors implied in the phase transition time. J. Food Eng. 72(4):354–363.
  • Otero, L., Sanz, P. D., Guignon, B. and Aparicio, C. (2009). Experimental determination of the amount of ice instantaneously formed in high-pressure shift freezing. J. Food Eng. 95(4):670–676.
  • Otero, L., Sanz, P., Guignon, B. and Sanz, P. D. (2012). Pressure-shift nucleation: A potential tool for freeze concentration of fluid foods. Innov. Food Sci. Emerg. Technol. 13:86–99.
  • Peiró, R., Diasb, V. M. C., Camachoa, M. M. and Martínez-Navarrete, N. (2006). Micronutrient flow to the osmotic solution during grapefruit osmotic dehydration. J. Food Eng. 74:299–307.
  • Petersen, A., Rau, G. and Glasmacher, B. (2006). Reduction of primary freeze-drying time by electric field induced ice nucleus formation. Heat Mass Transfer. 42(10):929–938.
  • Pham, Q. T. (2006). Modeling heat and mass transfer in frozen foods: A review. Int. J. Refrig. 29(6):876–888.
  • Piotrowski, D., Lenart, A. and Wardzyński, A. (2004). Influence of osmotic dehydration on microwave-convective drying of frozen strawberries. J. Food Eng. 65(4):519–525.
  • Ramallo, L. A. and Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. J. Food Eng. 99(3):269–275.
  • Realini, C. E., Guàrdia, M. D., Garriga, M., Pérez-Juan M. and Arnau, J. (2011). High pressure and freezing temperature effect on quality and microbial inactivation of cured pork carpaccio. Meat Sci. 88(3):542–547.
  • Rizzoloa, A., Gerlia, F., Prinzivallia, C., Burattib, S. and Torreggiani, D. (2007). Headspace volatile compounds during osmotic dehydration of strawberries (cv camarosa): Influence of osmotic solution composition and processing time. LWT Food Sci. Technol. 40:529–535.
  • Ross, K. A., Pyrak-Nolte, L. J. and Campanella, O. H. (2004). The use of ultrasound and shear oscillatory tests to characterize the effect of mixing time on the rheological properties of dough. Food Res. Int. 37(6):567–577.
  • Ruecroft, G., Hipkiss, D., Ly, T., Maxted, N. and Cains, P. W. (2005). Sonocrystallization: The use of ultrasound for improved industrial crystallization. Org. Process Res. Dev. 9(6):923–932.
  • Saclier, M., Peczalski, R. and Andrieu, J. (2010). A theoretical model for ice primary nucleation induced by acoustic cavitation. Ultrason. Sonochem. 17(1):98–105.
  • Sanz, P. D., Otero, L., Elvira, C. D. and Carrasco, J. A. (1997). Freezing processes in high-pressure domains. Int. J. Refrig. 20(5):301–307.
  • Sato, M. and Fujita, K. (2006). Refrigeration device, refrigeration method and refrigerated object. US Patent No. US2006/0112699A1.
  • Schlüter O. and Knorr, D. (2002). Impact of the metastable state of water on the design of high pressure supported freezing and thawing processes. ASAE Meeting Paper. No. 026024. ASAE: St Joseph, MI.
  • Shevkunov, S. V. and Vegiri, A. (2002). Electric field induced transition in water clusters. J. Mol. Struct. (Theochem). 593(1):19–32.
  • Shichiri, T. and Araki, Y. (1986). Nucleation mechanism of ice crystals under electrical effect. J. Cryst. Growth. 78(3):502–508.
  • Shichiri, T. and Nagata, T. (1981). Effect of electric currents on the nucleation of ice crystals in the melt. J. Cryst. Growth. 54:207–210.
  • Singh, R. P. and Heldman, D. R. (2013). Introduction to Food Engineering, 2nd ed., Academic Press, London.
  • Su, G. M., Ramaswamy, H. S., Zhu, S. M., Yu, Y., Hu, F. F. and Xu, M. L. (2014). Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method. Innov. Food Sci. Emerg. Technol. 7(5):1281–1297.
  • Sun, D.-W. and Wang, L. J. (2000). Heat transfer characteristics of cooked meats using different cooling methods. International Journal of Refrigeration-Revue Internationale due Froid 23(7):508–516.
  • Sun, D.-W. and Li, B. (2003). Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J. Food Eng. 57:337–345.
  • Sun, D.-W. and Zheng, L. Y. (2006). Innovations in freezing process. In: Handbook of Frozen Food Processing and Packaging, pp. 175–195. The Chemical Rubber Company Press, Boca Raton, FL.
  • Sun, W., Xu, X. B., Sun, W., Lu, Y. and Xu, C. X. (2006). Effect of alternated electric field on the ice formation during freezing process of 0.9% K2MnO4 water. In: 8th International IEEE Conference on Properties and Applications of Dielectric Materials, pp. 774–777. Institute of Electrical and Electronics Engineers, Bali.
  • Sun, W., Xu, X. B., Zhang, H. and Xu, C. X. (2008). Effects of dipole polarization of water molecules on ice formation under an electrostatic field. Cryobiology. 56(1):93–99.
  • Suzuki, T., Takeuchi, Y., Masuda, K., Watanabe, M., Shirakashi, R., Fukuda, Y., Tsuruta, T., Yamamoto, K., Koga, N., Hiruma, N., Ichioka, J. and Takai, K. (2009). Experimental investigation of effectiveness of magnetic field on food freezing process. Trans. Japan Soc. Refrigerat. Air Cond. Eng. 26:371–386.
  • Svishchev, I. M. and Kusalik, P. G. (1994). Crystallization of liquid water in a molecular dynamics simulation. Phys. Rev. Lett. 73(7):795–799.
  • Tagami, M., Hamai, M., Mogi, I. and Watanabe, K. (1999). Solidification of levitating water in a gradient strong magnetic field. J. Cryst. Growth. 203(4):594–598.
  • Taiwo, K. A., Angersbach, A., Ade-Omowaye, B. I. O. and Knorr, D. (2001). Effects of pre-treatments on the diffusion kinetics and some quality parameters of osmotically dehydríated apple slices. J. Agric. Food Chem. 49:2804–2811.
  • Talens, P., Escriche, I., Martınez, N. and Chiralt, A. (2003). Influence of osmotic dehydration and freezing on the volatile profile of kiwi fruit. Food Res. Int. 36(6):635–642.
  • Vaudagna, S. R., Gonzalez, C. B., Guignon, B., Aparicio, C., Otero, L. and Sanz, P. D. (2012). The effects of high hydrostatic pressure at subzero temperature on the quality of ready-to-eat cured beef carpaccio. Meat Sci. 92(4):575–581.
  • Vegiri, A. (2004a). Dynamic response of liquid water to an external static electric field at T = 250 K. J. Mol. Liq. 112(1–2):107–116.
  • Vegiri, A. (2004b). Reorientational relaxation and rotational–translational coupling in water clusters in a d.c. external electric field. J. Mol. Liq. 110:155–168.
  • Verma, D., Kaushik, N., and Rao, P. S. (2013). Application of High Hydrostatic Pressure as a Pretreatment for Osmotic Dehydration of Banana Slices (Musa cavendishii) Finish-Dried by Dehumidified Air Drying. Food and Bioprocess Technology, 7(5), 1281–1297.
  • Volkert, M., Puaud, M., Wille, H. J. and Knorr, D. (2012). Effects of high pressure-low temperature treatment on freezing behavior, sensorial properties and air cell distribution in sugar rich dairy based frozen food foam and emulsions. Innov. Food Sci. Emerg. Technol. 13:75–85.
  • Wang, L. J. and Sun, D-W. (2004). Effect of operating conditions of a vacuum cooler on cooling performance for large cooked meat joints. J. Food Engin. 61(2):231–240.
  • Wang, X., Ma, N., Bliss, D. F., Iseler, G. W. and Becla, P. (2006). Comparing modified vertical gradient freezing with rotating magnetic fields or with steady magnetic and electric fields. J. Cryst. Growth. 287(2):270–274.
  • Wang, Z. F., Wu, H., Zhao, G. H., Liao, X. J., Chen, F., Wu, J. H. and Hu X. S. (2007). One-dimensional finite-difference modeling on temperature history and freezing time of individual food. J. Food Eng. 79(2):502–510.
  • Weiner, A., Kapishnikov, S., Shimoni, E., Cordes, S., Guttmannc, P., Schneiderc, G. and Elbaum, M. (2013). Vitrification of thick samples for soft X-ray cryo-tomography by high pressure freezing. J. Struct. Biol. 181(1):77–81.
  • Woo, M. W. and Mujumdar, A. S. (2010). Effects of electric and magnetic field on freezing and possible relevance in freeze drying. Dry. Technol. 28:433–443.
  • Wowk, B. (2012). Electric and magnetic fields in cryopreservation. Cryobiology. 64:301–303.
  • Wu, D. and Sun, D.-W. (2013). Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta. 111:39–46.
  • Wu, D. and Sun, D.-W. (2013). Colour measurements by computer vision for food quality control–A review. Trends in Food Science and Technology. 29(1):5–20.
  • Wu, D., Sun, D.-W. and He, Y. (2012). Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innovative Food Science and Emerging Technologies. 16:361–372.
  • Wusteman, M., Martin, R. and David, P. (2004). Vitrification of large tissues with dielectric warming: Biological problems and some approaches to their solution. Cryobiology. 48(2):179–189.
  • Xanthakis, E., Havet, M., Chevallier, S., Abadie, J. and Le-Bail, A. (2013). Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innov. Food Sci. Emerg. Technol. 20:115–120.
  • Xanthakis, E., Le-Bail, A. and Ramaswamy, H. (2014). Development of an innovative microwave assisted food freezing process. Innov. Food Sci. Emerg. Technol. 26:176–181.
  • Xin, Y., Zhang, M. and Benu, A. (2014). The effects of ultrasound-assisted freezing on the freezing time and quality of broccoli (Brassica oleracea L. var. botrytis L.) during immersion freezing. Int. J. Refrig. 41:82–91.
  • Xu, B., Zhang, M., Bhandari, B. and Chen, X. (2014a). Influence of power ultrasound on ice nucleation of radish cylinders during ultrasound-assisted immersion freezing. Int. J. Refrig. 46:1–8.
  • Xu, B.-g., Zhang, M., Bhandari, B., Cheng, X.-f. and Sun, J. (2015). Effect of Ultrasound Immersion Freezing on the Quality Attributes and Water Distributions of Wrapped Red Radish. Food and Bioprocess Technology, 8(6), 1366–1376.
  • Xu, Y. T., Zhang, L. F., Bailina, Y., Ge, Z., Ding, T., Ye, X. Q. and Liu, D. H. (2014b). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J. Food Eng. 126:72–81.
  • Yu, D., Liu, B. and Wang, B. (2012). The effect of ultrasonic waves on the nucleation of pure water and degassed water. Ultrason. Sonochem. 19(3):459–463.
  • Zangi, R. and Mark, A. E. (2004). Electrofreezing of confined water. J. Chem. Phys. 120:7123–7130.
  • Zhang, X., Inada, T. and Tezuka, A. (2003). Ultrasonic-induced nucleation of ice in water containing air bubbles. Ultrason. Sonochem. 10(2):71–76.
  • Zheng, L. Y. and Sun, D-W. (2004). Vacuum cooling for the food industry - a review of recent research advances. Trends in Food Sci. and Tech. 15(12):555–568.
  • Zheng, L. Y. and Sun, D.-W. (2005). Ultrasonic acceleration of food freezing. In: Emerging Technologies for Food Processing, Sun, D.-W., Ed., Academic Press, London.
  • Zheng, L. Y. and Sun, D.-W. (2006). Innovative applications of power ultrasound during food freezing processes-a review. Trends Food Sci. Technol. 17:16–23.
  • Zhu, S. M., Le-Bail, A. and Ramaswamy, H. S. (2003). Ice crystal formation in pressure shift freezing of atlantic salmon (salmo salar) as compared to classical freezing methods. J. Food Process. Preserv. 27:427–444.
  • Zhu, S. M., Ramaswamy, H. S. and Le-Bail, A. (2005). High-pressure calorimetric evaluation of ice crystal ratio formed by rapid depressurization during pressure-shift freezing of water and pork muscle. Food Res. Int. 38(2):193–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.