4,433
Views
104
CrossRef citations to date
0
Altmetric
Original Articles

Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges

& ORCID Icon

References

  • Aarts, H. J. M., Hakemulder, L. E. and Van Hoef, A. M. A. (1999). Genomic typing of Listeria monocytogenes strains by automated laser fluorescence analysis of amplified fragment length polymorphism fingerprint patterns. Int. J. Food Microbiol. 49(1):95–102.
  • Acharya, G., Chang, C. L. and Savran, C. (2006). An optical biosensor for rapid and label-free detection of cells. J. Am. Chem. Soc. 128(12):3862–3863.
  • Adzitey, F., Huda, N. and Ali, G. R. R. (2013). Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks. 3 Biotech. 3(2):97–107.
  • Alvarenga, J. S. C., Ligeiro, C. M., Gontijo, C. M. F., Cortes, S., Campino, L., Vago, A. R. and Melo, M. N. (2012). KDNA genetic signatures obtained by LSSP-PCR analysis of Leishmania (Leishmania) infantum isolated from the new and the old world. PLoS ONE 7(8):e43363.
  • Anthony, R. M., Brown, T. J. and French, G. L. (2000). Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J. Clin. Microbiol. 38(2):781–788.
  • Arshak, K., Adley, C., Moore, E., Cunniffe, C., Campion, M. and Harris, J. (2007). Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens. Actuat. B: Chem. 126(1):226–231.
  • Balasubramanian, S., Panigrahi, S., Logue, C. M., Marchello, M. and Sherwood, J. S. (2005). Identification of Salmonella-inoculated beef using a portable electronic nose system. J. Rapid Meth Automation Microbiol. 13(2):71–95.
  • Balasubramanian, S., Sorokulova, I. B., Vodyanoy, V. J. and Simonian, A. L. (2007). Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study. Biosensors Bioelectronics. 22(6):948–955.
  • Bang, J., Beuchat, L. R., Song, H., Gu, M. B., Chang, H. I., Kim, H. S. and Ryu, J. H. (2013). Development of a random genomic DNA microarray for the detection and identification of Listeria monocytogenes in milk. Int. J. Food Microbiol. 161(2):134–141.
  • Barany, F. (1991). Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. 88(1):189–193.
  • Barco Alcala, E., Garcia Gimeno, R. M., Castillejo Rodriguez, A. M. and Zurera Cosano, G. (2000). Turbidimetry as a fast method to determine microorganisms in foods. Alimentaria. 37:109–112.
  • Barreto, G., Vago, A. R., Ginther, C., Simpson, A. J. and Pena, S. D. (1996) 609–616. Mitochondrial D-loop “signatures” produced by low-stringency single specific primer PCR constitute a simple comparative human identity test. Am. J. Hum. Genet. 58(3):609.
  • Bathe, S., Achouak, W., Hartmann, A., Heulin, T., Schloter, M. and Lebuhn, M. (2006). Genetic and phenotypic microdiversity of Ochrobactrum spp. FEMS Microbiol. Ecol. 56(2):272–280.
  • Batt, C. A. (2007). Food pathogen detection. Science. 316:1579–1580.
  • Bhunia, A. K., Geng, T., Lathrop, A., Valadez, A. and Morgan, M. T. (2004). Optical immunosensors for detection of Listeria monocytogenes and Salmonella Enteritidis from food. In: Optical Technologies for Industrial, Environmental, and Biological Sensing, pp. 1–6. International Society for Optics and Photonics.
  • Bidet, P., Lalande, V., Salauze, B., Burghoffer, B., Avesani, V., Delmée, M. and Petit, J. C. (2000). Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J. Clin. Microbiol. 38(7):2484–2487.
  • BioControl. (2011a). Assurance GDS™ for E. coli North America, 0157:H7.
  • BioControl. (2011b). TRANSIA® Staphylococcal Enterotoxins, North America.
  • BioControl. (2011c). TRANSIA PLATE L. monocytogenes, North America.
  • BioControl. (2011d). TRANSIA PLATE Salmonella Gold, North America.
  • Bisha, B. and Brehm-Stecher, B. F. (2010). Combination of adhesive-tape-based sampling and fluorescence in situ hybridization for rapid detection of Salmonella on fresh produce. J. Visualized Exp.: JoVE. 18(44): 2308–2308.
  • Bordoni, R., Mezzelani, A., Consolandi, C., Frosini, A., Rizzi, E., Castiglioni, B. and De Bellis, G. (2004). Detection and quantitation of genetically modified maize (Bt-176 transgenic maize) by applying ligation detection reaction and universal array technology. J. Agric. Food Chem. 52(5):1049–1054.
  • Brandt, O., Feldner, J., Stephan, A., SchroÈder, M., SchnoÈlzer, M., Arlinghaus, H. F. and Jacob, A. (2003). PNA microarrays for hybridisation of unlabelled DNA samples. Nucleic Acids Res. 31(19):e119–e119.
  • Brauns, L. A., Hudson, M. C. and Oliver, J. D. (1991). Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 57(9):2651–2655.
  • Brigati, J. R., Ripp, S. A., Johnson, C. M., Iakova, P. A., Jegier, P. and Sayler, G. S. (2007). Bacteriophage-based bioluminescent bioreporter for the detection of Escherichia coli O157: H7. J. Food Prot. 70(6):1386–1392.
  • Brooks, J. L., Mirhabibollahi, B. and Kroll, R. G. (1992). Experimental enzyme-linked amperometric immunosensors for the detection of salmonellas in foods. J. Appl. Bacteriol. 73(3):189–196.
  • Cariani, A., Piano, A., Consolandi, C., Severgnini, M., Castiglioni, B., Caredda, G. and Tinti, F. (2012). Detection and characterization of pathogenic vibrios in shellfish by a Ligation Detection Reaction-Universal Array approach. Int. J. Food Microbiol. 153(3):474–482.
  • Castiglioni, B., Rizzi, E., Frosini, A., Sivonen, K., Rajaniemi, P., Rantala, A. and De Bellis, G. (2004). Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Appl. Environ. Microbiol 70(12):7161–7172.
  • Chan, A. B. and Fox, J. D. (1999). NASBA and other transcription-based amplification methods for research and diagnostic microbiology. Rev. Med. Microbiol. 10(4):185–196.
  • Chandan, S. and Umesha, S. (2013). Rapid and sensitive method for detecting Leptospira by PCR-SSCP analysis. JPR: BioMedRx: An Int. J. 1(9):912–917.
  • Chandrashekar, S., Umesha, S. and Chandan, S. (2012). Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism. Acta biochimica et biophysica Sinica, 44(3):217–223.
  • Che, Y., Yang, Z., Li, Y., Paul, D. and Slavik, M. (1999). Rapid detection of Salmonella typhimurium using an immunoelectrochemical method coupled with immunomagnetic separation. J. Rapid Meth. Automat. Microbiol. 7(1):47–59.
  • Chemburu, S., Wilkins, E. and Abdel-Hamid, I. (2005). Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosensors Bioelectronics. 21(3):491–499.
  • Chen, J. and Griffiths, M. W. (1996). Salmonella detection in eggs using lux+ bacteriophages. J. Food Prot. 59(9):908–914.
  • Chen, S. H., Wu, V. C. and Chuang, Y. C. (2008). Using oligonucleotide-functionalized Au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J. Microbiol. Meth. 73:7–17.
  • Cho, E. J., Yang, L., Levy, M. and Ellington, A. D. (2005). Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc. 127(7):2022–2023.
  • Choi, J. W. and Oh, B. K. (2008). Optical detection of pathogens using protein chip. Adv. Environ. Monitor. 348–362.
  • Choi, S. H. and Gu, M. B. (2002). A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosensors Bioelectronics. 17(5):433–440.
  • Cirillo, D. M., Piana, F., Frisicale, L., Quaranta, M., Riccabone, A., Penati, V. and Marchiaro, G. (2004). Direct rapid diagnosis of rifampicin-resistant M. tuberculosis infection in clinical samples by line probe assay (INNO LiPA Rif-TB). New Microbiol. 27(3):221–227.
  • Clark, M. F. and Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Aeneral Virol. 34(3):475–483.
  • Compton, J. (1991). Nucleic acid sequence-based amplification. Nature. 350(6313):91–92.
  • Cook, N. (2003). The use of NASBA for the detection of microbial pathogens in food and environmental samples. J. Microbiol. Methods. 53(2):165–174.
  • Deborggraeve, S., Claes, F., Laurent, T., Mertens, P., Leclipteux, T., Dujardin, J. C. and Büscher, P. (2006). Molecular dipstick test for diagnosis of sleeping sickness. J. Clin. Microbiol. 44(8):2884–2889.
  • Dey, B. P., Chen, Y. R., Hsieh, C. and Chan, D. E. (2003). Detection of septicemia in chicken livers by spectroscopy. Poult. Sci. 82(2):199–206.
  • Domján Kovács, H. and Rásky, K. (2001). Testing of a chemiluminescence enzyme immunoassay for selective detection of E. Coli O157 from ground beef samples. Acta Veterinaria Hungarica, 49(4), 377–383.
  • D'Souza, D. H. and Jaykus, L. A. (2003). Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. J. Appl. Microbiol. 95(6):1343–1350.
  • Dunbar, S. A. (2006). Applications of Luminex xMAPTM technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta. 363:71–82.
  • Dungchai, W., Siangproh, W., Chaicumpa, W., Tongtawe, P. and Chailapakul, O. (2008). Salmonella typhi determination using voltammetric amplification of nanoparticles: A highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta. 77:727–732.
  • DuPont. (2011a). BAX® System PCR Assay E. coli USA O157:H7.
  • Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S. M., Driver, D. A. and Nielsen, P. E. (1993). PNA hybridizes to complementary oligonucleotides obeying the Watson Crick hydrogen-bonding rules. Nature. 365(6446):566–568.
  • Eichelberg, K., Ginocchio, C. C. and Galan, J. E. (1994). Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176(15):4501–4510.
  • Ercole, C., Del Gallo, M., Mosiello, L., Baccella, S. and Lepidi, A. (2003). Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens. Actuat. B: Chem. 91(1):163–168.
  • Ertl, P. and Mikkelsen, S. R. (2001). Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal. Chem. 73(17):4241–4248.
  • Esiobu, N., Mohammed, R., Echeverry, A., Green, M., Bonilla, T., Hartz, A. and Rogerson, A. (2004). The application of peptide nucleic acid probes for rapid detection and enumeration of eubacteria, Staphylococcus aureus and Pseudomonas aeruginosa in recreational beaches of S. Florida. J. Microbiol. Methods. 57(2):157–162.
  • Fakruddin, M. (2011). Loop mediated isothermal amplification-An alternative to polymerase chain reaction (PCR). Bangladesh Res. Publ. 5:425–439.
  • Fakruddin, M. and Chowdhury, A. (2012). Pyrosequencing an alternative to traditional Sanger sequencing. Am. J. Biochem. Biotechnol. 8(1):14–20.
  • Feng, P., Doyle, M. P. and Beuchat, L. R. (2007). ASM Press, Washington, DC, Rapid methods for the detection of foodborne pathogens: Current and next-generation technologies. In: Food Microbiology: Fundamentals and Frontiers, 3rd ed., pp. 911–934.
  • Frank, L., Markova, S., Remmel, N., Vysotski, E. and Gitelson, I. (2007). Bioluminescent signal system: Bioluminescence immunoassay of pathogenic organisms. Luminescence. 22(3):215–220.
  • Frankel, G., Riley, L., Giron, J. A., Valmassoi, J., Friedmann, A., Strockbine, N. and Schoolnik, G. K. (1990). Detection of Shigella in feces using DNA amplification. J. Infect. Dis. 161(6):1252–1256.
  • Furrer, B., Candrian, U., Hoefelein, C. and Luethy, J. (1991). Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J. Appl. Bacteriol. 70(5):372–379.
  • Gall, A. A., Kutyavin, I. V., Vermeulen, N. M. and Dempcy, R. O. (2003). U.S. Patent 6660845. U.S. Patent and Trademark Office, Washington, DC Non-aggregating non-quenching oligomers comprising nucleotide analogs; methods of synthesis and use thereof.
  • García-Cañas, V., Simó, C., Herrero, M., Ibáñez, E. and Cifuentes, A. (2012). Present and future challenges in food analysis: Foodomics. Anal. Chem. 84(23):10150–10159.
  • Gehring, A. G., Patterson, D. L. and Tu, S. I. (1998). Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157: H7. Analyt. Biochem. 258(2):293–298.
  • Gendel, S. M. (2004). Riboprint analysis of Listeria monocytogenes isolates obtained by FDA from 1999 to 2003. Food Microbiol. 21(2):187–191.
  • Gerry, N. P., Witowski, N. E., Day, J., Hammer, R. P., Barany, G. and Barany, F. (1999). Universal DNA microarray method for multiplex detection of low abundance point mutations. J. Mol. Biol. 292(2):251–262.
  • Gilmartin, N. and O'Kennedy, R. (2012). Nanobiotechnologies for the detection and reduction of pathogens. Enzyme Microbial Technol. 50(2):87–95.
  • Gore, H. M., Wakeman, C. A., Hull, R. M. and McKillip, J. L. (2003). Real-time molecular beacon NASBA reveals hblC expression from Bacillus spp. in milk. Biochem. Biophys. Res. Commun. 311(2):386–390.
  • Griffin, H. R., Pyle, A., Blakely, E. L., Alston, C. L., Duff, J., Hudson, G. and Chinnery, P. F. (2014). Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genet. Med. 16(12):962–971.
  • Grossman, H. L., Myers, W. R., Vreeland, V. J., Bruehl, R., Alper, M. D., Bertozzi, C. R. and Clarke, J. (2004). Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA. 101(1):129–134.
  • Grossman, P. D., Bloch, W., Brinson, E., Chang, C. C., Eggerding, F. A., Fung, S. and Winn-Deen, E. S. (1994). High-density multiplex detection of nucleic acid sequences: Oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22(21):4527–4534.
  • Guan, Z. P., Jiang, Y., Gao, F., Zhang, L., Zhou, G. H. and Guan, Z. J. (2013). Rapid and simultaneous analysis of five foodborne pathogenic bacteria using multiplex PCR. Eur. Food Res. Technol. 237(4):627–637.
  • Ha, B. K., Hussey, R. S. and Boerma, H. R. (2007). Development of SNP assays for marker-assisted selection of two southern root-knot nematode resistance QTL in soybean. Crop Sci. 47(S2):73–82.
  • Hartman, A. B., Venkatesan, M., Oaks, E. V. and Buysse, J. M. (1990). Sequence and molecular characterization of a multicopy invasion plasmid antigen gene, ipaH, of Shigella flexneri. J. Bacteriol. 172(4):1905–1915.
  • Havelaar, A. H., Brul, S., De Jong, A., De Jonge, R., Zwietering, M. H. and Ter Kuile, B. H. (2010). Future challenges to microbial food safety. Int. J. Food Microbiol. 139:S79–S94.
  • Hayashi, K. and Yandell, D. W. (1993). How sensitive is PCR-SSCP?. Hum. Mutat. 2(5):338–346.
  • Hibi, K., Abe, A., Ohashi, E., Mitsubayashi, K., Ushio, H., Hayashi, T. and Endo, H. (2006). Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal. Chim. Acta. 573:158–163.
  • Hoehl, M. M., Lu, P. J., Sims, P. A. and Slocum, A. H. (2012). Rapid and robust detection methods for poison and microbial contamination. J. Agric. Food Chem. 60(25):6349–6358.
  • Hu, M., Chilton, N. B., Zhu, X. and Gasser, R. B. (2002). Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis. 23(1):27–34.
  • Huang, A., Qiu, Z., Jin, M., Shen, Z., Chen, Z., Wang, X. and Li, J. W. (2014). High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels. Int. J. Food Microbiol. 185:27–32.
  • Huang, S., Yang, H., Johnson, M., Wan, J., Chen, I., Petrenko, V. A. and Chin, B. A. (2008). Optimization of phage-based magnetoelastic biosensor performance. Vacuum (Torr). 5:6.
  • Huggett, J. F., Foy, C. A., Benes, V., Emslie, K., Garson, J. A., Haynes, R. and Bustin, S. A. (2013). The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin. Chem. 59(6):892–902.
  • Ibrahim, A., Liesack, W. and Stackebrandt, E. (1992). Polymerase chain reaction-gene probe detection system specific for pathogenic strains of Yersinia enterocolitica. J. Clin. Microbiol. 30(8):1942–1947.
  • Jain, S., Singh, S. R., Horn, D. W., Davis, V. A., Ram, M. J. and Pillai, S. R. (2012). Development of an antibody functionalized carbon nanotube biosensor for foodborne bacterial pathogens. Biosensors Bioelectronics. S11:0021–7.
  • Jaksch, M., Gerbitz, K. D. and Kilger, C. (1995). Screening for mitochondrial DNA (mtDNA) point mutations using nonradioactive single strand conformation polymorphism (SSCP) analysis. Clin. Biochem. 28(5):503–509.
  • Jansen, G. J., Mooibroek, M., Idema, J., Harmsen, H. J. M., Welling, G. W. and Degener, J. E. (2000). Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes. J. Clin. Microbiol. 38(2):814–817.
  • Jefferies, J., Clarke, S. C., Diggle, M. A., Smith, A., Dowson, C. and Mitchell, T. (2003). Automated pneumococcal MLST using liquid-handling robotics and a capillary DNA sequencer. Mol. Biotechnol. 24(3):303–307.
  • Joo, J., Yim, C., Kwon, D., Lee, J., Shin, H. H., Cha, H. J. and Jeon, S. (2012). A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst. 137(16):3609–3612.
  • Jung, Y. S., Frank, J. F. and Brackett, R. E. (2003). Evaluation of antibodies for immunomagnetic separation combined with flow cytometry detection of Listeria monocytogenes. J. Food Prot. 66(7):1283–1287.
  • Kalele, S. A., Kundu, A. A., Gosavi, S. W., Deobagkar, D. N., Deobagkar, D. D. and Kulkarni, S. K. (2006). Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small. 2(3):335–338.
  • Kaltsas, P., Want, S. and Cohen, J. (2005). Development of a time-to-positivity assay as a tool in the antibiotic management of septic patients. Clin. Microbiol. Infect. 11(2):109–114.
  • Kawasaki, S., Fratamico, P. M., Horikoshi, N., Okada, Y., Takeshita, K., Sameshima, T. and Kawamoto, S. (2010). Multiplex real-time polymerase chain reaction assay for simultaneous detection and quantification of Salmonella species, Listeria monocytogenes, and Escherichia coli O157: H7 in ground pork samples. Foodborne Pathogens Dis. 7(5):549–554.
  • Kiba, A., Toyoda, K., Yoshioka, K., Tsujimura, K., Takahashi, H., Ichinose, Y. and Shiraishi, T. (2006). A pea NTPase, PsAPY1, recognizes signal molecules from microorganisms. J. Gen. Plant Pathol. 72(4):238–246.
  • Knight, A. W., Goddard, N. J., Fielden, P. R., Barker, M. G., Billinton, N. and Walmsley, R. M. (1999). Development of a flow-through detector for monitoring genotoxic compounds by quantifying the expression of green fluorescent protein in genetically modified yeast cells. Meas. Sci. Technol. 10(3):211–217.
  • Konstantinos, K. V., Panagiotis, P., Antonios, V. T., Agelos, P. and Argiris, N. V. (2008). PCR–SSCP: A method for the molecular analysis of genetic diseases. Mol. Biotechnol. 38(2):155–163.
  • Koubova, V., Brynda, E., Karasova, L., Škvor, J., Homola, J., Dostalek, J. and Rošický, J. (2001). Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens. Actuat. B: Chem. 74(1):100–105.
  • Kumar, S., Balakrishna, K. and Batra, H. V. (2008). Enrichment-ELISA for detection of Salmonella typhi from food and water samples. Biomed. Environ. Sci. 21(2):137–143.
  • Kusakabe, T., Maekawa, K., Ichikawa, A., Uesugi, M. and Sugiura, Y. (1993). Conformation-selective DNA strand breaks by dynemicin: A molecular wedge into flexible regions of DNA. Biochemistry. 32(43):11669–11675.
  • Landegren, U., Kaiser, R., Sanders, J. and Hood, L. (1988). A ligase-mediated gene detection technique. Science. 241(4869):1077–1080.
  • Lareu, R. R., Swanson, N. R. and Fox, S. A. (1997). Rapid and sensitive genotyping of hepatitis C virus by single-strand conformation polymorphism. J. Virol. Methods. 64(1):11–18.
  • Layre, E. and Moody, D. B. (2013). Lipidomic profiling of model organisms and the world's major pathogens. Biochimie. 95(1):109–115.
  • Lazcka, O., Del Campo, F. J. and Munoz, F. X. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Biosensors Bioelectronics. 22(7):1205–1217.
  • Leone, G., van Gemen, B., Schoen, C. D., van Schijndel, H. and Kramer, F. R. (1998). Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res. 26(9):2150–2155.
  • Letowski, J., Brousseau, R. and Masson, L. (2004). Designing better probes: Effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J. Microbiol. Methods. 57(2):269–278.
  • Li, Y. S. and Church, J. S. (2014). Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 22(1):29–48.
  • Lima, C. S., Pfenning, L. H., Costa, S. S., Campos, M. A. and Leslie, J. F. (2009). A new Fusarium lineage within the Gibberella fujikuroi species complex is the main causal agent of mango malformation disease in Brazil. Plant Pathol. 58(1):33–42.
  • Lin, Y. and Hamme, A. T. (2015). Gold nanoparticle labeling based ICP-MS detection/measurement of bacteria, and their quantitative photothermal destruction. J. Mater. Chem. B. 3(17):3573–3582.
  • Lin, Y. H., Chen, S. H., Chuang, Y. C., Lu, Y. C., Shen, T. Y., Chang, C. A. and Lin, C. S. (2008). Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosensor Bioelectronics. 23(12):1832–1837.
  • Lindholm, L. and Sarkkinen, H. (2004). Direct identification of gram-positive cocci from routine blood cultures by using AccuProbe tests. J. Clin. Microbiol. 42(12):5609–5613.
  • Lobert, S., Hiser, L. and Correia, J. J. (2010). Expression profiling of tubulin isotypes and microtubule-interacting proteins using real-time polymerase chain reaction. Methods Cell Biol. 95:47–58.
  • Ma, K., Deng, Y., Bai, Y., Xu, D., Chen, E., Wu, H. and Gao, L. (2014). Rapid and simultaneous detection of Salmonella, Shigella, and Staphylococcus aureus in fresh pork using a multiplex real-time PCR assay based on immunomagnetic separation. Food Control. 42:87–93.
  • Mackay, I. M., Arden, K. E. and Nitsche, A. (2002). Real-time PCR in virology. Nucleic Acids Res. 30(6):1292–1305.
  • Magliulo, M., Simoni, P., Guardigli, M., Michelini, E., Luciani, M., Lelli, R. & Roda, A. (2007). A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal of agricultural and food chemistry, 55(13):4933–4939.
  • Maibach, R. C. and Altwegg, M. (2003). Cloning and sequencing an unknown gene of Tropheryma whipplei and development of two LightCycler® PCR assays. Diagn. Microbiol. Infect. Dis. 46(3):181–187.
  • Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R. and Spratt, B. G. (1998). Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. 95(6):3140–3145.
  • Mao, X., Yang, L., Su, X. and Yi, Y. (2006). A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensor Bioelectronics. 21(7):1178–1185.
  • Martin, F. N., Coffey, M. D., Zeller, K., Hamelin, R. C., Tooley, P., Garbelotto, M., Hughes, K., Kubisiak, T., Bilodeau, G., Levy, L., Blomquist, C. and Berger, P. (2009). Evaluation of molecular markers for Phytophthora ramorum detection and identification: testing for specificity using a standardized library of isolates. Phytopathology. 99(4):390–403.
  • Mathew, F. P., Alagesan, D. and Alocilja, E. C. (2004). Chemiluminescence detection of Escherichia coli in fresh produce obtained from different sources. Luminescence. 19(4):193–198.
  • McHugh, T. D., Pope, C. F., Ling, C. L., Patel, S., Billington, O. J., Gosling, R. D. and Gillespie, S. H. (2004). Prospective evaluation of BDProbeTec strand displacement amplification (SDA) system for diagnosis of tuberculosis in non-respiratory and respiratory samples. J. Med. Microbiol. 53(12):1215–1219.
  • McPherson, M. J. and Moller, S. G. (2000). Reagents and instrumentation. PCR, pp. 23–60. BIOS Scientific Publishers Ltd, Oxford.
  • Meng, J. H. and Doyle, M. P. (2002). Introduction. Microbiological food safety. Microbial Infect. 4:395–397.
  • Meng, J., Doyle, M. P., Zhao, T. and Zhao, S. (2007). Enterohemorrhagic Escherichia coli In: Food Microbiology: Fundamentals and Frontiers, pp. 249–269. Doyle, M. P., Beuchat, L. R., Eds., ASM Press, Washington, DC.
  • Mijs, W., De Vreese, K., Devos, A., Pottel, H., Valgaeren, A., Evans, C. and Rossau, R. (2002). Evaluation of a commercial line probe assay for identification of Mycobacterium species from liquid and solid culture. Eur. J. Clin. Microbiol. Infect. Dis. 21(11):794–802.
  • Min, J. and Baeumner, A. J. (2002). Highly sensitive and specific detection of viable Escherichia coli in drinking water. Anal. Biochem. 303(2):186–193.
  • Mohamed, R. (2012). Low-Stringency Single-Specific-Primer PCR as a tool for detection of mutations in the matK gene of Phaseolus vulgaris exposed to paranitrophenol. J. Cell Mol. Biol. 10(2):71–77.
  • Mollasalehi, H. and Yazdanparast, R. (2013). Development and evaluation of a novel nucleic acid sequence-based amplification method using one specific primer and one degenerate primer for simultaneous detection of Salmonella Enteritidis and Salmonella Typhimurium. Anal. Chim. Acta. 770:169–174.
  • Muhammad-Tahir, Z. and Alocilja, E. C. (2003). Fabrication of a disposable biosensor for Escherichia coli O157: H7 detection. Sensors J. IEEE 3(4):345–351.
  • Munoz-Berbel, X., Vigués, N., Jenkins, A. T. A., Mas, J. and Munoz, F. J. (2008). Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode–solution interface during the pre-attachment stage. Biosensors Bioelectronics. 23(10):1540–1546.
  • Murphy, N. M., McLauchlin, J., Ohai, C. and Grant, K. A. (2007). Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. Int. J. Food Microbiol. 120(1):110–119.
  • Nadal, A., Coll, A., Cook, N. and Pla, M. (2007). A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: Role of target mRNA secondary structure on NASBA design. J. Microbiol. Methods. 68(3):623–632.
  • Nadugala, L. M. N. S. and Rakshit, S. K. (2007). DNase treated DNA multiplex polymerase chain reaction assay for rapid detection of viable food borne pathogens. J. Natl. Sci. Found. Sri Lanka 35:4 225–233.
  • Nagamine, K., Hase, T. and Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes. 16(3):223–229.
  • Nakaguchi, Y., Ishizuka, T., Ohnaka, S., Hayashi, T., Yasukawa, K., Ishiguro, T. and Nishibuchi, M. (2004). Rapid and specific detection of tdh, trh1, and trh2 mRNA of Vibrio parahaemolyticus by transcription-reverse transcription concerted reaction with an automated system. J. Clin. Microbiol. 42(9):4284–4292.
  • Naravaneni, R. and Jamil, K. (2005). Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol. 54(1):51–54.
  • Neogen. (2011a). GENE-TRAK ® Staphylococcus aureus Assay Neogen Corporation, Lansing, Michigan, USA.
  • Neogen. (2011b). GeneQuence® For Salmonella Neogen Corporation, Lansing, Michigan, USA.
  • Neogen. (2011c). Reveal® 2.0 For Listeria Neogen Corporation, Lansing, Michigan, USA.
  • Neogen. (2011d). Reveal® For E. coli Neogen Corporation, Lansing, Michigan, USA O157:H.
  • Nielsen, P. E. (1993). Peptide nucleic acid (PNA): a model structure for the primordial genetic material?. Origins of Life and Evolution of the Biosphere, 23(5-6):323–327.
  • O'Brien, T., Johnson Iii, L. H., Aldrich, J. L., Allen, S. G., Liang, L. T., Plummer, A. L. and Boiarski, A. A. (2000). The development of immunoassays to four biological threat agents in a bidiffractive grating biosensor. Biosensors Bioelectronics. 14(10):815–828.
  • Paillard, D., Dubois, V., Duran, R., Nathier, F., Guittet, C., Caumette, P. and Quentin, C. (2003). Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl. Environ. Microbiol. 69(11):6386–6392.
  • Pal, S., Ying, W., Alocilja, E. C. and Downes, F. P. (2008). Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst. Eng. 99(4):461–468.
  • Peña, S. D., Barreto, G., Vago, A. R., De Marco, L., Reinach, F. C., Neto, E. D. and Simpson, A. J. (1994). Sequence-specific “gene signatures” can be obtained by PCR with single specific primers at low stringency. Proc. Natl. Acad. Sci. 91(5):1946–1949.
  • Peng, H. and Shelef, L. A. (2001). Automated simultaneous detection of low levels of listeriae and salmonellae in foods. Int. J. Food Microbiol. 63(3):225–233.
  • Peter, C., Waibel, M., Radu, C. G., Yang, L. V., Witte, O. N., Schulze-Osthoff, K. and Lauber, K. (2008). Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J. Biol. Chem. 283(9):5296–5305.
  • Poppert, S., Essig, A., Marre, R., Wagner, M. and Horn, M. (2002). Detection and differentiation of chlamydiae by fluorescence in situ hybridization. Appl. Environ. Microbiol. 68(8):4081–4089.
  • Powledge, T. M. (2004). The polymerase chain reaction. Adv. Physiol. Educ. 28(2):44–50.
  • Quirino, A., Pulcrano, G., Rametti, L., Puccio, R., Marascio, N., Catania, M. R. and Focà, A. (2014). Typing of Ochrobactrum anthropi clinical isolates using automated repetitive extragenic palindromic-polymerase chain reaction DNA fingerprinting and matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry. BMC Microbiol. 14(1):1–8.
  • Rahn, K., De Grandis, S. A., Clarke, R. C., McEwen, S. A., Galan, J. E., Ginocchio, C., Curtiss, R. and Gyles, C. L. (1992). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes. 6(4):271–279.
  • Ranjbar, R., Karami, A., Farshad, S., Giammanco, G. M. and Mammina, C. (2014). Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol. 37(1):1–15.
  • Rantala, A., Rizzi, E., Castiglioni, B., De Bellis, G. and Sivonen, K. (2008). Identification of hepatotoxin-producing cyanobacteria by DNA-chip. Environ. Microbiol. 10(3):653–664.
  • Rho, S., Kim, S. J., Lee, S. C., Chang, J. H., Kang, H. G. and Choi, J. (2009). Colorimetric detection of ssDNA in a solution. Curr. Appl. Phys. 9(2):534–537.
  • Roda, A., Cevenini, L., Borg, S., Michelini, E., Calabretta, M. M. and Schüler, D. (2013). Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab on a Chip. 13(24):4881–4889.
  • Romano, S., Aujoulat, F., Jumas-Bilak, E., Masnou, A., Jeannot, J. L., Falsen, E. and Teyssier, C. (2009). Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation. BMC Microbiol. 9(1):1–18.
  • Rosi, N. L. and Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chem. Rev. 105(4):1547–1562.
  • Ruan, C., Wang, H. and Li, Y. (2002). A bienzyme electrochemical biosensor coupled with immunomagnetic separation for rapid detection of Escherichia coli O157: H7 in food samples. Trans. ASAE. 45(1):249–255.
  • Ruiz-Rueda, O., Soler, M., Calvó, L. and García-Gil, J. L. (2011). Multiplex real-time PCR for the simultaneous detection of Salmonella spp. and Listeria monocytogenes in food samples. Food Analyt. Methods. 4(2):131–138.
  • Ryser, E. T., Arimi, S. M., Bunduki, M. M. and Donnelly, C. W. (1996). Recovery of different Listeria ribotypes from naturally contaminated, raw refrigerated meat and poultry products with two primary enrichment media. Appl. Environ. Microbiol. 62(5):1781–1787.
  • Santos, S. R. and Ochman, H. (2004). Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ. Microbiol. 6(7):754–759.
  • Schlosser, G., Kačer, P., Kuzma, M., Szilágyi, Z., Sorrentino, A., Manzo, C. and Pocsfalvi, G. (2007). Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Appl. Environ. Microbiol. 73(21):6945–6952.
  • SDIX. (2011a). RapidChek E. coli O157 Romer Labs, USA. (including H7).
  • SDIX. (2011b). RapidChek® Salmonella Romer Labs, USA.
  • Seelenbinder, J. A., Brown, C. W., Pivarnik, P. and Rand, A. G. (1999). Colloidal gold filtrates as metal substrates for surface-enhanced infrared absorption spectroscopy. Anal. Chem. 71(10):1963–1966.
  • Seo, K. H., Brackett, R. E., Hartman, N. F. and Campbell, D. P. (1999). Development of a rapid response biosensor for detection of Salmonella typhimurium. J. Food Prot. 62(5):431–437.
  • Shangkuan, Y. H., Show, Y. S. and Wang, T. M. (1995). Multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae and to biotype Vibrio cholerae O1. J. Appl. Bacteriol. 79(3):264–273.
  • Shao, Y., Zhu, S., Jin, C. and Chen, F. (2011). Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. Int. J. Food Microbiol. 148(2):75–79.
  • Sharma, H., Agarwal, M., Goswami, M., Sharma, A., Roy, S. K., Rai, R. and Murugan, M. S. (2013). Biosensors: Tool for food borne pathogen detection. Veterinary World. 6(12):968–973.
  • Shen, Z., Hou, N., Jin, M., Qiu, Z., Wang, J., Zhang, B., Wang, X., Wang, J., Zhou, D. and Li, J. (2014). A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157: H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathogens. 6:1–18.
  • Shitanda, I., Takamatsu, S., Watanabe, K. and Itagaki, M. (2009). Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim. Acta. 54(21):4933–4936.
  • Shukla, S., Leem, H., Lee, J. S. and Kim, M. (2014). Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples. Can. J. Microbiol. 60(6):399–406.
  • Siemer, B. L., Nielsen, E. M. and On, S. L. W. (2005). Identification and molecular epidemiology of Campylobacter coli isolates from human gastroenteritis, food, and animal sources by amplified fragment length polymorphism analysis and Penner serotyping. Appl. Environ. Microbiol. 71(4):1953–1958.
  • Silva, D. S. P., Canato, T., Magnani, M., Alves, J., Hirooka, E. Y. and de Oliveira, T. C. R. M. (2011). Multiplex PCR for the simultaneous detection of Salmonella spp. and Salmonella Enteritidis in food. Int. J. Food Sci. Technol. 46(7):1502–1507.
  • Simon, M. C., Gray, D. I. and Cook, N. (1996). DNA extraction and PCR methods for the detection of listeria monocytogenes in cold-smoked salmon. Appl. Environ. Microbiol. 62(3):822–824.
  • Singh, A., Glass, N., Tolba, M., Brovko, L., Griffiths, M. and Evoy, S. (2009). Immobilization of bacteriophages on gold surfaces for the specific chapter of pathogens. Biosensors Bioelectronics. 24(12):3645–3651.
  • Song, J., Cheng, Q., Zhu, S. and Stevens, R. C. (2002). “Smart” materials for biosensing devices: Cell-mimicking supramolecular assemblies and colorimetric detection of pathogenic agents. Biomed. Microdevices. 4(3):213–221.
  • Suo, B., He, Y., Paoli, G., Gehring, A., Tu, S. I. and Shi, X. (2010). Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens. Mol. Cell. Probes. 24(2):77–86.
  • Susmel, S., Guilbault, G. G. and O'sullivan, C. K. (2003). Demonstration of labeless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosensors Bioelectronics. 18(7):881–889.
  • Tada, J., Ohashi, T., Nishimura, N., Shirasaki, Y., Ozaki, H., Fukushima, S., Takano, J., Nishibuchi, M. and Takeda, Y. (1992). Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction. Mol. Cell. Probes. 6(6):477–487.
  • Taylor, A. D., Ladd, J., Yu, Q., Chen, S., Homola, J. and Jiang, S. (2006). Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosensors Bioelectronics. 22(5):752–758.
  • 3M. Microbiology, 3M Center, USA. (2011b). Tecra™ E. coli O157 Visual Immunoassays.
  • 3M. Microbiology, 3M Center, USA. (2011c). Tecra™ Unique Salmonella.
  • Tomita, N., Mori, Y., Kanda, H. and Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protocols. 3(5):877–882.
  • Toze, S. (1999). PCR and the detection of microbial pathogens in water and wastewater. Water Res. 33(17):3545–3556.
  • Trebesius, K., Adler, K., Vieth, M., Stolte, M. and Haas, R. (2001). Specific detection and prevalence of Helicobacter heilmannii-like organisms in the human gastric mucosa by fluorescent in situ hybridization and partial 16S ribosomal DNA sequencing. J. Clin. Microbiol. 39(4):1510–1516.
  • Tsai, Y. L., Palmer, C. J. and Sangermano, L. R. (1993). Detection of Escherichia coli in sewage and sludge by polymerase chain reaction. Appl. Environ. Microbiol. 59(2):353–357.
  • Tully, E., Higson, S. P. and O'Kennedy, R. (2008). The development of a ‘labeless’ immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B. Biosensors Bioelectronics. 23(6):906–912.
  • Ueda, F., Anahara, R., Yamada, F., Mochizuki, M., Ochiai, Y. and Hondo, R. (2005). Discrimination of Listeria monocytogenes contaminated commercial Japanese meats. Int. J. Food Microbiol. 105(3):455–462.
  • Umesha, S., Chandan, S. and Nanjunda, S. (2012). Colony PCR-single strand confirmation polymorphism for the detection of Ralstonia solanacearum in tomato. Int. J. Integ. Biol. 13(1, Cop):45–51.
  • Vago, A. R., Macedo, A. M., Oliveira, R. P., Andrade, L. O., Chiari, E., Galvao, L. M. and Pena, S. D. (1996). Kinetoplast DNA signatures of Trypanosoma cruzi strains obtained directly from infected tissues. Am. J. Pathol. 149(6):2153–2159.
  • Valasek, M. A. and Repa, J. J. (2005). The power of real-time PCR. Adv. Physiol. Educ. 29(3):151–159.
  • Van Belkum, A. (1995). Low-stringency single specific primer PCR, DNA sequencing and single-strand conformation polymorphism of PCR products for identification of genetic variants of human papillomavirus type 16. J. Virol. Methods. 55(3):435–443.
  • Varshney, M., Yang, L., Su, X. L. and Li, Y. (2005). Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157: H7 in ground beef. J. Food Prot. 68(9):1804–1811.
  • Verstraete, K., Robyn, J., Del-Favero, J., De Rijk, P., Joris, M. A., Herman, L. and De Reu, K. (2012). Evaluation of a multiplex-PCR detection in combination with an isolation method for STEC O26, O103, O111, O145 and sorbitol fermenting O157 in food. Food Microbiol. 29(1):49–55.
  • Villa, L. L., Caballero, O. L., Levi, J. E., Pena, S. D. and Simpson, A. J. (1995). An approach to human papillomavirus identification using low stringency single specific primer PCR. Mol. Cell. Probes. 9(1):45–48.
  • Vo-Dinh, T. and Cullum, B. (2000). Biosensors and biochips: Advances in biological and medical diagnostics. Fresenius J. Analyt. Chem. 366(6–7):540–551.
  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M. and Zabeau, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23(21):4407–4414.
  • Wagner, M., Horn, M. and Daims, H. (2003). Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr. Opin. Microbiol. 6(3):302–309.
  • Walker, G. T. (1993). Empirical aspects of strand displacement amplification. Genome Res. 3(1):1–6.
  • Wang, C. and Irudayaraj, J. (2008). Gold nanorod probes for the detection of multiple pathogens. Small. 4(12):2204–2208.
  • Wang, F., Yang, Q., Qu, Y., Meng, J. and Ge, B. (2014). Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of shiga toxin-producing Escherichia coli in produce. Appl. Environ. Microbiol. 80(8):2516–2525.
  • Wang, L., Shi, L., Su, J., Ye, Y. and Zhong, Q. (2013). Detection of Vibrio parahaemolyticus in food samples using in situ loop-mediated isothermal amplification method. Gene. 515(2):421–425.
  • Weimer, B. C., Walsh, M. K., Beer, C., Koka, R. and Wang, X. (2001). Solid-phase capture of proteins, spores, and bacteria. Appl. Environ. Microbiol. 67(3):1300–1307.
  • Wenk, M. R. (2006). Lipidomics of host–pathogen interactions. FEBS Lett. 580(23):5541–5551.
  • Wiedmann, M., Bruce, J. L., Keating, C., Johnson, A. E., McDonough, P. L. and Batt, C. A. (1997). Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65(7):2707–2716.
  • Wiedmann, M., Wilson, W. J., Czajka, J., Luo, J., Barany, F. and Batt, C. A. (1994). Ligase chain reaction (LCR)-overview and applications. PCR Methods Appl. 3(4):S51–S64.
  • Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18(22):6531–6535.
  • Wilson, I. G., Cooper, J. E. and Gilmour, A. (1991). Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl. Environ. Microbiol. 57(6):1793–1798.
  • Xie, F., Yang, H., Li, S., Shen, W., Wan, J., Johnson, M. L. and Chin, B. A. (2009). Amorphous magnetoelastic sensors for the detection of biological agents. Intermetallics. 17(4):270–273.
  • Xihong, Z., Chii-Wann, L., Jun, W. and Deog Hwan, O. (2014). Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24(3):297–312.
  • Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R. and Weigl, B. H. (2006). Microfluidic diagnostic technologies for global public health. Nature. 442(7101):412–418.
  • Yakes, B. J., Lipert, R. J., Bannantine, J. P., Porter, M. D. (2008). Detection of Mycobacterium avium subsp. paratuberculosis by a sonicate immunoassay based on surface-enhanced Raman scattering. Clin. Vacc. Immunol. 15:227e34.
  • Yang, L. and Bashir, R. (2008). Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 26(2):135–150.
  • Yang, L. and Li, Y. (2006). Simultaneous detection of E. coli O157:H7 and S. Typhimurium using quantumdotsasfluorescencelabels. Analyst. 3:394–401.
  • Yang, L., Li, Y., Griffis, C. L. and Johnson, M. G. (2004). Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors Bioelectronics. 19(10):1139–1147.
  • Yang, L. J., Ruan, C. M. and Li, Y. B. (2001). Rapid detection of Salmonella typhimurium in food samples using a bienzyme electrochemical biosensor with flow injection. J. Rapid Methods Automat.Microbiol. 9:229–240.
  • Yu, X., Susa, M., Knabbe, C., Schmid, R. D. and Bachmann, T. T. (2004). Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J. Clin. Microbiol. 42(9):4083–4091.
  • Zhao, J., Jedlicka, S. S., Lannu, J. D., Bhunia, A. K. and Rickus, J. L. (2006). Liposome-doped nanocomposites as artificial-cell-based biosensors: Detection of Listeriolysin O. Biotechnol. Prog. 22(1):32–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.