7,351
Views
248
CrossRef citations to date
0
Altmetric
Articles

Physical and chemical modification of starches: A review

, &

References

  • Abu-Jdayil, B., Banat, F., Jumah, R., Al-Asheb, S. and Hammad, S. (2004). A comprehensive study of rheological characteristics of tomato paste and tomato powder solution. Int. J. Food Properties 7:483–497.
  • Acquarone, V. M. and Rao, M..A. (2003). Influence of sucrose on the rheology and granule size of cross-linked waxy maize starch dispersions heated at two temperatures. Carbohyd. Polym. 51:451–458.
  • Adebowale, K. O., Afolabi, T. A. and Olu-Owolabi, I. (2006). Functional, physicochemical and retrogradation properties of sword bean (Canavalia gladiata) acetylated and oxidized starches. Carbohyd. Polym. 65:92–101.
  • Adebowale, K. O., Henle, T., Schwarzenbolz, U. and Doert, T. (2009). Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch. I: Heat moisture treatments and annealing. Food Hydrocolloids 23:1947–1957.
  • Adhikari, B., Howes, T., Bhandari, B. R. and Truong, V. (2003). Experimental studies and kinetics of single drop drying and their relevant in drying of sugar-rich foods: A review. Int. J. Food Properties 3:323–351.
  • Afolabi, T. A., Olu-Owolabi, B. I., Adebowale, K. O., Lawal, O. S. and Akintayo, C. O. (2012). Functional and tableting properties of acetylated and oxidized finger millet (Eleusine coracana) starch. Starch/Stärke 64:326–337.
  • Akubor, P. I. (2007). Chemical and functional properties of modified and unmodified cassava and sweet potato starches. J. Food Sci. Technol.-Mysore 44:260–263.
  • Ambigaipalan, P., Hoover, R., Donner, E. and Liu, Q. (2014). Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat–moisture treatment at different temperatures and their impact on physicochemical properties. Food Chem. 143:175–184.
  • Amorim, E. O. C., Doval, V. C. and Cristianini, M. (2011). Effect of ozonation on the sensory characteristics and pasting properties of cassava starch. Procedia Food Sci. 1:914–919.
  • Anastasiades, A., Thanou, S., Loulis, D., Stapatoris, A. and Karapantsios, T. D. (2002). Rheological and physical characterization of pre-gelatinized maize starches. J. Food Eng. 52:57–66.
  • Anderson, A. K., Guraya, H. S., James, C. and Salvaggio, L. (2002). Digestibility and pasting properties of rice starch heat moisture treated at the melting temperature (Tm). Starch-Stärke 54:401–409.
  • Andre, G., Buleon, A., Haser, R. and Tran, V. (1999). Amylose chain in an interacting context. II. Molecular modeling of a maltopentose fragment in the barley α-amylase catalytic site. Biopolymers 50:751–762.
  • Ashogbon, A. O. and Akintayo, E..T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Stärke 66:41–57.
  • Atichokudomchai, N., Shobsngob, S. and Varavinit, S. (2000). Morphological properties of acid-modified tapioca starch. Starch-Stärke 52:283–289.
  • Atichokudomchai, N., Shobsngob, S., Chinachoti, P. and Varavinit, S. (2001). A study of some physicochemical properties of high-crystalline tapioca starch. Starch-Stärke 53:577–581.
  • Atichokudomchai, N., Varavinit, S. and Chinachoti, P. (2002). A study of annealing and freeze-thaw stability of acid modified tapioca starches by differential scanning calorimetry (DSC). Starch-Stärke 54:343–349.
  • Bello-Perez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G. and Rodriguez-Ambriz, S. L. (2010). Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT-Food Sci. Technol. 43:1434–1440.
  • BeMiller, J. N. (1997). Starch modification: Challenges and prospects. Starch-Stärke 49:127–131.
  • BeMiller, J. N. (2011). Pasting, paste, and gel properties of starch-hydrocolloid combinations (Review). Carbohyd. Polym. 86:386–423.
  • Bendoraitiene, J., Sarkinas, A., Danilovas, P. P., Rutkaite, R., Klimavicinte, R. and Zemaitaitis, A. (2013). Cationic starch iodophores. J. Appl. Polym. Sci. 128:4346–4354.
  • Beninca, C., Colman, T. A. D., Lacerda, L. G., Carvalho, M. A. D., Demiate, I. M., Bannach, G., et al. (2013). Thermal, rheological and structural behaviors of natural and modified cassava starch granules, with sodium hypochlorite solution. J. Therm. Anal. Calorim. 111:2217–2222.
  • Biliaderis, C. G. (1998). Structures and phase transitions of starch polymers. In: Polysaccharides Association Structures in Food, pp. 57–168. Walter, R. H., Ed., Marcel-Dekker, Inc., New York.
  • Blaszczak, W., Valverde, S. and Fornal, J. (2005). Effect of high pressure on the structure of potato starch. Carbohyd. Polym. 59:377–383.
  • Bonazzi, C, Dumoulin, E., Raoult-Wack, A., Berk, Z., Bimbenet, J. J., Courtois, F., Trystram, G. and Vasseur, J. (1996). Food drying and dewatering. Dry. Technol. 14:2135–2170.
  • Brummer, T., Meuser, F., Lengerich, B. V. and Niemann, C. (2002). Effect of extrusion cooking on molecular parameters of corn starch. Starch-Stärke 54:1–8.
  • Cavallini, C. M. and Franco, C. M. L. (2010). Effect of acid-ethanol treatment followed by ball milling on structural and physicochemical characteristics of cassava starch. Starch–Stärke 62:236–245.
  • Cham, S. and Suwannaporn, P. (2010). Effect of hydrothermal treatment of rice flour on various rice noodles quality. J. Cereal Sci. 51:284–291.
  • Che, L.-M., Li, D., Wang, L.-J., Chen, X. D. and Mao, Z.-H. (2007). Micronization and hydrophobic modification of cassava starch. Int. J. Food Properties 10:527–536.
  • Chiu, C.-W., Schiermeyer, E., Thomas, D. J. and Shah, M. B. (1998). Thermally inhibited starches and flours and process for their production. U.S. Patent 5,725,676.
  • Chung, H.-J., Woo, K.-S and Lim, S.-T. (2004). Glass transition and enthalpy relaxation of cross linked corn starches. Carbohyd. Polym. 55:9–15.
  • Chung, H..J., Liu, Q. and Hoover, R. (2009). Impact of annealing and heat–moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohyd. Polym. 75:436–447.
  • Collado, L. S. and Corke, H. (1999). Heat-moisture treatment effects on sweet potato starches differing in amylose content. Food Chem. 65:339–346.
  • Colonna, P., Buleon, A. and Mercier, C. (1987). Physically modified starches. In: Starch: Properties and Potential. Critical Reports on Applied Chemistry, Vol. 13, pp. 79–114. Galliard, T., Ed., Wiley, New York.
  • Colussi, R., Pinto, V. Z., Mello El Halal, S. L., Vanier, N. L., Villanova, F. A., Marquez e Silva, R., Zavareze, E. D. R. and Dias, A. R. G. (2014). Structural, morphological and physicochemical properties of acetylated high-, medium-, and low- amylose rice starches. Carbohyd. Polym. 103:405–413.
  • Davies, L. (1995). Starch composition, modification, applications and nutritional value in foodstuffs. Food Technol. Europe 617:44–52.
  • Diop, C., Li, H. L., Xie, B. J. and Shi, J. (2011). Effect of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chem. 126:1662–1669.
  • Emeje, M., Kalita, R., Isimi, C., Buragohain, A., Kunle, O. and Ofoefule, S. (2012). Synthesis, physicochemical characterization and functional properties of an esterified starch from an underutilized source in Nigeria. Afr. J. Food, Agr. Nutr. Dev. 12:7001–7018.
  • Fechner, P..M., Waterwig, S., Kiesow, A., Heilman, A. et al. (2005). Influence of water on molecular and morphological structure of various starches and starch derivatives. Starch-Stärke 57:605–615.
  • Ferrini, L. M. K., Rocha, T. S., Demiate, I. M. and Franco, C. M. L. (2008). Effect of acid-methanol treatment on the physicochemical and structural characteristics of cassava and maize starches. Starch–Stärke 60:417–425.
  • Fornal, J., Sadowski, J., Blaszczak, W., Jelinski, T., Stasiak, M., Molenda, M., et al. (2012). Influence of some chemical modification on the characteristics of potato starch powder. J. Food Eng. 108:515–522.
  • French, D. (1981). Starch Chemistry and Technology, Whistler, R., Paschell, E. F. and BeMiller, J. N., Eds., Academic Press, New York.
  • Gallant, D. J., Bouchet, B., Buleon, A. and Perez, S. (1992). Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46:3–16.
  • Gerard, C., Colonna, P., Buleon, A. and Planchot, V. (2001). Amylolysis of maize mutant starches. J. Sci. Food Agr. 81:1281–1287.
  • Gharsallaoui, A., Roudant, G., Chambin, O., Voilley, A. and Saurel, R. (2007). Application of spray drying in microencapsulation of food ingrediants: An overview. Food Res. Int. 40:1107–1121.
  • Grag, S. and Jana, A..K. (2011). Characterization and evaluation of acetylated starch with different aceyl groups and degrees of substitution. Carbohyd. Polym. 83:1623–1630.
  • Guerra-Della Valle, D., Sanchev-Rivera, M. M., Zamudio-Flores, P. B., Mendez-Montealvo, G. and Bello-Perez, L..A. (2009). Effect of chemical modification type on physicochemical and rheological characteristics of banana starch. Revista Mexicana de Ingenieria Quimica 8:197–203.
  • Gui-Jie, M., Peng, W., Xiang-Sheng, M., Xing, Z. and Tong, Z. (2006). Cross linking of corn starch with sodium trimetaphosphate in solid state by microwave irradiation. J. Appl. Polym. Sci. 102:5854–5860.
  • Gunaratne, A. and Corke, H. (2007). Effect of hydroxypropylation and alkaline treatment in hydroxypropylation on some structural and physicochemical properties of heat–moisture treated wheat, potato and waxy maize starches. Carbohyd. Polym. 68:305–313.
  • Gunaratne, A. and Hoover, R. (2002). Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohyd. Polym. 49:425–437.
  • Han, H. L. and Sosulski, F. W. (1998). Cationization of potato and tapioca starches using an aqueous alcoholic-alkaline process. Starch–Stärke 50:487–492.
  • Han, Z., Zeng, X., Zhang, B. and Yu, S. (2009). Effect of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng. 93:318–323.
  • Han, Z., Zeng, X..A., Yu, S..J. and Chen, X..D. (2009). Effects of pulsed electric fields (PEF) treatment on physicochemical properties of potato starch. Innovative Food Sci. Emerg. Technol. 10:481–485.
  • Heinze, T., Haack, V. and Rensing, S. (2004). Starch derivatives of high degree of functionalization. 7. Preparation of cationic 2-hydroxypropyltrimethyl ammonium chloride starch. Starch-Stärke 56:288–296.
  • Hodge, S. and Osman, M. (1976). Food Chemistry, Principles of Food Science Part 1, pp. 102–114. Fennema, O. R., Ed., Mercel Dekker, New York.
  • Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohyd. Polym. 45:253–267.
  • Hoover, R. (2010). The impact of heat–moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit. Rev. Food Sci. Nutr. 50:835–847.
  • Hoover, R. and Manuel, H. (1996). The effect of heat–moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J. Cereal Sci. 23:153–162.
  • Hoover, R. and Vasanthan, T. (1994). The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches. J. Food Biochem. 17:303–325.
  • Hoover, R. and Vasanthan, T. (1994). Effect of heat–moisture treatment on the structure and physicochemical properties of cereal, legume, and tuber starches. Carbohyd. Res. 252:33–53.
  • Hu, X. T., Xu, X. M., Jin, Z. Y., Tian, Y. Q., Bai, Y. X. and Xie, Z..J. (2011). Retrogradation properties of rice starch gelatinized by heat and high hydrostatic pressure (HHP). J. Food Eng. 106:262–266.
  • Huang, J., Schols, H., Jin, Z., Sulmann, E. and Voragen, A..G..J. (2007). Pasting properties and (chemical) fine structure of acetylated yellow pea starch is affected by acetylation reagent type and granule size. Carbohyd. Polym. 68:397–406.
  • Huang, Z.-Q., Lu, J.-P., Li, X.-H. and Tong, Z. F. (2007). Effect of mechanical activation on physicochemical properties and structure of cassava starch. Carbohyd. Polym. 68:128–135.
  • Huber, K. C. and BeMiller, J. N. (2000). Channels of maize and sorghum starch granules. Carbohyd. Polym. 41:269–276.
  • Iida, Y., Tuziuti, T., Yasui, K., Towatu, A. and Kozuka, T. (2008). Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Sci. Emerging Techno. 9:140–146.
  • Jacobs, H. and Delcour, J. A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. J. Agricultural Food Chem. 46:2895–2905.
  • Jane, J., Xu, A., Radosavljevic, M. and Seib, P..A. (1992). Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 69:405–409.
  • Jane, J.-L., Kasemsuwan, T., Leas, S., Zobel, H. and Robyt, J. F. (1994). Anthology of starch granule morphology by scanning electron microscopy. Starch-Stärke 46:121–129.
  • Jayakody, I. and Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical sources: A review. Carbohyd. Polym. 74:691–703.
  • Jiranuntakul, W., Puttanlek, C., Rungsardthong, V., Puncha-Arnon, S. and Uttapap, D. (2001). Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng. 104:246–258.
  • Jobling, S. (2004). Improving starch for food and industrial applications. Current Opinion Plant Biology 7:210–218.
  • Jyothi, A. N., Moorthy, S. N. and Rajasekharan, K. N. (2007). Studies on the synthesis and properties of hydroxypropyl derivatives of cassava (Manihot esculenta Crantz) starch. J. Sci. Food Agr. 87:1964–1972.
  • Jyothi, A. N., Moorthy, S. N. and Rajasekharan, V. (2006). Effects of cross linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch-Stärke 58:292–299.
  • Karapantsios, T. D. (2006). Conductive drying kinetics of pregelatinized starch thin films. J. Food Eng. 76:477–489.
  • Kaur, B., Ariffin, F., Bhat, R. and Karim, A..A. (2012). Progress in starch modification in the last decade. Food Hydrocolloids 26:398–404.
  • Kaur, L., Singh, J. and Singh, N. (2006). Effect of cross linking on some properties of potato starches. J. Sci. Food Agric. 86:1945–1954.
  • Khunae, P., Tran, T. and Sirivongpaisal, P. (2007). Effect of heat moisture on structural and thermal properties of rice starch differing in amylose content. Starch-Stärke 59:593–599.
  • Klein, B., Vanier, N. L., Moomand, K., Pinto, V. Z., Colussi, R., Zavareze, E. D. R., et al. (2014). Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chem. 155:167–173.
  • Knorr, D. and Angersbach, A. (1998). Impact of high intensity electric field pulses on plant membrance permeabilisation. Trends Food Sci. Technol. 9:185–191.
  • Kohyama, K. and Sasaki, T. (2006). Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50°C. Carbohyd. Polym. 63:82–88.
  • Konowal, E., Lewandowicz, G., Le Thanh-Blicharz, J. and Prochaska, K. (2012). Physicochemical characteristics of enzymatically hydrolyzed derivatives of acetylated starch. Carbohyd. Polym. 87:1333–1341.
  • Koo, S..H., Lee, K..Y. and Lee, H..G. (2010). Effect of cross linking on physicochemical and physiological properties of corn starch. Food Hydrocolloids 24:619–625.
  • Krentz, D..O., Lohmann, C., Schwarz, S. and Bratskaya, S. et al. (2006). Properties and flocculation efficiency of highly cationized starch derivatives. Starch-Starke 58:161–169.
  • Kuakpetoon, D. and Wang, Y.-J. (2006). Structural characteristics and physicochemical properties of oxidized starches varying in amylose content. Carbohyd. Res. 341:1896–1915.
  • Laovachirasuwan, P., Peeerapattana, J., Srijesdaruk, V., Chitropas, P. and Otsuka, M. (2010). The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloid. Surf. B: Biointerfaces 78:30–35.
  • Lawal, O. (2004). Composition, physicochemical properties and retrogradation characteristics of native, oxidized, acetylated and acid thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chem. 87:205–218.
  • Lawal, O. S., Adebowale, K. O., Ogunsanwo, B. M., Barba, L. L. and Ilo, N. S. (2005). Oxidized and acid thinned starches derivatives of hybrid maize: Functional characteristics wide-angle X-ray diffractometry and thermal properties. Int. J. Biol. Marcomoleclues 35:71–79.
  • Lewandowicz, G. and Soral-Smietana, M. (2004). Starch modification by iterated syneresis. Carbohyd. Polym. 56:403–413.
  • Li, Y. Q., Chen, Q., Liu, X. H. and Chen, Z. X. (2008). Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem. 109:408–414.
  • Lim, S.-T., Han, J.-A., Lim, H. S. and BeMiller, J. N. (2002). Modification of starch by dry heating with ionic gums. Cereal Chem. 79:601–606.
  • Lin, J. H., Wang, S. W. and Chang, Y. H. (2008). Effect of molecular size on gelatinization thermal properties before and after annealing of rice starch with different amylose contents. Food Hydrocolloids 22:156–163.
  • Liu, C. M., Zhang, Y. J., Liu, W., Wan, J., Wang, W. H. and Wu, L., et al. (2011). Preparation, physico-chemical and texture properties of texturized rice produced by improved extrusion cooking technology. J. Cereal Sci. 54:473–480.
  • Lopez, O. V., Zaritzky, N. E., Grossmann, M. V. E. and Garcia, M. A. (2013). Acetylated and native corn starch blend films produced by blown extrusion. J. Food Eng. 116:286–297.
  • Lui, H. and Corke, H. (1999). Physical properties of cross linked and acetylated normal and waxy rice starch. Starch-Stärke 51:249–252.
  • Luo, Z. and Zhou, Z. (2012). Homogenous synthesis and characterization of starch acetates in ionic liquid without catalysts. Starch/Stärke 64:37–44.
  • Luo, Z.-G. and Shi, Y.-C. (2012). Preparation of acetyated waxy, normal and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties. J. Agr. Food Chem. 60:9468–9475.
  • Maache-Rezzoug, Z., Maugard, T., Zarguili, I., Bezzine, E., et al. (2009). Effect of instantaneous controlled pressure drop (DIC) on Physicochemical properties of wheat, waxy and standard maize starches. J. Cereal Sci. 49:346–353.
  • Majzoobi, M., Radi, M., Farahnaky, A., Jamalian, J., Tongdang, T. and Mesbahi, G. (2011). Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. J. Agr. Sci. Technol. 13:193–202.
  • Marselles-Fontanet, A. R. and Martin-Belloso, O. (2007). Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. J. Food Eng. 83:452–462.
  • Mbougueng, P. D., Tenin, D., Scher, J. and Tchiegang, C. (2012). Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J. Food Eng. 108:320–326.
  • Mello El Halal, S. L., Colussi, R., Pinto, V. Z., Bartz, J., Radunz, M., Carreno, N. L. V., Dias, A. R. G. and Zavareze, E. D. R. (2015). Structure, morphology and functionality of acetylated and oxidized barley starches. Food Chem. 168:247–256.
  • Mina, J., Valadez-Gonzales, A., Herrera-Franco, P., Zuluaga, F. and Delvasto, S. (2011). Physicochemical characterization of neutral and acetylated thermoplastic cassava starch. Dyna 166:166–173.
  • Moorthy, S. N. (1985). Acetylation of cassava starch using perchloric acid catalysis. Starch–Stärke 37:307–308.
  • Morikawa, K. and Nishinari, K. (2000a). Effects of concentration dependence of retrogradation behavior of dispersion for native and chemically modified potato starch. Food Hydrocolloids 14:395–401.
  • Morikawa, K. and Nishinari, K. (2000b). Rheological and DSC studies of gelatinization of chemically modified starch heated at various temperatures. Carbohyd. Polym. 43:241–247.
  • Morrison, W. R., Tester, R. F., Snape, C. E., Law, R. and Gidley, M..J. (1993). Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem. 70:385–391.
  • Munoz-Bonilla, A. and Fernandez-Garcia, M. (2012). Polymeric materials with antimicrobial activity. Prog. Polymer Sci. 37:281–339.
  • Murua-Pagola, B., Beristain-Guevara, C. L. and Martinez-Bustos, F. (2009). Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell material for encapsulation of flavoring agents by spray drying. J. Food Eng. 91:380–386.
  • Nabeshima, E. H. and Grossmann, M. V. E. (2001). Functional properties of pregelatinized and cross-linked cassava starch obtained by extrusion with sodium trimetaphosphate. Carbohyd. Polym. 45:347–353.
  • Nemtanu, M. R. and Minea, R. (2006). Functional properties of corn starch treated with corona electrical discharges. Macromol. Symp. 245–246:525–528.
  • Osundahunsi, O. F. and Mueller, R. (2011). Functional and dynamic rheological properties of acetylated starches from two cultivars of cassava. Starch–Stärke 63:3–10.
  • Osunsami, A. T., Akingbala, J. O. and Oguntimein, G. B. (1989). Effect of storage on starch content and modification of cassava starch. Starch–Stärke 41:54–57.
  • Perez, S. and Bertoft, E. (2010). The molecular structure of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 62:389–420.
  • Piacquadio, P., Stefano, G. D. and Sciancalepore, V. (2000). The effect of heating at sub-gelatinization temperature on enzymatic digestibility of corn starch. Starch-Stärke 52:345–348.
  • Pinto, V. Z., Vanier, N. L., Klein, B., Zavareze, E. D. R., Elias, M..C., Gutkoski, L. C., et al. (2012). Physicochemical, crystallinity, pasting and thermal properties of heat–moisture-treated pinhao starch. Starch-Stärke 64:855–863.
  • Pitchon, E., O'Rourke, J. D. and Joseph, T. H. (1981). Process for cooking or gelatinizing materials. U.S. Patent, 4280851.
  • Pukkahuta, C., Shobsngob, S. and Varavinit, S. (2007). Effect of osmotic pressure on starch: New method of physical modification of starch. Starch-Stärke 58:78–90.
  • Qi, X., Tester, R. F., Snape, C. E. and Ansell, R. (2005). The effect of annealing on structure and gelatinization of maize starches with amylose dosage series. Prog. Food Biopolymers Res. 1:1–27.
  • Qiu, S., Li, Y., Chen, H., Liu, Y. and Yin, L. (2014). Effects of high pressure homogenization on thermal and electrical properties of wheat starch. J. Food Eng. 128:53–59.
  • Radosta, S., Vorwery, W., Ebert, A, Begli, A. H. et al. (2004). Properties of low-substituted cationic starch derivatives prepared by different derivatization processes. Starch-Stärke 56:277–287.
  • Raina, C. S., Singh, S., Bawa, A. S. and Saxena, D. C. (2006). Some characteristics of acetylated, cross-linked and dual modified Indian rice starches. Eur. Food Res. Technol. 223:561–570.
  • Raja, K. C. M. (1992). Studies on alkali-modified cassava starch-changes of structural and enzyme (α-amylase) susceptibility properties. Starch–Stärke 44:133–136.
  • Ratnayake, W. S. and Jackson, D. S. (2008). Phase transition of cross-linked and hydroxy-propylated corn (Zea mays L.) starches. LWT-Food Sci. Technol. 41:346–358.
  • Reddy, I. and Seib, P..A. (2000). Modified waxy wheat starch compared to modified waxy corn starch. J. Cereal Sci. 31:25–39.
  • Ren, G. Y., Li, D., Wang, L. J., Özkan, N. and Mao, Z. H. (2010). Morphological properties and thermo-analysis of micronized cassava starch. Carbohyd. Polym. 79:101–105.
  • Robert, P., Garcia, P., Reyes, N., Chavez, J. and Santos, J. (2012). Acetylated starch and inulin as encapsulating agents for gallic acid and their release behavior in a hydrophilic system. Food Chem. 134:1–8.
  • Rolland-Sabate, A., Sanchez, T., Buléon, A., Colonna, P., Jaillais, B., Ceballos, H.,et al. (2012). Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocolloids 27:161–174.
  • Rubens, R. W. (1992). Method and apparatus for cooking and spray drying starch. U.S. Patent, 5149799.
  • Rutenberg, M. W. and Solarek, D. (1984). Starch derivatives: Production and uses. In: Starch: Chemistry and Technology, pp. 312–388, Whistler, R. L., BeMiller, J. N. and Paschall, E. F., Eds., Academic Press, London.
  • Sakai-kato, K., Kato, M., Nakajima, T., Toyo'oka, T. et al. (2006). Cationic starch derivatives as dynamic additives for protein analysis in capillary electrophoresis. J. Chromatogr. A 1111:127–132.
  • Sampedro, F., Rivas, A., Rodrigo, D., Martinz, A. and Rodrigo, M. (2007). Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. J. Food Eng. 80:931–938.
  • Sanchev-Rivera, M. M., Garicia-Suarez, F. T. L. and Bello-Perez, L. A. (2005). Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohyd. Polym. 62:50–56.
  • Sandhu, K. S., Kaur, M., Singh, N. and Lim, S.-T. (2008). A comparison of native and oxidized normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Sci. Technol. 41:1000–1010.
  • Sangseethong, K., Lertphanich, S. and Sriroth, K. (2009). Physicochemical properties of oxidized cassava starch prepared under various alkalinity levels. Starch-Stärke 61:92–100.
  • Sangseethong, K., Termvejsayanon, N. and Sriroth, K. (2010). Characterization of phys-icochemical properties of hypochlorite- and peroxide-oxidized cassava starches. Carbohyd. Polym. 82:446–453.
  • Sanguanpong, V., Chotineeranat, S., Piyachomkwan, K., Oates, C. G., Chinachoti, P. and Sriroth, K. (2003). Hydration and physicochemical properties of small-particle cassava starch. J. Sci. Food Agr. 83:123–132.
  • Santacruz, S. (2014). Characterization of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution. Carbohyd. Polym. 106:166–171.
  • Schmitz, C. S., De Simas, K. N., Santos, K., Joao, J. J., Amboni, R. D. D. M. C. and Amante, E. R. (2006). Cassava starch functional properties by etherification-hydroxypropylation. Int. J. Food Sci. Technol. 41:681–687.
  • Seker, M. and Hanna, M..A. (2006). Sodium hydroxide and trimetaphosphate levels affect properties of starch extrudates. Ind. Crop Prod. 23:249–255.
  • Shanshan, L., Jiyou, G., Jun, C., Haiyan, T. and Yanhua, Z. (2015). Effect of annealing on the thermal properties of poly (lactic acid)/ starch blends. Int. J. Biol. Macromol. 74:297–303.
  • Shi, Y. C. (2008). Two- and multi-step annealing of cereal starches in relation to gelatinization. Agr. Food Chem. 56:1097–1104.
  • Shin, S. I., Kim, H. J., Ha, H. J., Lee, S. H. and Moon, T. W. (2005). Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch. Starch-Stärke 57:421–430.
  • Shujan, W., Jinrong, W., Jinglin, Y. and Shuo, W. (2014). A comparative study of annealing of waxy, normal and high amylose maize starches: The role of amylose molecule. Food Chem. 164:332–338.
  • Siau, C..L., Karim, A..A., Norziah, M. H. and Wan Rosli, W. D. (2004). Effect of cationization of DSC thermal profiles pasting and emulsifying properties of sago starch. J. Sci. Food Agr. 84:1722–1730.
  • Singh, A. V. and Nath, L. K. (2012). Synthesis and evaluation of physicochemical properties of cross-linked sago starch. Int. J. Biol. Macromol. 50:14–18.
  • Singh, H., Chang, Y. H., Sodhi, N. S. and Singh, N. (2011). Influence of prior acid treatment on physicochemical and structural properties of acetylated sorghum starch. Starch-Stärke 63:291–301.
  • Singh, J. and Singh, N. (2003). Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches. Food Hydrocolloids 17:63–72.
  • Singh, J., Kaur, L. and McCarthy, O. J. (2007). Factors influencing the physicochemical, morphological, thermal and rheological properties of some chemical modified starches for food applications—A review. Food Hydrocolloids 21:1–22.
  • Smith, A. M. (2001). The biosynthesis of the starch granule. Biomacromolecules 2:335–341.
  • Srichuwong, S., Sunarti, T. C., Mishima, T., Isono, N. and Hisamatsu, M. (2005). Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohyd. Polym. 60:529–538.
  • Steeneken, P. A. M. and Woortman, A. J. J. (2009). Superheated starch: A novel approach towards spreadable particle gels. Food Hydrocolloids 23:394–405.
  • Stute, R., Klingler, R. W., Boguslawski, S., Eshtiaghi, M. N. and Knorr, D. (1996). Effect of high pressure treatment on starches. Starch-Stärke 48:399–408.
  • Sui, Z., Shah, A. and BeMiller, J..N. (2011). Cross-linked and stabilized in-kernel heat–moisture-treated and temperature-cycled normal maize starch and effects of reaction conditions on starch properties. Carbohyd. Polym. 86:1461–1467.
  • Szymonska, J., Krok, F., Komorowska-Czepirska, E., & Rebilas, K. (2003). Modification of granular potato starch by multiple deep-freezing and thawing. Carbohyd. Polym. 52:1–10.
  • Szymonska, J., Krok, F. and Tomasik, P. (2000). Deep-freezing of potato starch. Int. J. Biol. Macromol. 27:307–314.
  • Takahashi, S., Maningat, C. C. and Seib, P. A. (1989). Acetylated and hydroxypropylated wheat starch: Paste and gel properties compared with modified maize and tapioca starches. Cereal Chem. 66:499–506.
  • Tester, R. F. and Debon, S..J..J.(2000). Annealing of starch: A review. Int. J. Biol. Macromol. 27:1–12.
  • Tester, R. F., Karkalas, J. and Qi, X. (2004). Starch-composition, fine structure and architecture. J. Cereal Chem. 39:151–165.
  • Tharanathan, R. N. (2005). Starch-value addition by modification. Critical Rev. Food Sci. Nutr. 45:371–384.
  • Thiranthumthavorn, D. and Charoenrein, S. (2005). Thermal and pasting properties of acid treated rice starches. Starch-Stärke 57:217–222.
  • Tian, Y., Li, D., Zhao, J., Xu, X. and Jin, Z. (2014). Effects of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches. Food Chem. 152:225–229.
  • Torregrosa, F., Esteve, M. D., Frigola, A. and Cortes, C. (2006). Ascorbic acid stability during refrigerated storage of orange carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J. Food Eng. 73:339–345.
  • Tran, T., Piyachomkwan, K. and Sriroth, K. (2007). Gelatinization and thermal properties of modified cassava starches. Starch–Stärke 59:46–55.
  • Vallons, K. J. R. and Arendt, E..K. (2009). Effects of high pressure and temperature on buckwheat starch characteristics. Eur. Food Res. Technol. 230:343–351.
  • Valodkar, M. and Thakore, S. (2011). Organically modified nanosized starch derivatives as excellent reinforcing agents for bionanocomposites. Carbohyd. Polym. 86:1244–1251.
  • Varavinit, S., Paisanjit, W., Tukomane, T. and Pukkahuta, C. (2007). Effect of osmotic pressure on the cross-linking reaction of tapioca starch. Starch-Stärke 59:290–296.
  • Veira, F. C. and Sarmento, S. B. S. (2008). Heat-moisture treatment and enzymatic digestibility of Peruvian carrot, sweet potato and ginger starches. Starch-Stärke 60:223–232.
  • Vermeylen, R., Goderis, B. and Delcour, J. A. (2006). An X-ray study of hydrothermally treated potato starch. Carbohyd. Polym. 64:364–375.
  • Vlachos, N..A. and Karapantsios, T..D. (2000). Water content measurement of thin sheet starch products using a conductance technique. J. Food Eng. 46:91–98.
  • Wang, L. and Wang, Y. J. (2001). Structures and physicochemical properties of acid-thermal corn, potato and rice starches. Starch-Stärke 53:570–576.
  • Wang, Y.-J. and Wang, L. (2003). Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite. Carbohyd. Polym. 52:207–217.
  • Watcharatewinkul, Y., Uttapap, D. and Rungsardthong, V. (2010). Enzyme digestibility and acid/shear stability of heat-moisture treated canna starch. Starch-Stärke 62:205–216.
  • Wattanachant, S., Muhammad, S. K. S., Mat Hashim, D. and Rahman, R. A. (2002). Suitability of sago starch as a base for dual modification. Songklanakarin J. Sci. Technol. 24:431–438.
  • Weigh, T. A., Keto, K. L., Donald, A. M., Gidley, M. J., et al. (2000). Side-chain liquid-crytalline model for starch. Starch-Stärke 52:450–460.
  • Wongsagonsup, R., Pujchakarn, T., Jitrakbumrung, S., Chaiwat, W., Fuongfuchat, A., Varavinit, S., Dangtip, S. and Suphantharika, M. (2014). Effect of cross linking on physicochemical properties of tapioca starch and its application in soup product. Carbohyd. Polym. 101:656–665.
  • Wurzburg, O. B. (1986). Nutritional aspects and safety of modified food starches. Nutr. Rev. 44:74–79.
  • Wuttisela, K., Triampo, W. and Triampo, D. (2009). Chemical force mapping of phosphate and carbon on acid-modified tapioca starch surface. Int. J. Biol. Marcomoleclues 44:86–91.
  • Xia, L., Wenyuan, G, Qianqian, J., Luqi, H. and Changxiao, L. (2011). Study on morphology, crystalline structure and thermal properties of Fritillaria ussuriensis Maxim. Starch acetates with different degree of substitution. Starch-Stärke 63:24–31.
  • Xie, S. X., Liu, Q. and Cui, S. W. (2005). Starch modifications and application. In: Food Carbohydrates, Cui, S. W., Ed., CRC Press, Boca Raton, FL.
  • Xu, Y., Miladinov, V. and Hanna, M..A. (2004). Synthesis and characteristics of starch acetates with high substitution. Cereal Chem. 81:735–740.
  • Yan, H. and Zhengbiao, G..U. (2010). Morphology of modified starches prepared by different methods. Food Res. Int. 43:767–772.
  • Zamudio-Flores, P. B., Torres, A. V., Salgado-Delgado, R. and Bello-Perez, L. A. (2010). Influence of oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch/chitosan blend films. J. Appl. Polym. Sci. 115:991–998.
  • Zamudio-Flores, P. B., Vergas-Torres, A., Gutierrez, F. and Bello-Perez, L..A. (2010). Physicochemical characterization of dually-modified banana starch. Agrociencia 44:283–295.
  • Zarguili, I., Maache-Rezzoug, Z., Loisel, C. and Doublier, J.-L. (2006). Influence of DIL hydrothermal process conditions on the gelatinization properties of standard maize starch. J. Food Eng. 77:454–461.
  • Zhang, L., Xie, W., Zhao, X., Liu, Y. and Gao, W. (2009). Study on morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochimica Acta 495:57–62.
  • Zhang, L., Zuo, B., Wu, P., Wang, Y. and Gao, W. (2012). Ultrasound effects on the acetylation of dioscorea starch isolated from Dioscorea Zingiberensis C. H. Wright. Chemical Engineering and Processing. Process Intensification 54:29–36.
  • Zhang, Y., Liu, W., Liu, C., Luo, S., Li, T., Liu, Y., Wu, D. and Zuo, Y. (2014). Retrogradation behavior of high amylose rice starch prepared by improved extrusion cooking technology. Food Chem. 158:255–261.
  • Zhongquan, S., Tianming, Y., Yue, Z., Xiaoting, Y., Xiangli, K. and Lianzhong, A. (2015). Effect of heat moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: Moisture and length of heating. Food Chem. 173:1125–1132.
  • Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modification and applications of starch. Trends Food Sci. Technol. 43(1). doi: 10.1016/j.tifs.2014.12.008.
  • Zieba, T., Gryszkin, A. and Kapelko, M. (2014). Selected properties of acetylated starch. Carbohyd. Polym. 99:687–691.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.