758
Views
31
CrossRef citations to date
0
Altmetric
Article

Influence of enzymes and technology on virgin olive oil composition

, &

References

  • Alba, J., Izquierdo, J. R., Gutiérrez, F. and Vossen, P. (2008). Aceite de Oliva Virgen. Análisis Sensorial, 2nd ed. Editorial Agrícola Española, S.A., Madrid.
  • Alba Mendoza, J., Ruiz Gomez, A. and Hidalgo Casado, F. (1990). Utilización de enzimas en la extracción del aceite de oliva (The use of enzymes in olive oil extraction). Alimentación, Equipos y Tecnología. 9:63–78.
  • Alba-Mendoza, J., Moyano Pérez, M. J., Martinéz Román, F. and Hidalgo Casado, F. (2005). Influencia de la granulometria y del contenido de carbonatos del talco sobre el rendimiento en aceite de oliva virgen. (Effect of particle size and carbonate content of talc in virgin olive oil extraction yield). In: XII Simposium Cientifico-Técnico Expoliva 2005, Jaen.
  • Alba-Mendoza, J., Ruiz-Gomez, M. A., Prieto-Gonzalez, M. C. and Gutierrez-Rosales, F. (1987). Efficacy of the enzyme preparation ‘Roehament O’ in the technology of olive-oil. Composition and organoleptic evaluation of the oil produced. Grasas Y Aceites. 38:271–277.
  • Aliakbarian, B., De Faveri, D., Converti, A. and Perego, P. (2008). Optimisation of olive oil extraction by means of enzyme processing aids using response surface methodology. Biochem. Eng. J. 42:34–40.
  • Aliakbarian, B., Dehghani, F. and Perego, P. (2009). The effect of citric acid on the phenolic contents of olive oil. Food Chem. 116:617–623.
  • Amiot, M. J. (2014). Olive oil and health effects: From epidemiological studies to the molecular mechanisms of phenolic fraction. OCL. 21:D512.
  • Amirante, P., Arena, G., Clodoveo, M. L., Dugo, G., Leone, A., Lo Turco, V., Pollicino, D. and Tamborrino, A. (2007). Virgin olive oil production from de-stoned pastes: A new technology to improve the shelf life of the product. Italian J. Food Sci. 19:116–120.
  • Amirante, P., Clodoveo, M. L., Dugo, G., Leone, A. and Tamborrino, A. (2006). Advance technology in virgin olive oil production from traditional and de-stoned pastes: Influence of the introduction of a heat exchanger on oil quality. Food Chem. 98:797–805.
  • Amirante, P., Clodoveo, M. L., Tamborrino, A., Leone, A. and Paice, A. G. (2010). Influence of the crushing system: Phenol content in virgin olive oil produced from whole and de-stoned pastes. In: Olives and Olive Oil in Health and Disease Prevention, pp. 69–76. Victor, R. P. and Watson, R. R., Eds., Elsevier Inc.
  • Angerosa, F. (2000). Sensory Quality of Olive oils. In: Handbook of Olive Oil, pp. 355–392. Harwood, J. and Aparicio, R., Eds., Aspen Publishers, Maryland.
  • Angerosa, F. (2002). Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 104:639–660.
  • Angerosa, F. and Basti, C. (2003). The volatile composition of samples from the blend of monovarietal olive oils and from the processing of mixtures of olive fruits. Eur. J. Lipid Sci. Technol. 105:327–332.
  • Angerosa, F., Basti, C. and Vito, R. (1999). Virgin olive oil volatile compounds from lipoxygenase pathway and characterization of some italian cultivars. J. Agric. Food Chem. 47:836–839.
  • Angerosa, F., Mostallino, R., Basti, C. and Vito, R. (2000). Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 68:283–287.
  • Angerosa, F., Mostallino, R., Basti, C. and Vito, R. (2001). Influence of malaxation temperature and time on the quality of virgin olive oils. Food Chem. 72:19–28.
  • Angerosa, F., Servili, M., Selvaggini, R., Taticchi, A., Esposto, S. and Montedoro, G. (2004). Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 1054:17–31.
  • Anthon, G. E. and Barrett, D. M. (2003). Thermal inactivation of lipoxygenase and hydroperoxytrienoic acid lyase in tomatoes. Food Chem. 81:275–279.
  • Aparicio, R. and Luna, G. (2002). Characterisation of monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 104:614–627.
  • Aparicio, R. and Morales, M. T. (1998). Characterization of olive ripeness by green aroma compounds of virgin olive oil. J. Agric. Food Chem. 46:1116–1122.
  • Aparicio, R., Morales, M. T. and García-González, D. L. (2012). Towards new analyses of aroma and volatiles to understand sensory perception of olive oil. Eur. J. Lipid Sci. Technol. 114:1114–1125.
  • Aparicio, R., Rocha, S. M., Delgadillo, I. and Morales, M. T. (2000). Detection of rancid defect in virgin olive oil by the electronic nose. J. Agric. Food Chem. 48:853–860.
  • Belitz, H., Grosh, D. W. and Shieberle, P. (2009). Food Chemistry. Springer-Verlag Berlin Heidelberg, Leipzig.
  • Ben-David, E., Kerem, Z., Zipori, I., Weissbein, S., Basheer, L., Bustan, A. and Dag, A. (2010). Optimization of the Abencor system to extract olive oil from irrigated orchards. Eur. J. Lipid Sci. Technol. 112:1158–1165.
  • Berenguer, M. J., Vossen, P. M., Grattan, S. R., Connell, J. H. and Polito, V. S. (2006). Tree irrigation levels for optimum chemical and sensory properties of olive oil. HortScience. 41:427–432.
  • Berlioz, B., Cordella, C., Cavalli, J.-F., Lizzani-Cuvelier, L., Loiseau, A.-M. and Fernandez, X. (2006). Comparison of the amounts of volatile compounds in French Protected Designation of Origin virgin olive oils. J. Agric. Food Chem. 54:10092–10101.
  • Boselli, E., Di Lecce, G., Strabbioli, R., Pieralisi, G. and Frega, N. G. (2009). Are virgin olive oils obtained below 27°C better than those produced at higher temperatures? LWT - Food Sci. Technol. 42:748–757.
  • Boskou, D. (2006). Storage and packing. In: Olive Oil Chemistry and Technology, 2nd ed., pp 233–242. Boskou, D., Ed., AOCS Press, Ilinois.
  • Brenes, M., García, A., García, P. and Garrido, A. (2001). Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J. Agric. Food Chem. 49:5609–5614.
  • Brenes-Balbuena, M., Garcia-Garcia, P. and Garrido-Fernandez, A. (1992). Phenolic compounds related to the black color formed during the processing of ripe olives. J. Agric. Food Chem. 40:1192–1196.
  • Bubola, K. B., Koprivnjak, O. and Sladonja, B. (2012). Influence of filtration on volatile compounds and sensory profile of virgin olive oils. Food Chem. 132:98–103.
  • Campeol, E., Flamini, G., Cioni, P. L., Morelli, I., Cremonini, R. and Ceccarini, L. (2003). Volatile fractions from three cultivars of Olea europaea L. collected in two different seasons. J. Agric. Food Chem. 51:1994–1999.
  • Canamasas, P. and Ravetti, L. (2011). Evaluation of processing aids for olive oil extraction and quality improvement. Rural Industries Research and Development Corporation., Canberra.
  • Caponio, F., Monteleone, J. I., Martellini, G., Summo, C., Paradiso, V. M. and Pasqualone, A. (2014a). Effect of talc addition on the extraction yield and quality of extra virgin olive oils from coratina cultivar after production and during storage. J. Oleo Sci. 63:1125–1132.
  • Caponio, F., Summo, C., Paradiso, V. M. and Pasqualone, A. (2014b). Influence of decanter working parameters on the extra virgin olive oil quality. Eur. J. Lipid Sci. Technol. 116:1626–1633.
  • Carrapiso, A. I., García, A., Petrón, M. J. and Martín, L. (2013). Effect of talc and water addition on olive oil quality and antioxidants. Eur. J. Lipid Sci. Technol. 115:583–588.
  • Cavalli, J.-F., Fernandez, X., Lizzani-Cuvelier, L. and Loiseau, A.-M. (2004). Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem. 88:151–157.
  • Cerretani, L., Baccouri, O. and Bendini, A. (2008a). Improving of oxidative stability and nutritional properties of virgin olive oils by fruit de-stoning. Agro Food Industry Hi-Tech. 19:21–23.
  • Cerretani, L., Bendini, A., Del Caro, A., Piga, A., Vacca, V., Caboni, M. F. and Toschi, T. G. (2006). Preliminary characterisation of virgin olive oils obtained from different cultivars in Sardinia. Eur. Food Res. Technol. 222:354–361.
  • Cerretani, L., Bendini, A., Poerio, A. and Toschi, T. G. (2008b). Citric acid as co-adjuvant: Improvement of the antioxidant activity of edible olive oils. Agro Food Industry Hi-Tech. 19:64–66.
  • Cerretani, L., Salvador, M. D., Bendini, A. and Fregapane, G. (2008c). Relationship between sensory evaluation performed by italian and spanish official panels and volatile and phenolic profiles of virgin olive oils. Chem. Percept. 1:258–267.
  • Cert, A., Alba, J., Leon Camacho, M., Moreda, W. and PerezCamino, M. C. (1996). Effects of talc addition and operating mode on the quality and oxidative stability of virgin olive oils obtained by centrifugation. J. Agric. Food Chem. 44:3930–3934.
  • Chiacchierini, E., Mele, G., Restuccia, D. and Vinci, G. (2007). Impact evaluation of innovative and sustainable extraction technologies on olive oil quality. Trend Food Sci. Technol. 18:299–305.
  • Chih, H. J., James, A. P., Jayasena, V. and Dhaliwal, S. S. (2012). Addition of enzymes complex during olive oil extraction improves oil recovery and bioactivity of Western Australian Frantoio olive oil. Int. J. Food Sci. Technol. 47:1222–1228.
  • Ciafardini, G. and Zullo, B. A. (2002). Microbiological activity in stored olive oil. Int. J. Food Microbiol. 75:111–118.
  • Ciafardini, G., Zullo, B. A., Cioccia, G. and Iride, A. (2006a). Lipolytic activity of Williopsis californica and Saccharomyces cerevisiae in extra virgin olive oil. Int. J. Food Microbiol. 107:27–32.
  • Ciafardini, G., Zullo, B. A. and Iride, A. (2006b). Lipase production by yeasts from extra virgin olive oil. Food Microbiol. 23:60–67.
  • Clodoveo, M. L. (2012). Malaxation: Influence on virgin olive oil quality. Past, present and future – An overview. Trend Food Sci. Technol. 25:13–23.
  • Clodoveo, M. L. and Hbaieb, R. H. (2013). Beyond the traditional virgin olive oil extraction systems: Searching innovative and sustainable plant engineering solutions. Food Res. Int. 54:1926–1933.
  • Clodoveo, M. L. (2013). WIPO Patent No 2013076592. World Intellectual Property Organization, Geneva, Switzerland.
  • Clodoveo, M. L., Hbaieb, R. H., Kotti, F., Mugnozza, G. S. and Gargouri, M. (2014). Mechanical strategies to increase nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr. Rev. Food Sci. Food Saf. 13:135–154.
  • Coimbra, M. A., Delgadillo, I., Waldron, K. W. and Selvendran, R. R. (1996). Isolation and analysis of cell wall polymers from olive pulp. In: Plant Cell Wall Analysis, pp. 19–44. Linskens, H. and Jackson, J., Eds., Springer, Berlin, Heidelberg.
  • Coimbra, M. A., Waldron, K. W. and Selvendran, R. R. (1994). Isolation and characterisation of cell wall polymers from olive pulp (Olea europaea L.). Carbohydr. Res. 252:245–262.
  • Criado, M., Morelló, J., Motilva, M. and Romero, M. (2004). Effect of growing area on pigment and phenolic fractions of virgin olive oils of the arbequina variety in Spain. J. Am. Oil Chem. Soc. 81:633–640.
  • Cruz, S., Yousfi, K., Pérez, A. G., Mariscal, C. and Garcia, J. M. (2007). Salt improves physical extraction of olive oil. Eur. Food Res. Technol. 225:359–365.
  • De Faveri, D., Aliakbarian, B., Avogadro, M., Perego, P. and Converti, A. (2008). Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Biochem. Eng. J. 41:149–156.
  • De Stefano, G., Piacquadio, P., Servili, M., Di Giovacchino, L. and Sciancalepore, V. (1999). Effect of extraction systems on the phenolic composition of virgin olive oils. Lipid/Fett. 101:328–332.
  • Di Giovacchino, L. (1993). L'impiego dei preparati enzimatici nella estrazione dell'olio dalle olive con i sistemi continui di centrifugazione. I: Risultati di esperienze pluriennali (The use of enzyme preparations in olive oil extraction in continuous centrifugation systems. I: Results of pluriannual experiments). Rivista Italiana delle Sostanze Grasse. 70:279–287.
  • Di Giovacchino, L., Sestili, S. and Di Vincenzo, D. (2002). Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol. 104:587–601.
  • Dierkes, G., Bongartz, A., Guth, H. and Hayen, H. (2011). Quality evaluation of olive oil by statistical analysis of multicomponent stable isotope dilution assay data of aroma active compounds. J. Agric. Food Chem. 60:394–401.
  • Domingues, A., Peres, M. F., Ferreira, A., Vitorino, M. C., Gouveia-Martins, C. and Madeira, C. (2009). A moenda da azeitona e as características fisico-químicas dos azeites virgens (Olive milling and the physicochemical properties of virgin olive oils). Actas Portuguesas de Horticultura 198–202.
  • Duarte-Costa, H. M. P. d.-L. and Sameiro, M. E. M. d.-M. S. (1978). Quality of olive oil extracted using enzyme preparations. Boletim Instituto do Azeite e Produtos Oleaginosos. 6:25–38.
  • Ebrahimzadeh, H., Motamed, N., Rastgar-Jazii, F., Montasser-Kouhsari, S. and Shokraii, E. H. (2003). Oxidative enzyme activities and soluble protein content in leaves and fruits of olives during ripening. J. Food Biochem. 27:181–196.
  • EC. (2012). Economic analysis of the olive sector. European Commission, Directorate-General for Agriculture and Rural Development. Available from http://ec.europa.eu/agriculture/olive-oil/economic-analysis_en.pdf
  • El Riachy, M., Priego-Capote, F., Rallo, L., Luque-de Castro, M. D. and León, L. (2013). Phenolic composition of virgin olive oils in cultivars for narrow hedgerow olive orchards. Eur. J. Lipid Sci. Technol. 115:800–810.
  • Esen, A. (2003). β-glucosidase. In: Handbook of Food Enzymology. Whitaker, J. R., Voragen, A. G. J. and Wong, D. W. S., Eds., Marcel Dekker, Inc., New York.
  • Espínola, F., Moya, M., Fernández, D. G. and Castro, E. (2009). Improved extraction of virgin olive oil using calcium carbonate as coadjuvant extractant. J. Food Eng. 92:112–118.
  • Espínola, F., Moya, M., Fernández, D. G. and Castro, E. (2011). Modelling of virgin olive oil extraction using response surface methodology. Int. J. Food Sci. Technol. 46:2576–2583.
  • Esti, M., Cinquanta, L. and La Notte, E. (1998). Phenolic compounds in different olive varieties. J. Agric. Food Chem. 46:32–35.
  • Fadiloğlu, S. and Söylemez, Z. (1997). Kinetics of lipase-catalyzed hydrolysis of olive oil. Food Res. Int. 30:171–175.
  • Fakas, S., Kefalogianni, I., Makri, A., Tsoumpeli, G., Rouni, G., Gardeli, C., Papanikolaou, S. and Aggelis, G. (2010). Characterization of olive fruit microflora and its effect on olive oil volatile compounds biogenesis. Eur. J. Lipid Sci. Technol. 112:1024–1032.
  • Fernández-Bolaños, J., Heredia, A., Vioque, B., Castellano, J. M. and Guillén, R. (1997). Changes in cell-wall-degrading enzyme activities in stored olives in relation to respiration and ethylene production. Journal Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 204:1431–4630.
  • Fernández-Bolaños, J., Rodríguez, R., Guillén, R., Jiménez, A. and Heredia, A. (1995). Activity of cell wall-associated enzymes in ripening olive fruit. Physiol. Plantarum. 93:651–658.
  • Fregapane, G., Lavelli, V., León, S., Kapuralin, J. and Salvador, M. D. (2006). Effect of filtration on virgin olive oil stability during storage. Eur. J. Lipid Sci. Technol. 108:134–142.
  • Fregapane, G. and Salvador, M. D. (2013). Production of superior quality extra virgin olive oil modulating the content and profile of its minor components. Food Res. Int. 54:1907–1914.
  • García, A., Brenes, M., Martínez, F., Alba, J., García, P. and Garrido, A. (2001a). High-performance liquid chromatography evaluation of phenols in virgin olive oil during extraction at laboratory and industrial scale. J. Am. Oil Chem. Soc. 78:625–629.
  • García, A., Brenes, M., Moyano, M. J., Alba, J., García, P. and Garrido, A. (2001b). Improvement of phenolic compound content in virgin olive oils by using enzymes during malaxation. J. Food Eng. 48:189–194.
  • Garcia, J. M., Yousfi, K., Mateos, R., Olmo, M. and Cert, A. (2001). Reduction of oil bitterness by heating of olive (Olea europaea) fruits. J. Agric. Food Chem. 49:4231–4235.
  • García-González, D. L. and Aparicio, R. (2002). Detection of vinegary defect in virgin olive oils by metal oxide sensors. J. Agric. Food Chem. 50:1809–1814.
  • García-Gonzaález, D. L. and Aparicio, R. (2010). Research in olive oil: Challenges for the near future. J. Agric. Food Chem. 58:12569–12577.
  • García-González, D. L., Tena, N. and Aparicio, R. (2007). Characterization of olive paste volatiles to predict the sensory quality of virgin olive oil. Eur. J. Lipid Sci. Technol. 109:663–672.
  • García-Rodríguez, R., Romero-Segura, C., Sanz, C. and Pérez, A. G. (2015). Modulating oxidoreductase activity modifies the phenolic content of virgin olive oil. Food Chem. 171:364–369.
  • García-Rodríguez, R., Romero-Segura, C., Sanz, C., Sánchez-Ortiz, A. and Pérez, A. G. (2011). Role of polyphenol oxidase and peroxidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 44:629–635.
  • Georgalaki, M., Sotiroudis, T. and Xenakis, A. (1998). The presence of oxidizing enzyme activities in virgin olive oil. J. Am. Oil Chem. Soc. 75:155–159.
  • Gimeno, E., Castellote, A. I., Lamuela-Raventós, R. M., De la Torre, M. C. and López-Sabater, M. C. (2002). The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem. 78:207–211.
  • Giuffrè, A. M. (2014). Wax ester variation in olive oils produced in Calabria (Southern Italy) during olive ripening. J. Am. Oil Chem. Soc. 1–12.
  • Gómez-Rico, A., Salvador, M. D., Moriana, A., Pérez, D., Olmedilla, N., Ribas, F. and Fregapane, G. (2007). Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem. 100:568–578.
  • Goupy, P., Fleuriet, A., Amiot, M. J. and Macheix, J. J. (1991). Enzymic browning, oleuropein content, and diphenol oxidase activity in olive cultivars (Olea europaea L.). J. Agric. Food Chem. 39:92–95.
  • Hadj-Taieb, N., Ayadi, M., Trigui, S., Bouabdallah, F. and Gargouri, A. (2002). Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enzyme Microbial Technol. 30:662–666.
  • Hatanaka, A. (1996). The fresh green odor emmited by plants. Food Rev. Int. 12:303–350.
  • Hbaieb, R. H., Kotti, F., García-Rodríguez, R., Gargouri, M., Sanz, C. and Pérez, A. G. (2015). Monitoring endogenous enzymes during olive fruit ripening and storage: Correlation with virgin olive oil phenolic profiles. Food Chem. 174:240–247.
  • Heredia, A., Guillén, R., Jiménez, A. and Fernández-Bolaños, J. (1993). Activity of glycosidases during development and ripening of olive fruit. Journal Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 196:147–151.
  • Iconomou, D., Arapoglou, D. and Israilides, C. (2010). Improvement of phenolic antioxidants and quality characteristics of virgin olive oil with the addition of enzymes and nitrogen during olive paste processing. Grasas Y Aceites. 61:303–311.
  • Inarejos-García, A. M., Gómez-Rico, A., Salvador, M. D. and Fregapane, G. (2009). Influence of malaxation conditions on virgin olive oil yield, overall quality and composition. Eur. Food Res. Technol. 228:671–677.
  • IOC. (2006). Quality Management Guide for the Olive Oil Industry: Mills.
  • IOC. (2014). World Olive Oil Figures. Available from http://www.internationaloliveoil.org/estaticos/view/131-world-olive-oil-figures
  • IUBMB. (2015). Recommendations on Biochemical & Organic Nomenclature, Symbols & Terminology. Available from http://www.chem.qmul.ac.uk/iubmb/
  • Jimenez, A., Rodriguez, R., Fernandez-Caro, I., Guillen, R., Fernandez-Bolanos, J. and Heredia, A. (2001). Olive fruit cell wall: Degradation of pectic polysaccharides during ripening. J. Agric. Food Chem. 49:409–415.
  • Kalogeropoulos, N., Kaliora, A. C., Artemiou, A. and Giogios, I. (2014). Composition, volatile profiles and functional properties of virgin olive oils produced by two-phase vs. three-phase centrifugal decanters. LWT - Food Sci. Technol. 58:272–279.
  • Kalua, C. M., Bedgood, D. R., Bishop, A. G. and Prenzler, P. D. (2006). Changes in volatile and phenolic compounds with malaxation time and temperature during virgin olive oil production. J. Agric. Food Chem. 54:7641–7651.
  • Kalua, C. M., Bedgood, D. R., Bishop, A. G. and Prenzler, P. D. (2008). Changes in virgin olive oil quality during low-temperature fruit storage. J. Agric. Food Chem. 56:2415–2422.
  • Kashyap, D. R., Vohra, P. K., Chopra, S. and Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 77:215–227.
  • Kochevenko, A., Araújo, W. L., Maloney, G. S., Tieman, D. M., Do, P. T., Taylor, M. G., Klee, H. J. and Fernie, A. R. (2012). Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits. Molecular Plant. 5:366–375.
  • Koidis, A. and Boskou, D. (2006). The contents of proteins and phospholipids in cloudy (veiled) virgin olive oils. Eur. J. Lipid Sci. Technol. 108:323–328.
  • Laane, C., Bruggeman, Y. and Winkel, C. (2003). Applications of oxireductases in foods. In: Handbook of Food Enzymology. Whitaker, J. R., Voragen, A. G. J. and Wong, D. W. S., Eds., Marcel Dekker, Inc., New York.
  • Lavelli, V. and Bondesan, L. (2005). Secoiridoids, tocopherols, and antioxidant activity of monovarietal extra virgin olive oils extracted from destoned fruits. J. Agric. Food Chem. 53:1102–1107.
  • Lercker, G., Frega, N., Bocci, F. and Servidio, G. (1994). “Veiled” extra-virgin olive oils: Dispersion response related to oil quality. J. Am. Oil Chem. Soc. 71:657–658.
  • López- Villalta, L. C. (2008). Obtención del aceite de oliva virgen, 3rd ed. Editorial Agricola Española, S.A., Madrid.
  • Lorenzi, V., Maury, J., Casanova, J. and Berti, L. (2006). Purification, product characterization and kinetic properties of lipoxygenase from olive fruit (Olea europaea L.). Plant Physiol. Biochem. 44:450–454.
  • Lozano-Sánchez, J., Cerretani, L., Bendini, A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2010). Filtration process of extra virgin olive oil: Effect on minor components, oxidative stability and sensorial and physicochemical characteristics. Trend Food Sci. Technol. 21:201–211.
  • Luaces, P., Perez, A. G. and Sanz, C. (2003). Role of olive seed in the biogenesis of virgin olive oil aroma. J. Agric. Food Chem. 51:4741–4745.
  • Luaces, P., Romero, C., Gutierrez, F., Sanz, C. and Perez, A. G. (2007a). Contribution of olive seed to the phenolic profile and related quality parameters of virgin olive oil. J. S. Food Agric. 87:2721–2727.
  • Luaces, P., Sanz, C. and Pérez, A. G. (2007b). Thermal stability of lipoxygenase and hydroperoxide lyase from olive fruit and repercussion on olive oil aroma biosynthesis. J. Agric. Food Chem. 55:6309–6313.
  • Luna, G., Morales, M. T. and Aparicio, R. (2006). Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 98:243–252.
  • Malheiro, R., Casal, S., Teixeira, H., Bento, A. and Pereira, J. A. (2013). Effect of olive leaves addition during the extraction process of overmature fruits on olive oil quality. Food Bioproc. Technol. 6:509–521.
  • Martins, L. L., Reis, R., Moreira, I., Pinto, F., Sales, J. and Mourato, M. (2013). Antioxidative response of plants to oxidative stress induced by cadmium. In: Cadmium: Characteristics, Sources of Exposure, Health and Environmental Effects. Fujita, M. H. M., Ed., Nova Science Publishers, Inc.
  • Masella, P., Parenti, A., Spugnoli, P. and Calamai, L. (2009). Influence of vertical centrifugation on extra virgin olive oil quality. J. Am. Oil Chem. Soc. 86:1137–1140.
  • Masella, P., Parenti, A., Spugnoli, P. and Calamai, L. (2010). Nitrogen stripping to remove dissolved oxygen from extra virgin olive oil. Eur. J. Lipid Sci. Technol. 112:1389–1392.
  • Masella, P., Parenti, A., Spugnoli, P. and Calamai, L. (2012). Vertical centrifugation of virgin olive oil under inert gas. Eur. J. Lipid Sci. Technol. 114:1094–1096.
  • Mayer, A. M. (1986). Polyphenol oxidases in plants-recent progress. Phytochemistry. 26:11–20.
  • Mazzuca, S., Spadafora, A. and Innocenti, A. M. (2006). Cell and tissue localization of [beta]-glucosidase during the ripening of olive fruit (Olea europaea) by in situ activity assay. Plant Sci. 171:726–733.
  • Mínguez-Mosquera, I., Gallardo-Guerrero, L. and Roca, M. (2002). Pectinesterase and polygalacturonase in changes of pectic matter in olives (cv. Hojiblanca) intended for milling. J. Am. Oil Chem. Soc. 79:93–99.
  • Minic, Z. (2008). Physiological roles of plant glycoside hydrolases. Planta. 227:723–740.
  • Minic, Z. and Jouanin, L. (2006). Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44:435–449.
  • Morales, M. and Aparicio, R. (1999). Effect of extraction conditions on sensory quality of virgin olive oil. J. Am. Oil Chem. Soc. 76:295–300.
  • Morales, M. T., Alonso, M. V., Rios, J. J. and Aparicio, R. (1995). Virgin olive oil aroma: Relationship between volatile compounds and sensory attributes by chemometrics. J. Agric. Food Chem. 43:2925–2931.
  • Morales, M. T., Angerosa, F. and Aparicio, R. (1999). Effect of the extraction conditions of virgin olive oil on the lipoxygenase cascade: Chemical and sensory implications. Grasas Y Aceites. 50:114–121.
  • Morales, M. T., Luna, G. and Aparicio, R. (2005). Comparative study of virgin olive oil sensory defects. Food Chem. 91:293–301.
  • Morales, M. T., Rios, J. J. and Aparicio, R. (1997). Changes in the volatile composition of virgin olive oil during oxidation:  Flavors and off-Flavors. J. Agric. Food Chem. 45:2666–2673.
  • Morelló, J.-R., Motilva, M.-J., Tovar, M.-J. and Romero, M.-P. (2004). Changes in commercial virgin olive oil (cv Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem. 85:357–364.
  • Morelló, J. R., Romero, M. P. and Motilva, M. J. (2006). Influence of seasonal conditions on the composition and quality parameters of monovarietal virgin olive oils. J. Am. Oil Chem. Soc. 83:683–690.
  • Mourato, M., Reis, R. and Martins, L. L. (2012). Characterization of plant antioxidative system in response to abiotic stresses: A focus on heavy metal toxicity. In: Advances in Selected Plant Physiology Aspects, p. 388. Dichio, G. M. a. B., Ed., InTech.
  • Moya, M., Espínola, F., Fernández, D. G., Torres, A., Marcos, J., Vilar, J., Josue, J., Sánchez, T. and Castro, E. (2010). Industrial trials on coadjuvants for olive oil extraction. J. Food Eng. 97:57–63.
  • Mulinacci, N., Giaccherini, C., Innocenti, M., Romani, A., Vincieri, F. F., Marotta, F. and Mattei, A. (2005). Analysis of extra virgin olive oils from stoned olives. J. Sci. Food Agric. 85:662–670.
  • Najafian, L., Ghodsvali, A., Haddad Khodaparast, M. H. and Diosady, L. L. (2009). Aqueous extraction of virgin olive oil using industrial enzymes. Food Res. Int. 42:171–175.
  • Obied, H. K., Prenzler, P. D., Ryan, D., Servili, M., Taticchi, A., Esposto, S. and Robards, K. (2008). Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat. Prod. Rep. 25:1167–1179.
  • Olias, J. M., Perez, A. G., Rios, J. J. and Sanz, L. C. (1993). Aroma of virgin olive oil: Biogenesis of the “green” odor notes. J. Agric. Food Chem. 41:2368–2373.
  • Ortega-Garcia, F., Blanco, S., Peinado, M. A. and Peragon, J. (2008). Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. ‘Picual’ trees during fruit ripening. Tree Physiol. 28:45–54.
  • Ortega-García, F. and Peragón, J. (2010). HPLC analysis of oleuropein, hydroxytyrosol, and tyrosol in stems and roots of Olea europaea L. cv. Picual during ripening. J. Sci. Food Agric. 90:2295–2300.
  • Padilla, M. N., Hernaández, M. L., Sanz, C. and Martínez-Rivas, J. M. (2009). Functional characterization of two 13-Lipoxygenase genes from olive fruit in relation to the biosynthesis of volatile compounds of virgin olive oil. J. Agric. Food Chem. 57:9097–9107.
  • Panzanaro, S., Nutricati, E., Miceli, A. and De Bellis, L. (2010). Biochemical characterization of a lipase from olive fruit (Olea europaea L.). Plant Physiol. Biochem. 48:741–745.
  • Parenti, A., Spugnoli, P., Masella, P. and Calamai, L. (2007). Influence of the extraction process on dissolved oxygen in olive oil. Eur. J. Lipid Sci. Technol. 109:1180–1185.
  • Parenti, A., Spugnoli, P., Masella, P. and Calamai, L. (2008). The effect of malaxation temperature on the virgin olive oil phenolic profile under laboratory-scale conditions. Eur. J. Lipid Sci. Technol. 110:735–741.
  • Parenti, A., Spugnoli, P., Masella, P., Calamai, L. and Pantani, O. L. (2006). Improving olive oil quality using CO2 evolved from olive pastes during processing. Eur. J. Lipid Sci. Technol. 108:904–912.
  • Pastore, G., D'Aloise, A., Lucchetti, S., Maldini, M., Moneta, E., Peparaio, M., Raffo, A. and Sinesio, F. (2014). Effect of oxygen reduction during malaxation on the quality of extra virgin olive oil (Cv. Carboncella) extracted through “two-phase” and “three-phase” centrifugal decanters. LWT - Food Sci. Technol. 59:163–172.
  • Pereira, J. A., Casal, S., Bento, A. and Oliveira, M. B. P. P. (2002). Influence of olive storage period on oil quality of three portuguese cultivars of Olea europea, Cobrançosa, Madural, and Verdeal Transmontana. J. Agric. Food Chem. 50:6335–6340.
  • Peres, F., Jeleń, H. H., Majcher, M. M., Arraias, M., Martins, L. L. and Ferreira-Dias, S. (2013a). Characterization of aroma compounds in Portuguese extra virgin olive oils from Galega Vulgar and Cobrançosa cultivars using GC–O and GCxGC–ToFMS. Food Res. Int. 54:1979–1986.
  • Peres, F., Martins, L. L. and Ferreira-Dias, S. (2014). Laboratory-scale optimization of olive oil extraction: Simultaneous addition of enzymes and microtalc improves the yield. Eur. J. Lipid Sci. Technol. 116:1054–1062.
  • Peres, F., Martins, L. L., Mourato, M. and Ferreira-Dias, S. (2011). Changes in virgin olive oil antioxidants, polyphenol oxidase and peroxidase activities during fruit ripening. In: 4th International Conference Olivebioteq 2011, Chania, pp. 515–520.
  • Peres, F., Martins, L. L., Mourato, M. and Ferreira-Dias, S. (2013b). The role of polyphenol oxidases and peroxidases from olive fruits on the composition of virgin oil. In: EUROFOODCHEM XVII, Istanbul, pp. 722.
  • Perez, A. G., Leon, L., Pascual, M., Romero-Segura, C., Sanchez-Ortiz, A., de la Rosa, R. and Sanz, C. (2014). Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. Plos One. 9.
  • Pérez, A. G., Luaces, P., Ríos, J. J., García, J. M. and Sanz, C. (2003). Modification of volatile compound profile of virgin olive oil due to hot-water treatment of olive fruit. J. Agric. Food Chem. 51:6544–6549.
  • Pérez, A. G., Romero, C., Yousfi, K. and García, J. (2008). Modulation of olive oil quality using NaCl as extraction coadjuvant. J. Am. Oil Chem. Soc. 85:685–691.
  • Perez-Camino, M. C., Moreda, W. and Cert, A. (2001). Effects of olive fruit quality and oil storage practices on the diacylglycerol content of virgin olive oils. J. Agric. Food Chem. 49:699–704.
  • Peri, C. (2014). Quality excellence in extra virgin olive oils. In: Olive Oil Sensory Science, pp. 1–32. Monteleone, E. a. S. L., Ed., John Wiley & Sons, Ltd., New York.
  • Petrakis, C. (2006). Olive Oil Extraction. In: Olive Oil Chemistry & Technology, 2nd ed., pp. 191–224. Boskou, D., Ed., AOCS Press, Champaign, Illinois.
  • Pita, D., Vitorino, M. C., Gouveia, C. and Peres, F. (2011). Aplicação de Microtalco Natural na Extracção de Azeites Monovarietais (The use of natural microtalc in the extraction of monocultivar olive oils). Actas Portuguesas de Horticultura 151–155.
  • Prasanna, V., Prabha, T. N. and Tharanathan, R. N. (2007). Fruit ripening phenomena–An overview. Crit. Rev. Food Sci. Nutr. 47:1–19.
  • Prenzler, P., Robards, K. and Bedgood, D. (2007). Quality Enhancement of Australian Extra Virgin Olive Oils, p. 116. Rural Industries Research and Development Corporation.
  • Psomiadou, E. and Tsimidou, M. (2002). Stability of virgin olive oil. 2. Photo-oxidation studies. J. Agric. Food Chem. 50:722–727.
  • Ramírez, E. C., Whitaker, J. R. and Virador, V. M. (2003). Polyphenol Oxidase. In: Handbook of Food Enzymology. Whitaker, J. R., Voragen, A. G. J. and Wong, D. W. S., Eds., Marcel Dekker, Inc., New York.
  • Ranalli, A., Contento, S., Schiavone, C. and Simone, N. (2001a). Malaxing temperature affects volatile and phenol composition as well as other analytical features of virgin olive oil. Eur. J. Lipid Sci. Technol. 103:228–238.
  • Ranalli, A. and De Mattia, G. (1997). Characterization of olive oil produced with a new enzyme processing aid. J. Am. Oil Chem. Soc. 74:1105–1113.
  • Ranalli, A., De Mattia, G. and Ferrante, M. L. (1998). The characteristics of percolation olive oils produced with a new processing enzyme aid. Int. J. Food Sci. Technol. 33:247–258.
  • Ranalli, A. and Ferrante, M. L. (1996). Las características fisicoquímicas y analíticas de los aceites virgenes extraídos mediante un auxiliar enzimático pectolítico (Physicochemical and analytical properties of virgin olive oils extracted with a pectolytic enzyme adjuvant). Olivae. 60:27–32.
  • Ranalli, A., Gomes, T., Delcuratolo, D., Contento, S. and Lucera, L. (2003a). Improving virgin olive oil quality by means of innovative extracting biotechnologies. J. Agric. Food Chem. 51:2597–2602.
  • Ranalli, A., Lucera, L., Contento, S., Simone, N. and Del Re, P. (2004). Bioactive constituents, flavors and aromas of virgin oils obtained by processing olives with a natural enzyme extract. Eur. J. Lipid Sci. Technol. 106:187–197.
  • Ranalli, A., Malfatti, A. and Cabras, P. (2001b). Composition and quality of pressed virgin olive oils extracted with a new enzyme processing aid. J. Food Sci. 66:592–603.
  • Ranalli, A., Malfatti, A., Lucera, L., Contento, S. and Sotiriou, E. (2005). Effects of processing techniques on the natural colourings and the other functional constituents in virgin olive oil. Food Res. Int. 873–878.
  • Ranalli, A. and Martinelli, N. (1995). Integral centrifuges for olive oil extraction, at the third millenium threshold. Transformation yields. Grasas Y Aceites. 46:255–263.
  • Ranalli, A., Pollastri, L., Contento, S. and Iannucci, E. (2003b). The glyceridic and nonglyceridic constituents of virgin olive oil after use of a novel method of enzyme extraction. Int. J. Food Sci. Technol. 38:17–27.
  • Ranalli, A., Pollastri, L., Contento, S., Iannucci, E. and Lucera, L. (2003c). Effect of olive paste kneading process time on the overall quality of virgin olive oil. Eur. J. Lipid Sci. Technol. 105:57–67.
  • Ranalli, A., Sgaramella, A. and Surricchio, G. (1999). The new “Cytolase 0” enzyme processing aid improves quality and yields of virgin olive oil. Food Chem. 66:443–454.
  • Reboredo-Rodríguez, P., González-Barreiro, C., Cancho-Grande, B. and Simal-Gándara, J. (2013). Effects of sedimentation plus racking process in the extra virgin olive oil aroma fingerprint obtained by DHS–TD/GC–MS. Food Bioproc. Technol. 6:1290–1301.
  • Reboredo-Rodríguez, P., González-Barreiro, C., Cancho-Grande, B. and Simal-Gándara, J. (2014). Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils. Food Chem. 158:534–545.
  • Ridolfi, M., Terenziani, S., Patumi, M. and Fontanazza, G. (2002). Characterization of the lipoxygenases in some olive cultivars and determination of their role in volatile compounds formation. J. Agric. Food Chem. 50:835–839.
  • Rodis, P. S., Karathanos, V. T. and Mantzavinou, A. (2002). Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 50:596–601.
  • Rojnić, I. D., Bažok, R. and Barčić, J. I. (2015). Reduction of olive fruit fly damage by early harvesting and impact on oil quality parameters. Eur. J. Lipid Sci. Technol. 117:103–111.
  • Romero-Segura, C., García-Rodríguez, R., Sánchez-Ortiz, A., Sanz, C. and Pérez, A. G. (2012). The role of olive β-glucosidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 45:191–196.
  • Romero-Segura, C., Sanz, C. and Perez, A. G. (2009). Purification and characterization of an olive fruit β-Glucosidase involved in the biosynthesis of virgin olive oil phenolics. J. Agric. Food Chem. 57:7983–7988.
  • Runcio, A., Sorgonà, L., Mincione, A., Santacaterina, S. and Poiana, M. (2008). Volatile compounds of virgin olive oil obtained from Italian cultivars grown in Calabria. Effect of processing methods, cultivar, stone removal, and antracnose attack. Food Chem. 106:735–740.
  • Ryan, D., Robards, K. and Lavee, S. (1999). Changes in phenolic content of olive during maturation. Int. J. Food Sci. Technol. 34:265–274.
  • Salas, J., Willams, M., Harwood, J. and Sánchez, J. (1999). Lipoxygenase activity in olive (Olea europaea) fruit. J. Am. Oil Chem. Soc. 76:1163–1168.
  • Salas, J. J. (2004). Characterization of alcohol acyltransferase from olive fruit. J. Agric. Food Chem. 52:3155–3158.
  • Salas, J. J., Sanchez, C., Garcia-Gonzalez, D. L. and Aparicio, R. (2005). Impact of the suppression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. J. Agric. Food Chem. 53:1648–1655.
  • Salas, J. J. and Sánchez, J. (1999). Hydroperoxide lyase from olive (Olea europaea) fruits. Plant Sci. 143:19–26.
  • Salas, J. J., Sánchez, J., Ramli, U. S., Manaf, A. M., Williams, M. and Harwood, J. L. (2000). Biochemistry of lipid metabolism in olive and other oil fruits. Prog. Lipid Res. 39:151–180.
  • Sánchez, J. and Harwood, J. L. (2002). Biosynthesis of triacylglycerols and volatiles in olives. Eur. J. Lipid Sci. Technol. 104:564–573.0..
  • Sánchez-Ortiz, A., Pérez, A. G. and Sanz, C. (2007). Cultivar differences on nonesterified polyunsaturated fatty acid as a limiting factor for the biogenesis of virgin olive oil aroma. J. Agric. Food Chem. 55:7869–7873.
  • Sánchez-Ortiz, A., Pérez, A. G. and Sanz, C. (2013). Synthesis of aroma compounds of virgin olive oil: Significance of the cleavage of polyunsaturated fatty acid hydroperoxides during the oil extraction process. Food Res. Int. 54:1972–1978.
  • Sánchez-Ortiz, A., Romero-Segura, C., Sanz, C. and Pérez, A. G. (2011). Synthesis of volatile compounds of virgin olive oil is limited by the lipoxygenase activity load during the oil extraction process. J. Agric. Food Chem. 60:812–822.
  • Saraiva, J. A., Nunes, C. S. and Coimbra, M. A. (2007). Purification and characterization of olive (Olea europaea L.) peroxidase – Evidence for the occurrence of a pectin binding peroxidase. Food Chem. 101:1571–1579.
  • Sciancalepore, V. (1985). Enzymatic browning in five olive varieties. J. Food Sci. 50:1194–1195.
  • Segovia-Bravo, K. A., Jarén-Galán, M., García-García, P. and Garrido-Fernández, A. (2009). Browning reactions in olives: Mechanism and polyphenols involved. Food Chem. 114:1380–1385.
  • Selvaggini, R., Esposto, S., Taticchi, A., Urbani, S., Veneziani, G., Di Maio, I., Sordini, B. and Servili, M. (2014). Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four Italian olive cultivars. J. Agric. Food Chem. 62:3813–3822.
  • Servili, M. (2014). The phenolic compounds: A commercial argument in the economic war to come on the quality of olive oil?. OCL. 21:D509.
  • Servili, M., Baldioli, M., Begliomini, A. L., Selvaggini, R. and Montedoro, G. F. (2000). The phenolic and volatile compounds of virgin olive oil: Relationships with the endogenous oxidorreductases during the mechanical oil extraction process. In: Flavour and Fragrance Chemistry, pp. 163–173. Lanzotti, V. and Taglialatela-Scafati, O., Eds., Kluwer Academic Publishers, Dordrecht.
  • Servili, M., Begliomini, A. L., Montedoro, G. F., Petruccioli, M. and Federici, F. (1992). Utilisation of a yeast pectinase in olive oil extraction and red wine making processes. J. Sci. Food Agric. 58:253–260.
  • Servili, M., Esposto, S., Fabiani, R., Urbani, S., Taticchi, A., Mariucci, F., Selvaggini, R. and Montedoro, G. (2009). Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology. 17:76–84.
  • Servili, M., Piacquadio, P., De Stefano, G., Taticchi, A. and Sciancalepore, V. (2002a). Influence of a new crushing technique on the composition of the volatile compounds and related sensory quality of virgin olive oil. Eur. J. Lipid Sci. Technol. 104:483–489.
  • Servili, M., Selvaggini, R., Esposto, S., Taticchia, A., Montedoro, G. F. and Morozzib, G. (2004). Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 1054:113–127.
  • Servili, M., Selvaggini, R., Taticchi, A., Baldioli, M. and Montedoro, G. F. (2002b). The use of biotechnology means during oil mechanical extraction process: Relationship with sensory and nutritional parameters of virgin olive oil. Acta Horticulturae 557–560.
  • Servili, M., Selvaggini, R., Taticchi, A., Esposto, S. and Montedoro, G. (2003a). Air exposure time of olive pastes during the extraction process and phenolic and volatile composition of virgin olive oil. J. Am. Oil Chem. Soc. 80:685–695.
  • Servili, M., Selvaggini, R., Taticchi, A., Esposto, S. and Montedoro, G. F. (2003b). Volatile compounds and phenolic composition of virgin olive oil: Optimization of temperature and time of exposure of olive pastes to air contact during the mechanical extraction. J. Agric. Food Chem. 51:7980–7988.
  • Servili, M., Taticchi, A., Esposto, S., Sordini, B. and Urbani, S. (2012). Technological aspects of olive oil production. In: Olive Germplasm - The Olive Cultivation, Table Olive and Olive Oil Industry in Italy. Available from http://www.intechopen.com/books/olive-germplasm-the- olive-cultivation-table-olive-and-olive-oil-industry-in-italy/technological- aspects-of-olive-oil-production
  • Servili, M., Taticchi, A., Esposto, S., Urbani, S., Selvaggini, R. and Montedoro, G. (2007). Effect of olives on the volatile and phenolic composition of virgin olive oil. J. Agric. Food Chem. 55:7028–7035.
  • Servili, M., Taticchi, A., Esposto, S., Urbani, S., Selvaggini, R. and Montedoro, G. F. (2008). Influence of the decrease in oxygen during malaxation of olive paste on the composition of volatiles and phenolic compounds in virgin olive oil. J. Agric. Food Chem. 56:10048–10055.
  • Sonda, A., Akram, Z., Boutheina, G., Guido, F. and Mohamed, B. (2013). Effect of addition of olive leaves before fruits extraction process to some monovarietal Tunisian extra-virgin olive oils using chemometric analysis. J. Agric. Food Chem. 62:251–263.
  • Spadafora, A., Mazzuca, S., Chiappetta, F. F., Parise, A., Perri, E. and Innocenti, A. M. (2008). Oleuropein-specific-[beta]-glucosidase activity marks the early response of olive Fruits (Olea europaea) to mimed insect attack. Agric. Sci. China. 7:703–712.
  • Stefanoudaki, E., Koutsaftakis, A. and Harwood, J. L. (2011). Influence of malaxation conditions on characteristic qualities of olive oil. Food Chem. 127:1481–1486.
  • Stefanoudaki, E., Williams, M. and Harwood, J. (2010). Changes in virgin olive oil characteristics during different storage conditions. Eur. J. Lipid Sci. Technol. 112:906–914.
  • Takahama, U. and Oniki, T. (2000). Flavonoids and some other phenolics as substrates of peroxidase: Physiological significance of the redox reactions. J. Plant Res. 113:301–309.
  • Taticchi, A., Esposto, S. and Servili, M. (2014). The Basis of the Sensory Properties of Virgin Olive Oil. In: Olive Oil Sensory Science, pp. 33–54. Monteleone, E. a. S. L., Ed., John Wiley & Sons, Ltd., New York.
  • Taticchi, A., Esposto, S., Veneziani, G., Urbani, S., Selvaggini, R. and Servili, M. (2013). The influence of the malaxation temperature on the activity of polyphenoloxidase and peroxidase and on the phenolic composition of virgin olive oil. Food Chem. 136:975–983.
  • Tena, N., Lazzez, A., Aparicio-Ruiz, R. and García-González, D. L. (2007). Volatile compounds characterizing Tunisian Chemlali and Chétoui virgin olive oils. J. Agric. Food Chem. 55:7852–7858.
  • Tomás-Barberán, F. A. and Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 81:853–876.
  • Trichopoulou, A. and Dilis, V. (2007). Olive oil and longevity. Mol. Nutr. Food Res. 51:1275–1278.
  • Tsimidou, M. Z., Georgiou, A., Koidis, A. and Boskou, D. (2005). Loss of stability of “veiled” (cloudy) virgin olive oils in storage. Food Chem. 93:377–383.
  • Tura, D., Failla, O., Bassi, D., Attilio, C. and Serraiocco, A. (2013). Regional and cultivar comparison of Italian single cultivar olive oils according to flavor profiling. Eur. J. Lipid Sci. Technol. 115:196–210.
  • Tura, D., Failla, O., Bassi, D., Ped∫, S. and Serraiocco, A. (2008). Cultivar influence on virgin olive (Olea europea L.) oil flavor based on aromatic compounds and sensorial profile. Scientia Horticulturae. 118:139–148.
  • Tura, D., Failla, O., Bassi, D., Ped∫, S. and Serraiocco, A. (2009). Environmental and seasonal influence on virgin olive (Olea europaea L.) oil volatiles in northern Italy. Scientia Horticulturae. 122:385–392.
  • Tzika, E. D., Sotiroudis, T., Papadimitriou, V. and Xenakis, A. (2009). Partial purification and characterization of peroxidase from olives (Olea europaea cv. Koroneiki). Eur. Food Res. Technol. 228:487–495.
  • Uceda, M., Jimenez, A. and Beltran, G. (2006). Olive oil extraction and quality. Grasas Y Aceites. 57:25–31.
  • Vámos -Vigyázó, L. and Haard, N. F. (1981). Polyphenol oxidases and peroxidases in fruits and vegetables. Crit. Rev. Food Sci. Nutr. 15:49–127.
  • Vaughn, K. C. and Duke, S. O. (1981). Tissue localization of polyphenol oxidase in Sorghum. Protoplasma. 108:319–327.
  • Veillet, S., Tomao, V., Bornard, I., Ruiz, K. and Chemat, F. (2009). Chemical changes in virgin olive oils as a function of crushing systems: Stone mill and hammer crusher. Comptes Rendus Chimie. 12:895–904.
  • Vergara-Domínguez, H., Roca, M. and Gandul-Rojas, B. (2013). Characterisation of chlorophyll oxidation mediated by peroxidative activity in olives (Olea europaea L.) cv. Hojiblanca. Food Chem. 139:786–795.
  • Vichi, S., Castellote, A. I., Pizzale, L., Conte, L. S., Buxaderas, S. and López-Tamames, E. (2003). Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 983:19–33.
  • Vichi, S., Romero, A., Gallardo-Chacón, J., Tous, J., López-Tamames, E. and Buxaderas, S. (2009a). Volatile phenols in virgin olive oils: Influence of olive variety on their formation during fruits storage. Food Chem. 116:651–656.
  • Vichi, S., Romero, A., Gallardo-Chacoán, J., Tous, J., Loápez-Tamames, E. and Buxaderas, S. (2009b). Influence of olives' storage conditions on the formation of volatile phenols and their role in off-odor formation in the oil. J. Agric. Food Chem. 57:1449–1455.
  • Vichi, S., Romero, A., Tous, J. and Caixach, J. (2011). The activity of healthy olive microbiota during virgin olive oil extraction influences oil chemical composition. J. Agric. Food Chem. 59:4705–4714.
  • Vichi, S., Romero, A., Tous, J., Tamames, E. L. and Buxaderas, S. (2008). Determination of volatile phenols in virgin olive oils and their sensory significance. J. Chromatogr. A 1211:1–7.
  • Vierhuis, E., Korver, M., Schols, H. A. and Voragen, A. G. J. (2003). Structural characteristics of pectic polysaccharides from olive fruit (Olea europaea cv moraiolo) in relation to processing for oil extraction. Carbohydr. Polymers. 51:135–148.
  • Vierhuis, E., Schols, H. A., Beldman, G. and Voragen, A. G. J. (2000). Isolation and characterisation of cell wall material from olive fruit (Olea europaea cv. koroneiki) at different ripening stages. Carbohydr. Polymers. 43:11–12.
  • Vierhuis, E., Servili, M., Baldioli, M., Schols, H. A., Voragen, A. G. J. and Montedoro, G. F. (2001). Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. J. Agric. Food Chem. 49:1218–1223.
  • Vinha, A. F., Ferreres, F., Silva, B. M., Valentão, P., Gonçalves, A., Pereira, J. A., Oliveira, M. B. P., Seabra, R. M. and Andrade, P. B. (2005). Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 89:561–568.
  • Whitaker, J. R. (1995). Polyphenol Oxidase. In: Food Enzymes, pp. 271–307. Springer US, New York.
  • Whitaker, J. R. (2003). What enzymes do and why they are highly specific and efficient catalysts. In: Handbook of Food Enzymology. Whitaker, J. R., Voragen, A. G. J. and Wong, D. W. S., Eds., Marcel Dekker, Inc., New York.
  • Williams, M. and Harwood, J. L. (2000). Characterization of lipoxygenase isoforms in olive callus cultures. Biochem. Soc. Trans. 28:830–831.
  • Yoruk, R. and Marshal, R. (2003). Physicochemical properties and function of plant polyphenol oxidase: A review. J. Food Biochem. 27:361–422.
  • Yorulmaz, A., Tekin, A. and Turan, S. (2011). Improving olive oil quality with double protection: Destoning and malaxation in nitrogen atmosphere. Eur. J. Lipid Sci. Technol. 113:637–643.
  • Yuan, Z. Y. and Jiang, T. J. (2003). Horseradish Peroxidase. In: Handbook of Food Enzymology. Whitaker, J. R., Voragen, A. G. J. and Wong, D. W. S., Eds., Marcel Dekker, Inc., New York.
  • Zamora, R., Alaiz, M. and Hidalgo, F. J. (2002). Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition and antioxidant activity. J. Agric. Food Chem. 49:4267–4270.
  • Zullo, B. A., Di Stefano, M. G., Cioccia, G. and Ciafardini, G. (2014). Evaluation of polyphenol decay in the oily fraction of olive fruit during storage using a mild sample handling method. Eur. J. Lipid Sci. Technol. 116:160–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.