18,432
Views
101
CrossRef citations to date
0
Altmetric
Articles

A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health

ORCID Icon, ORCID Icon, ORCID Icon, , , , , & show all

References

  • Adler, E., Hoon, M. A., Mueller, K. L., Chandrashekar, J., Ryba, N. J. and Zuker, C. S. (2000). A novel family of mammalian taste receptors. Cell 100:693–702.
  • Baillie, A. G., Coburn, C. T. and Abumrad, N. A. (1996). Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membr. Biol. 153:75–81.
  • Baldwin, W., McRae, S., Marek, G., Wymer, D., Pannu, V., Baylis, C., Johnson, R. J. and Sautin, Y. Y. (2011). Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes 60:1258–1269.
  • Bartel, D. L., Sullivan, S. L., Lavoie, E. G., Sevigny, J. and Finger, T. E. (2006). Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J. Comp. Neurol. 497:1–12.
  • Bartoshuk, L. M., Duffy, V. B. and Miller, I. J. (1994). PTC/PROP tasting: Anatomy, psychophysics, and sex effects. Physiol. Behav. 56:1165–1171.
  • Bertino, M., Beauchamp, G. K. and Engelman, K. (1982). Long-term reduction in dietary sodium alters the taste of salt. Am. J. Clin. Nutr. 36:1134–1144.
  • Bo, X., Alavi, A., Xiang, Z., Oglesby, I., Ford, A. and Burnstock, G. (1999). Localization of ATP-gated P2×2 and P2×3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10:1107–1111.
  • Bokor, S., Legry, V., Meirhaeghe, A., Ruiz, J. R., Mauro, B., Widhalm, K., Manios, Y., Amouyel, P., Moreno, L. A., Molnàr, D., Dallongeville, J. and HELENA Study group. (2010). Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity (Silver Spring) 18:1398–1403.
  • Bufe, B., Breslin, P. A., Kuhn, C., Reed, D. R., Tharp, C. D., Slack, J. P., Kim, U. K., Drayna, D. and Meyerhof, W. (2005). The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 15:322–327.
  • Cannon, D. S., Baker, T. B., Piper, M. E., Scholand, M. B., Lawrence, D. L., Drayna, D. T., McMahon, W. M., Villegas, G. M., Caton, T. C., Coon, H. and Leppert, M. F. (2005). Associations between phenylthiocarbamide gene polymorphisms and cigarette smoking. Nicotine Tob. Res. 7:853–858.
  • Cao, Y., Zhao, F. L., Kolli, T., Hivley, R. and Herness, S. (2009). GABA expression in the mammalian taste bud functions as a route of inhibitory cell-to-cell communication. Proc. Natl. Acad. Sci. U.S.A. 106:4006–4011.
  • Cartoni, C., Yasumatsu, K., Ohkuri, T., Shigemura, N., Yoshida, R., Godinot, N., le Coutre, J., Ninomiya, Y. and Damak, S. (2010). Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci. 30:8376–8382.
  • Chale-Rush, A., Burgess, J. R. and Mattes, R. D. (2007). Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem. Senses 32:423–431.
  • Chandrashekar, J., Hoon, M. A., Ryba, N. J. and Zuker, C. S. (2006). The receptors and cells for mammalian taste. Nature 444:288–294.
  • Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D. A., Hummler, E., Ryba, N. J. and Zuker, C. S. (2010). The cells and peripheral representation of sodium taste in mice. Nature 464:297–301.
  • Chaudhari, N. and Roper, S. D. (2010). The cell biology of taste. J. Cell Biol. 190:285–296.
  • Choi, S. E. (2014). Racial differences between African Americans and Asian Americans in the effect of 6-n-propylthiouracil taste intensity and food liking on body mass index. J. Acad. Nutr. Diet. 114:938–944.
  • Clapp, T. R., Medler, K. F., Damak, S., Margolskee, R. F. and Kinnamon, S. C. (2006). Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol. 4:7.
  • Colin-Ramirez, E., Castillo-Martinez, L., Orea-Tejeda, A., Zheng, Y., Westerhout, C. M. and Ezekowitz, J. A. (2014). Dietary fatty acids intake and mortality in patients with heart failure. Nutrition 30:1366–1371.
  • Connors, M., Bisogni, C. A., Sobal, J. and Devine, C. M. (2001). Managing values in personal food systems. Appetite 36:189–200.
  • Corpeleijn, E., van der Kallen, C. J., Kruijshoop, M., Magagnin, M. G., de Bruin, T. W., Feskens, E. J., Saris, W. H. and Blaak, E. E. (2006). Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with Type 2 diabetes mellitus and insulin resistance. Diabet. Med. 23:907–911.
  • Cui, M., Jiang, P., Maillet, E., Max, M., Margolskee, R. F. and Osman, R. (2006). The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr. Pharm. Des. 12:4591–4600.
  • Dando, R. and Roper, S. D. (2009). Cell-to-cell communication in intact taste buds through ATP signalling from pannexin 1 gap junction hemichannels. J. Physiol. 587:5899–5906.
  • Dando, R. and Roper, S. D. (2012). Acetylcholine is released from taste cells, enhancing taste signalling. J. Physiol. 590:3009–3017.
  • Daniel, D. Chiras (2005). Human Biology. Jones and Bartlett Learning.Evergreen, Colorado.
  • Daniel, Schacter (2009). Psychology, 2 ed., Worth Publishers. New York, New York.
  • DeFazio, R. A., Dvoryanchikov, G., Maruyama, Y., Kim, J. W., Pereira, E., Roper, S. D. and Chaudhari, N. (2006). Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 26:3971–3980.
  • Dias, A. G., Rousseau, D., Duizer, L., Cockburn, M., Chiu, W., Nielsen, D. and El-Sohemy, A. (2013). Genetic variation in putative salt taste receptors and salt taste perception in humans. Chem. Senses 38:137–145.
  • Dong, D., Jones, G. and Zhang, S. (2009). Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evol. Biol. 9:12.
  • Drayna, D. (2005). Human taste genetics. Annu. Rev. Genom. Hum. Genet. 6:217–235.
  • Drewnowski, A., Henderson, S. A. and Cockroft, J. E. (2007). Genetic sensitivity to 6-n-propylthiouracil has no influence on dietary patterns, body mass indexes, or plasma lipid profiles of women. J. Am. Diet. Assoc. 107:1340–1348.
  • Drewnowski, A., Henderson, S. A., Levine, A. and Hann, C. (1999). Taste and food preferences as predictors of dietary practices in young women. Public Health Nutr. 2:513–519.
  • Drewnowski, A., Henderson, S. A., Shore, A. B. and Barratt-Fornell, A. (1998). Sensory responses to 6-n-propylthiouracil (PROP) or sucrose solutions and food preferences in young women. Ann. N.Y. Acad. Sci. 855:797–801.
  • Drewnowski, A. and Specter, S. E. (2004). Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 79:6–16.
  • Duffy, V. B. and Bartoshuk, L. M. (2000). Food acceptance and genetic variation in taste. J. Am. Diet. Assoc. 100:647–655.
  • Duffy, V. B., Davidson, A. C., Kidd, J. R., Kidd, K. K., Speed, W. C., Pakstis, A. J., Reed, D. R., Snyder, D. J. and Bartoshuk, L. M. (2004). Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake. Alcohol Clin. Exp. Res. 28:1629–1637.
  • Dvoryanchikov, G., Huang, Y. A., Barro-Soria, R., Chaudhari, N. and Roper, S. D. (2011). GABA, its receptors, and GABAergic inhibition in mouse taste buds. J. Neurosci. 31:5782–5791.
  • Eny, K. M., Wolever, T. M., Corey, P. N. and El-Sohemy, A. (2010). Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am. J. Clin. Nutr. 92:1501–1510.
  • Fay, L. B. and German, J. B. (2008). Personalizing foods: Is genotype necessary? Curr. Opin. Biotechnol. 19:121–128.
  • Febbraio, M., Abumrad, N. A., Hajjar, D. P., Sharma, K., Cheng, W., Pearce, S. F. and Silverstein, R. L. (1999). A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 274:19055–19062.
  • Finger, T. E., Danilova, V., Barrows, J., Bartel, D. L., Vigers, A. J., Stone, L., Hellekant, G. and Kinnamon, S. C. (2005). ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499.
  • Forrai, G. and Bankovi, G. (1984). Taste perception for phenylthiocarbamide and food choice–a Hungarian twin study. Acta Physiol. Hung. 64:33–40.
  • Fukunaga, A. (2005). Age-related changes in renewal of taste bud cells and expression of taste cell-specific proteins in mice. Kokubyo Gakkai Zasshi 72:84–89.
  • Fukuwatari, T., Shibata, K., Iguchi, K., Saeki, T., Iwata, A., Tani, K., Sugimoto, E. and Fushiki, T. (2003). Role of gustation in the recognition of oleate and triolein in anosmic rats. Physiol. Behav. 78:579–583.
  • Fushan, A. A., Simons, C. T., Slack, J. P., Manichaikul, A. and Drayna, D. (2009). Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr. Biol. 19:1288–1293.
  • Garcia-Bailo, B., Toguri, C., Eny, K. M. and El-Sohemy, A. (2009). Genetic variation in taste and its influence on food selection. OMICS. 13:69–80.
  • Gayathri, D. A., Henderson, S. A. and Drewnowski, A. (1997). Sensory acceptance of Japanese green tea and soy products is linked to genetic sensitivity to 6-n-propylthiouracil. Nutr. Cancer 29:146–151.
  • Gibney, M. J., McNulty, B. A., Ryan, M. F. and Walsh, M. C. (2014). Nutritional phenotype databases and integrated nutrition: from molecules to populations. Adv. Nutr. 5:352S–357S.
  • Gilbertson, T. A., Liu, L., York, D. A. and Bray, G. A. (1998). Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann. N.Y. Acad. Sci. 855:165–168.
  • Glanville, E. V. and Kaplan, A. R. (1965). Food preference and sensitivity of taste for bitter compounds. Nature 205:851–853.
  • Glendenning, J. I. (1994). Is the bitter ejective response always adaptive? Physiol. Behav. 56:1217–1227.
  • Goldstein, G. L., Daun, H. and Tepper, B. J. (2005). Adiposity in middle-aged women is associated with genetic taste blindness to 6-n-propylthiouracil. Obes. Res. 13:1017–1023.
  • Goudriaan, J. R., Dahlmans, V. E., Teusink, B., Ouwens, D. M., Febbraio, M., Maassen, J. A., Romijn, J. A., Havekes, L. M. and Voshol, P. J. (2003). CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J. Lipid Res. 44:2270–2277.
  • Greenberg, D. and Smith, G. P. (1996). The controls of fat intake. Psychosom. Med. 58:559–569.
  • Grimm, E. R. and Steinle, N. I. (2011). Genetics of eating behavior: Established and emerging concepts. Nutr. Rev. 69:52–60.
  • Hayes, J. E., Bartoshuk, L. M., Kidd, J. R. and Duffy, V. B. (2008). Supertasting and PROP bitterness depends on more than the TAS2R38 gene. Chem. Senses 33:255–265.
  • Hayes, J. E., Sullivan, B. S. and Duffy, V. B. (2010). Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiol. Behav. 100:369–380.
  • Haznedaroglu, E., Koldemir-Gunduz, M., Bakir-Coskun, N., Bozkus, H. M., Cagatay, P., Susleyici-Duman, B. and Menteş, A. (2015). Association of Sweet Taste Receptor Gene Polymorphisms with Dental Caries Experience in School Children. Caries Res. 49:275–281.
  • Hladik, C. M. and Simmen, B. (1996). Taste percpetion and feeding behavior in nonhuman primates and human populations. Evol. Anthropol. 5:58–71.
  • Hochheimer, A., Krohn, M., Rudert, K., Riedel, K., Becker, S., Thirion, C. and Zinke, H. (2014). Endogenous gustatory responses and gene expression profile of stably proliferating human taste cells isolated from fungiform papillae. Chem. Senses 39:359–377.
  • Huang, A. L., Chen, X., Hoon, M. A., Chandrashekar, J., Guo, W., Trankner, D., Ryba, N. J. and Zuker, C. S. (2006a). The cells and logic for mammalian sour taste detection. Nature 442:934–938.
  • Huang, A. L., Chen, X., Hoon, M. A., Chandrashekar, J., Guo, W., Trankner, D., Ryba, N. J. and Zuker, C. S. (2006b). The cells and logic for mammalian sour taste detection. Nature 442:934–938.
  • Huang, Y. A., Dando, R. and Roper, S. D. (2009). Autocrine and paracrine roles for ATP and serotonin in mouse taste buds. J. Neurosci. 29:13909–13918.
  • Huang, Y. A., Maruyama, Y. and Roper, S. D. (2008a). Norepinephrine is coreleased with serotonin in mouse taste buds. J. Neurosci. 28:13088–13093.
  • Huang, Y. A., Maruyama, Y., Stimac, R. and Roper, S. D. (2008b). Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste. J. Physiol. 586:2903–2912.
  • Huang, Y. A., Pereira, E. and Roper, S. D. (2011). Acid stimulation (sour taste) elicits GABA and serotonin release from mouse taste cells. PLoS One. 6:e25471.
  • Huang, Y. J., Maruyama, Y., Dvoryanchikov, G., Pereira, E., Chaudhari, N. and Roper, S. D. (2007). The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc. Natl. Acad. Sci. U.S.A. 104:6436–6441.
  • Ikeda, K. (2002). New seasonings. Chem. Senses 27:847–849.
  • Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M. and Matsunami, H. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. U.S.A. 103:12569–12574.
  • Jerzsa-Latta, M., Krondl, M. and Coleman, P. (1990). Use and perceived attributes of cruciferous vegetables in terms of genetically-mediated taste sensitivity. Appetite 15:127–134.
  • Jiang, P., Ji, Q., Liu, Z., Snyder, L. A., Benard, L. M., Margolskee, R. F. and Max, M. (2004). The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 279:45068–45075.
  • Keller, K. L., Liang, L. C., Sakimura, J., May, D., van, B. C., Breen, C., Driggin, E., Tepper, B. J., Lanzano, P. C., Deng, L. and Chung, W. K. (2012). Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity (Silver Spring) 20:1066–1073.
  • Keski-Rahkonen, A., Bulik, C. M., Pietilainen, K. H., Rose, R. J., Kaprio, J. and Rissanen, A. (2007). Eating styles, overweight and obesity in young adult twins. Eur. J. Clin. Nutr. 61:822–829.
  • Keskitalo, K., Knaapila, A., Kallela, M., Palotie, A., Wessman, M., Sammalisto, S., Peltonen, L., Tuorila, H. and Perola, M. (2007a). Sweet taste preferences are partly genetically determined: Identification of a trait locus on chromosome 16. Am. J. Clin. Nutr. 86:55–63.
  • Keskitalo, K., Tuorila, H., Spector, T. D., Cherkas, L. F., Knaapila, A., Kaprio, J., Silventoinen, K. and Perola, M. (2008). The Three-Factor Eating Questionnaire, body mass index, and responses to sweet and salty fatty foods: A twin study of genetic and environmental associations. Am. J. Clin. Nutr. 88:263–271.
  • Keskitalo, K., Tuorila, H., Spector, T. D., Cherkas, L. F., Knaapila, A., Silventoinen, K. and Perola, M. (2007b). Same genetic components underlie different measures of sweet taste preference. Am. J. Clin. Nutr. 86:1663–1669.
  • Kim, U. K., Breslin, P. A., Reed, D. and Drayna, D. (2004). Genetics of human taste perception. J. Dent. Res. 83:448–453.
  • Kim, U. K., Jorgenson, E., Coon, H., Leppert, M., Risch, N. and Drayna, D. (2003). Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299:1221–1225.
  • Kim, U. K., Wooding, S., Riaz, N., Jorde, L. B. and Drayna, D. (2006). Variation in the human TAS1R taste receptor genes. Chem. Senses 31:599–611.
  • Kral, T. V. and Rauh, E. M. (2010). Eating behaviors of children in the context of their family environment. Physiol. Behav. 100:567–573.
  • Kulkarni, G. V., Chng, T., Eny, K. M., Nielsen, D., Wessman, C. and El-Sohemy, A. (2013). Association of GLUT2 and TAS1R2 genotypes with risk for dental caries. Caries Res. 47:219–225.
  • Lanaspa, M. A., Sanchez-Lozada, L. G., Choi, Y. J., Cicerchi, C., Kanbay, M., Roncal-Jimenez, C. A., Ishimoto, T., Li, N., Marek, G., Duranay, M., Schreiner, G., Rodriguez-Iturbe, B., Nakagawa, T., Kang, D. H., Sautin, Y. Y. and Johnson, R. J. (2012). Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 287:40732–40744.
  • Laugerette, F., Passilly-Degrace, P., Patris, B., Niot, I., Febbraio, M., Montmayeur, J. P. and Besnard, P. (2005). CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115:3177–3184.
  • Lepretre, F., Cheyssac, C., Amouyel, P., Froguel, P. and Helbecque, N. (2004a). A promoter polymorphism in CD36 is associated with an atherogenic lipid profile in a French general population. Atherosclerosis 173:375–377.
  • Lepretre, F., Linton, K. J., Lacquemant, C., Vatin, V., Samson, C., Dina, C., Chikri, M., Ali, S., Scherer, P., Séron, K., Vasseur, F., Aitman, T. and Froguel, P. (2004b). Genetic study of the CD36 gene in a French diabetic population. Diabetes Metab. 30:459–463.
  • Li, X., Staszewski, L., Xu, H., Durick, K., Zoller, M. and Adler, E. (2002). Human receptors for sweet and umami taste. Proc. Natl. Acad. Sci. U.S.A. 99:4692–4696.
  • Liang, L. C., Sakimura, J., May, D., Breen, C., Driggin, E., Tepper, B. J., Chung, W. K. and Keller, K. L. (2012). Fat discrimination: A phenotype with potential implications for studying fat intake behaviors and obesity. Physiol. Behav. 105:470–475.
  • LopezJimenez, N. D., Cavenagh, M. M., Sainz, E., Cruz-Ithier, M. A., Battey, J. F. and Sullivan, S. L. (2006). Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98:68–77.
  • Love-Gregory, L., Sherva, R., Sun, L., Wasson, J., Schappe, T., Doria, A., Rao, D. C., Hunt, S. C., Klein, S., Neuman, R. J., Permutt, M. A. and Abumrad, N. A. (2008). Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17:1695–1704.
  • Lucas, F. and Bellisle, F. (1987). The measurement of food preferences in humans: Do taste-and-spit tests predict consumption? Physiol. Behav. 39:739–743.
  • Lugaz, O., Pillias, A. M. and Faurion, A. (2002). A new specific ageusia: Some humans cannot taste L-glutamate. Chem. Senses 27:105–115.
  • Ma, X., Bacci, S., Mlynarski, W., Gottardo, L., Soccio, T., Menzaghi, C., Iori, E., Lager, R. A., Shroff, A. R., Gervino, E. V., Nesto, R. W., Johnstone, M. T., Abumrad, N. A., Avogaro, A., Trischitta, V. and Doria, A. (2004). A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 13:2197–2205.
  • Madden, J., Carrero, J. J., Brunner, A., Dastur, N., Shearman, C. P., Calder, P. C. and Grimble, R. F. (2008). Polymorphisms in the CD36 gene modulate the ability of fish oil supplements to lower fasting plasma triacyl glycerol and raise HDL cholesterol concentrations in healthy middle-aged men. Prostaglandins Leukot. Essent. Fatty Acids 78:327–335.
  • Mattes, R. and Labov, J. (1989). Bitter taste responses to phenylthiocarbamide are not related to dietary goitrogen intake in human beings. J. Am. Diet. Assoc. 89:692–694.
  • Mattes, R. D. (1985). Gustation as a determinant of ingestion: methodological issues. Am. J. Clin. Nutr. 41:672–683.
  • Mattes, R. D. (2009). Is there a fatty acid taste? Annu. Rev. Nutr. 29:305–327.
  • McDaniel, A. H. and Reed, D. R. (2003). Genomics and Proteomics in Nutrition. Marcel Dekker, New York.
  • Mennella, J. A., Pepino, M. Y. and Reed, D. R. (2005). Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics 115:e216–e222.
  • Monge-Rojas, R., Mattei, J., Fuster, T., Willett, W. and Campos, H. (2014). Influence of sensory and cultural perceptions of white rice, brown rice and beans by Costa Rican adults in their dietary choices. Appetite 81:200–208.
  • Nakajima, K., Asakura, T., Oike, H., Morita, Y., Shimizu-Ibuka, A., Misaka, T., Sorimachi, H., Arai, S. and Abe, K. (2006). Neoculin, a taste-modifying protein, is recognized by human sweet taste receptor. Neuroreport 17:1241–1244.
  • Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J. and Zuker, C. S. (2002). An amino-acid taste receptor. Nature 416:199–202.
  • Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J. and Zuker, C. S. (2001). Mammalian sweet taste receptors. Cell 106:381–390.
  • Nielsen, D. E. and El-Sohemy, A. (2014). Disclosure of genetic information and change in dietary intake: A randomized controlled trial. PLoS One. 9:e112665.
  • Nielsen, D. E., Shih, S. and El-Sohemy, A. (2014). Perceptions of genetic testing for personalized nutrition: A randomized trial of DNA-based dietary advice. J. Nutrigenet. Nutrigen. 7:94–104.
  • Niewind, A., Krondl, M. and Shrott, M. (1988). Genetic influences on the selection of Brassica vegetables by elderly individuals. Nutr. Res. 8:13–20.
  • Noel, S. E., Lai, C. Q., Mattei, J., Parnell, L. D., Ordovas, J. M. and Tucker, K. L. (2010). Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis 211:210–215.
  • Obata, H., Shimada, K., Sakai, N. and Saito, N. (1997). GABAergic neurotransmission in rat taste buds: Immunocytochemical study for GABA and GABA transporter subtypes. Brain Res. Mol. Brain Res. 49:29–36.
  • O'Brien, S. A., Feeney, E. L., Scannell, A. G., Markey, A. and Gibney, E. R. (2013). Bitter taste perception and dietary intake patterns in Irish children. J. Nutrigenet. Nutrigen. 6:43–58.
  • Ogura, T. (2002). Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors. J. Neurophysiol. 87:2643–2649.
  • Ooi, S. X., Lee, P. L., Law, H. Y. and Say, Y. H. (2010). Bitter receptor gene (TAS2R38) P49A genotypes and their associations with aversion to vegetables and sweet/fat foods in Malaysian subjects. Asia Pac. J. Clin. Nutr. 19:491–498.
  • Pepino, M. Y., Love-Gregory, L., Klein, S. and Abumrad, N. A. (2012). The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J. Lipid Res. 53:561–566.
  • Raliou, M., Grauso, M., Hoffmann, B., Schlegel-Le-Poupon, C., Nespoulous, C., Debat, H., Belloir, C., Wiencis, A., Sigoillot, M., Bano, S. P., Trotier, D., Pernollet, J. C., Montmayeur, J. P., Faurion, A. and Briand, L. (2011). Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function. Chem. Senses 36:527–537.
  • Ramirez, I. (1993). Role of olfaction in starch and oil preference. Am. J. Physiol. 265:R1404–R1409.
  • Ramos-Arellano, L. E., Salgado-Bernabe, A. B., Guzman-Guzman, I. P., Salgado-Goytia, L., Munoz-Valle, J. F. and Parra-Rojas, I. (2013). CD36 haplotypes are associated with lipid profile in normal-weight subjects. Lipids Health Dis. 12:167.
  • Reed, D. R., Bachmanov, A. A., Beauchamp, G. K., Tordoff, M. G. and Price, R. A. (1997). Heritable variation in food preferences and their contribution to obesity. Behav. Genet. 27:373–387.
  • Reed, D. R., Li, X., Bachmanov, A. A., Mascioli, K. and Beauchamp, G. K. (2003). Progress in Obesity Research, Vol. 9, John Libbey Eurotext Ltd., London.
  • Reed, D. R. and McDaniel, A. H. (2006). The human sweet tooth. BMC Oral Health 6(Suppl 1):S17.
  • Reed, D. R., Tanaka, T. and McDaniel, A. H. (2006). Diverse tastes: Genetics of sweet and bitter perception. Physiol. Behav. 88:215–226.
  • Richter, T. A., Caicedo, A. and Roper, S. D. (2003). Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. 547:475–483.
  • Rodin, J., Moskowitz, H. R. and Bray, G. A. (1976). Relationship between obesity, weight loss, and taste responsiveness. Physiol. Behav. 17:591–597.
  • Rolls, E. T. (2012). Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proc. Nutr. Soc. 71:488–501.
  • Romanov, R. A., Rogachevskaja, O. A., Bystrova, M. F., Jiang, P., Margolskee, R. F. and Kolesnikov, S. S. (2007). Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J. 26:657–667.
  • Running, C. A., Craig, B. A. and Mattes, R. D. (2015). Oleogustus: The unique taste of fat. Chem. Senses 40:507–516.
  • Scheibehenne, B., Miesler, L. and Todd, P. M. (2007). Fast and frugal food choices: Uncovering individual decision heuristics. Appetite 49:578–589.
  • Sclafani, A., Ackroff, K. and Abumrad, N. A. (2007). CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am. J. Physiol. Regul. Integr. Comp Physiol. 293:R1823–R1832.
  • Sharma, K. and Kaur, G. K. (2014). PTC bitter taste genetic polymorphism, food choices, physical growth in body height and body fat related traits among adolescent girls from Kangra Valley, Himachal Pradesh (India). Ann. Hum. Biol. 41:29–39.
  • Shigemura, N., Shirosaki, S., Sanematsu, K., Yoshida, R. and Ninomiya, Y. (2009). Genetic and molecular basis of individual differences in human umami taste perception. PLoS One. 4:e6717.
  • Simons, P. J., Kummer, J. A., Luiken, J. J. and Boon, L. (2011). Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem. 113:839–843.
  • Ssadi-Porter, F. M., Maillet, E. L., Radek, J. T., Quijada, J., Markley, J. L. and Max, M. (2010). Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J. Mol. Biol. 398:584–599.
  • Stewart, J. E., Feinle-Bisset, C., Golding, M., Delahunty, C., Clifton, P. M. and Keast, R. S. (2010). Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br. J. Nutr. 104:145–152.
  • Stewart, J. E., Feinle-Bisset, C. and Keast, R. S. (2011). Fatty acid detection during food consumption and digestion: Associations with ingestive behavior and obesity. Prog. Lipid Res. 50:225–233.
  • Stewart, J. E. and Keast, R. S. (2012). Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int. J. Obes. (Lond.) 36:834–842.
  • Sullivan, J. M., Borecki, A. A. and Oleskevich, S. (2010). Stem and progenitor cell compartments within adult mouse taste buds. Eur. J. Neurosci. 31:1549–1560.
  • Takeda, M., Imaizumi, M. and Fushiki, T. (2000). Preference for vegetable oils in the two-bottle choice test in mice. Life Sci. 67:197–204.
  • Temussi, P. A. (2002). Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor. FEBS Lett. 526:1–4.
  • Tepper, B. J. (2008). Nutritional implications of genetic taste variation: The role of PROP sensitivity and other taste phenotypes. Annu. Rev. Nutr. 28:367–388.
  • Tepper, B. J., Koelliker, Y., Zhao, L., Ullrich, N. V., Lanzara, C., d'Adamo, P., Ferrara, A., Ulivi, S., Esposito, L. and Gasparini, P. (2008). Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. Obesity (Silver Spring) 16:2289–2295.
  • Tepper, B. J. and Nurse, R. J. (1997). Fat perception is related to PROP taster status. Physiol. Behav. 61:949–954.
  • Tepper, B. J. and Nurse, R. J. (1998). PROP taster status is related to fat perception and preference. Ann. N.Y. Acad. Sci. 855:802–804.
  • The International HapMap Project (2003). Nature 426:789–796.
  • Tholin, S., Rasmussen, F., Tynelius, P. and Karlsson, J. (2005). Genetic and environmental influences on eating behavior: The Swedish Young Male Twins Study. Am. J. Clin. Nutr. 81:564–569.
  • Timpson, N. J., Christensen, M., Lawlor, D. A., Gaunt, T. R., Day, I. N., Ebrahim, S. and Davey Smith, G. (2005). TAS2R38 (phenylthiocarbamide) haplotypes, coronary heart disease traits, and eating behavior in the British Women's Heart and Health Study. Am. J. Clin. Nutr. 81:1005–1011.
  • Toyono, T., Seta, Y., Kataoka, S., Harada, H., Morotomi, T., Kawano, S., Shigemoto, R. and Toyoshima, K. (2002). Expression of the metabotropic glutamate receptor, mGluR4a, in the taste hairs of taste buds in rat gustatory papillae. Arch. Histol. Cytol. 65:91–96.
  • Toyono, T., Seta, Y., Kataoka, S., Kawano, S., Shigemoto, R. and Toyoshima, K. (2003). Expression of metabotropic glutamate receptor group I in rat gustatory papillae. Cell Tissue Res. 313:29–35.
  • Tsuruta, M., Kawada, T., Fukuwatari, T. and Fushiki, T. (1999). The orosensory recognition of long-chain fatty acids in rats. Physiol. Behav. 66:285–288.
  • Turner-McGrievy, G., Tate, D. F., Moore, D. and Popkin, B. (2013). Taking the bitter with the sweet: Relationship of supertasting and sweet preference with metabolic syndrome and dietary intake. J. Food Sci. 78:S336–S342.
  • Vandenbeuch, A., Clapp, T. R. and Kinnamon, S. C. (2008). Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 9:1.
  • Varez-Lario, B. and Arron-Vicente, J. (2010). Uric acid and evolution. Rheumatology (Oxford) 49:2010–2015.
  • Wald, N. and Leshem, M. (2003). Salt conditions a flavor preference or aversion after exercise depending on NaCl dose and sweat loss. Appetite 40:277–284.
  • Walters, D. E. and Hellekant, G. (2006). Interactions of the sweet protein brazzein with the sweet taste receptor. J. Agric. Food Chem. 54:10129–10133.
  • Weisberger, D. (1950). A role of glucose in the production of artificial caries. J. Dent. Res. 29:14–22.
  • Wise, P. M., Hansen, J. L., Reed, D. R. and Breslin, P. A. (2007). Twin study of the heritability of recognition thresholds for sour and salty taste. Chem. Senses 32:749–754.
  • Yang, R., Montoya, A., Bond, A., Walton, J. and Kinnamon, J. C. (2012). Immunocytochemical analysis of P2×2 in rat circumvallate taste buds. BMC Neurosci. 13:51.
  • Yarmolinsky, D. A., Zuker, C. S. and Ryba, N. J. (2009). Common sense about taste: From mammals to insects. Cell 139:234–244.
  • Yoshida, R., Horio, N., Murata, Y., Yasumatsu, K., Shigemura, N. and Ninomiya, Y. (2009). NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience 159:795–803.
  • Yun, Y. M., Song, E. Y., Song, S. H., Song, J. and Kim, J. Q. (2007). CD36 polymorphism and its relationship with body mass index and coronary artery disease in a Korean population. Clin. Chem. Lab Med. 45:1277–1282.
  • Zeinstra, G. G., Koelen, M. A., Kok, F. J. and de, G. C. (2007). Cognitive development and children's perceptions of fruit and vegetables; a qualitative study. Int. J. Behav. Nutr. Phys. Act. 4:30.