1,037
Views
56
CrossRef citations to date
0
Altmetric
Articles

Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdul-Ghani, M. A. and DeFronzo, R. A. (2010). Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010. DOI: 10.1155/2010/476279.
  • Alonso-Castro, A. J., Zapata-Bustos, R., Gómez-Espinoza, G. and Salazar-Olivo, L. A. (2012). Isoorientin reverts TNF-α-induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinology. 153:5222–5230.
  • Andrade-Cetto, A. and Wiedenfeld, H. (2001). Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol. 78:145–149.
  • Annapurna, H. V., Apoorva, B., Ravichandran, N., Arun, K. P., Brindha, P., Swaminathan, S., Vijayalakshmi, M. and Nagarajan, A. (2013). Isolation and in silico evaluation of antidiabetic molecules of Cynodon dactylon (L.). J. Mol. Graphics Modell. 39:87–97.
  • Anonymous. (2013). The labelling of rooibos and the rules of use for rooibos. Annexure, Notice 911 of 2013. The Government Gazette of South Africa. No 36820, 6 September 2013.
  • Anonynous. (2014). Geographical indications from the Republic of South Africa (2014/C 51/09). Official Journal of the European Union C051, 22 February 2014.
  • Beelders, T., Kalili, K. M., Joubert, E., de Beer, D. and de Villiers, A. (2012a). Comprehensive two-dimensional liquid chromatographic analysis of rooibos (Aspalathus linearis) phenolics. J. Sep. Sci. 35:1808–1820.
  • Beelders, T., Sigge, G. O., Joubert, E., de Beer, D. and de Villiers, A. (2012b). Kinetic optimisation of the reversed phase liquid chromatographic separation of rooibos tea (Aspalathus linearis) phenolics on conventional high performance liquid chromatographic instrumentation. J. Chromatogr. A. 1219:128–139.
  • Beltrán-Debón, R., Rull, A., Rodríguez-Sanabria, F., Iswaldi, I., Herranz-López, M., Aragonès, G., Camps, J., Alonso-Villaverde, C., Menéndez, J. A., Micol, V., Segura-Carretero, A. and Joven, J. (2011). Continuous administration of polyphenols from aqueous rooibos (Aspalathus linearis) extract ameliorates dietary-induced metabolic disturbances in hyperlipidemic mice. Phytomedicine. 18:414–424.
  • Bensellam, M., Laybutt, D. R. and Jonas, J.-C. (2012). The molecular mechanisms of pancreatic β-cell glucotoxicity: Recent findings and future research directions. Mol. Cell. Endocrinol. 364:1–27.
  • Birari, R. B. and Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today. 12:879–889.
  • Blume, N., Skouv, J., Larsson, L. I., Holst, J. J. and Madsen, O. D. (1995). Potent inhibitory effects of transplantable rat glucagonomas and insulinomas on the respective endogenous islet cells are associated with pancreatic apoptosis. J. Clin. Invest. 96:2227–2235.
  • Boath, A. S., Stewart, D. and McDougall, G. J. (2012). Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem. 135:929–936.
  • Bradley, R., Sherman, K., Catz, S., Calabrese, C., Jordan, L., Grothaus, L. and Cherkin, D. (2011). Survey of CAM interest, self-care, and satisfaction with health care for type 2 diabetes at group health cooperative. BMC Complementary Altern. Med. 11:121.
  • Braune, A. and Blaut, M. (2011). Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ. Microbiol. 13:482–494.
  • Braune, A. and Blaut, M. (2012). Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Appl. Environ. Microbiol. 78:8151–8153.
  • Braune, A., Gütschow, M. l., Engst, W. and Blaut, M. (2001). Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol. 67:5558–5567.
  • Breiter, T., Laue, C., Kressel, G., Gröll, S., Engelhardt, U. H. and Hahn, A. (2011). Bioavailability and antioxidant potential of rooibos flavonoids in humans following the consumption of different rooibos formulations. Food Chem. 128:338–347.
  • Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A. and Butler, P. C. (2003). β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 52:102–110.
  • Cai, Q., Li, B., Yu, F., Lu, W., Zhang, Z., Yin, M. and Gao, H. (2013). Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. J. Diabetes Res. 2013. DOI: 10.1155/2013/263845.
  • Chen, Y.-G., Li, P., Li, P., Yan, R., Zhang, X.-Q., Wang, Y., Zhang, X.-T., Ye, W.-C. and Zhang, Q.-W. (2013). α-Glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microctis folium. Molecules. 18:4221–4232.
  • Choi, I., Park, Y., Choi, H. and Lee, E. H. (2006). Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet. BioFactors. 26:273–281.
  • Choi, J. S., Islam, M. N., Ali, Y., Kim, E. J., Kim, Y. M. and Jung, H. A. (2014a). Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food. Chem. Toxicol. 64:27–33.
  • Choi, J. S., Islam, N., Ali, Y., Kim, Y. M., Park, H. J., Sohn, H. S. and Hyun, A. J. (2014b). The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities. Arch. Pharm. Res. 37:1354–1363.
  • Choo, C. Y., Sulong, N. Y., Man, F. and Wong, T. W. (2012). Vitexin and isovitexin from the leaves of Ficus deltoidea with in-vivo α-glucosidase inhibition. J. Ethnopharmacol. 142:776–781.
  • Courts, F. L. and Williamson, G. (2009). The C-glycosyl flavonoid, aspalathin, is absorbed, methylated and glucuronidated intact in humans. Mol. Nutr. Food Res. 53:1104–1111.
  • Courts, F. L. and Williamson, G. (2013). The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet. Crit. Rev. Food Sci. Nutr. 55:1352–1367.
  • Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J., Lin, J. K., Farzadfar, F., Khang, Y.-H., Stevens, G. A., Rao, M., Ali, M. K., Riley, L. M., Robinson, C. A. and Ezzati, M. (2011). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 378:31–40.
  • Daval, M., Diot-Dupuy, F., Bazin, R., Hainault, I., Viollet, B., Vaulont, S., Hajduch, E., Ferré, P. and Foufelle, F. (2005). Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem. 280:25250–25257.
  • Dennis, T., Fanous, M. and Mousa, S. (2009). Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutr. Cancer. 61:587–597.
  • Dirscherl, K., Karlstetter, M., Ebert, S., Kraus, D., Hlawatsch, J., Walczak, Y., Moehle, C., Fuchshofer, R. and Langmann, T. (2010). Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J. Neuroinflammation. 7:3.
  • Dirscherl, K., Karlstetter, M., Ebert, S., Kraus, D., Hlawatsch, J., Walczak, Y., Moehle, C., Fuchshofer, R. and Langmann, T. (2012). Correction: Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J. Neuroinflammation. 9:118.
  • Dludla, P. V., Muller, C. J. F., Louw, J., Joubert, E., Salie, R., Opoku, A. R. and Johnson, R. (2014). The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine. 21:595–601.
  • Dong, H., Lin, W., Wu, J. and Chen, T. (2010). Flavonoids activate pregnane x receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochem. 11:23.
  • Dowman, J. K., Tomlinson, J. W. and Newsome, P. N. (2010). Pathogenesis of non-alcoholic fatty liver disease. QJM Int. J. Med. 103:71–83.
  • Ferré, P. and Foufelle, F. (2010). Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes, Obes. Metab. 12:83–92.
  • Fidan, O., Aslan, M. and Mor, M. (2009). Computational evaluation of isoorientin (C-glycosyl flavone) on PPAR-gamma receptors and HMG- CoA reductase using MOE 2008.10. Planta Med. 75:PH27.
  • Fraga, C. G., Galleano, M., Verstraeten, S. V. and Oteiza, P. I. (2010). Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31:435–445.
  • Francisco, N. M. (2010). Modulation of Postprandial Oxidative Stress by Rooibos (Aspalathus linearis) in Normolipidaemic Individuals. M. Tech thesis. Cape Peninsula University of Technology, Cape Town, South Africa.
  • Fu, X. C., Wang, M. W., Li, S. P. and Wang, H. L. (2006). Anti-apoptotic effect and the mechanism of orientin on ischaemic/reperfused myocardium. J. Asian Nat. Prod. Res. 8:265–272.
  • Funakoshi-Tago, M., Nakamura, K., Tago, K. I., Mashino, T. and Kasahara, T. (2011). Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int. Immunopharmacol. 11:1150–1159.
  • Gehrmann, W., Elsner, M. and Lenzen, S. (2010). Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes, Obes. Metab. 12:149–158.
  • Georgiadi, A. and Kersten, S. (2012). Mechanisms of gene regulation by fatty acids. Adv. Nutr. 3:127–134.
  • Goldin, A., Beckman, J. A., Schmidt, A. M. and Creager, M. A. (2006). Advanced glycation end products. Sparking the development of diabetic vascular injury. Circulation. 114:597–605.
  • Grundy, S. M., Hansen, B., Smith, S. C., Cleeman, J. I., Kahn, R. A. for conference participants. (2004). Clinical management of metabolic syndrome: Report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association Conference on Scientific Issues Related to Management. Arterioscler., Thromb., Vasc. Biol. 24:e19–e24.
  • Gustafson, B., Gogg, S., Hedjazifar, S., Jenndahl, L., Hammarstedt, A. and Smith, U. (2009). Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am. J. Physiol. Endocrinol. Metab. 297:E999–E1003.
  • Ha, T. J., Lee, J. H., Lee, M.-H., Lee, B. W., Kwon, H. S., Park, C.-H., Shim, K.-B., Kim, H.-T., Baek, I.-Y. and Jang, D. S. (2012). Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against α-glucosidase and aldose reductase. Food Chem. 135:1397–1403.
  • Hasan, S. S., Loon, W. C. W., Ahmadi, K., Ahmed, S. I. and Bukhari, N. I. (2011). Reasons, perceived efficacy and factors associated with complementary and alternative medicine use among Malaysian patients with diabetes mellitus. Br. J. Diabetes Vasc. Dis. 11:92–98.
  • Hattori, M., Shu, Y.-Z., El-Sedawy, A. I. and Namba, T. (1988). Metabolism of homoorientin by human intestinal bacteria. J. Nat. Prod. 51:874–878.
  • Hays, N. P., Galassetti, P. R. and Coker, R. H. (2008). Prevention and treatment of type 2 diabetes: Current role of lifestyle, natural product, and pharmacological interventions. Pharmacol. Ther. 118:181–191.
  • Heine, R. J. and Dekker, J. M. (2002). Beyond postprandial hyperglycaemia: Metabolic factors associated with cardiovascular disease. Diabetologia. 45:461–475.
  • Heinrich, T., Willenberg, I. and Glomb, M. A. (2012). Chemistry of color formation during rooibos fermentation. J. Agric. Food Chem. 60:5221–5228.
  • Hendricks, R. and Pool, E. J. (2010). The in vitro effects of rooibos and black tea on immune pathways. J. Immunoassay Immunochem. 31:169–180.
  • Hendriks, J. J. A., Alblas, J., van der Pol, S. M. A., van Tol, E. A. F., Dijkstra, C. D. and de Vries, H. E. (2004). Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J. Exp. Med. 200:1667–1672.
  • Huang, M., Du Plessis, J., Du Preez, J., Hamman, J. and Viloen, A. (2008). Transport of aspalathin, a rooibos tea flavonoid, across the skin and intestinal epithelium. Phytother. Res. 22:669–704.
  • Izumi, T., Kasai, K. and Gomi, H. (2007). Secretory vesicle docking to the plasma membrane: Molecular mechanism and functional significance. Diabetes, Obes. Metab. 9:109–117.
  • Jo, S.-H., Ka, E.-H., Lee, H.-S., Apostolidis, E., Jang, H.-D. and Kwon, Y.-I. (2009). Comparison of antioxidant potential and rat intestinal α-glucosidases inhibitory activities of quercetin, rutin, and isoquercetin. Int. J. Appl. Res. Nat. Prod. 2:52–60.
  • Joubert, E. (1996). HPLC quantification of the dihydrochalcones, aspalathin and nothofagin in rooibos tea (Aspalathus linearis) as affected by processing. Food Chem. 55:403–411.
  • Joubert, E., Beelders, T., de Beer, D., Malherbe, C. J., de Villiers, A. J. and Sigge, G. O. (2012). Variation in phenolic content and antioxidant activity of fermented rooibos herbal tea infusions: Role of production season and quality grade. J. Agric. Food Chem. 60:9171–9179.
  • Joubert, E. and de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. S. Afr. J. Bot. 77:869–886.
  • Joubert, E. and de Beer, D. (2012). Phenolic content and antioxidant activity of rooibos food ingredient extracts. J. Food Comp. Anal. 27:45–51.
  • Joubert, E., de Beer, D., Malherbe, C. J., Muller, N., Bonnet, S. L., van der Westhuizen, J. H. and Ferreira, D. (2013). Occurrence and sensory perception of Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in rooibos (Aspalathus linearis). Food Chem. 136:1078–1085.
  • Joubert, E., Gelderblom, W. C. A., Louw, A. and de Beer, D. (2008). South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—A review. J. Ethnopharmacol. 119:376–412.
  • Joubert, E., Winterton, P., Britz, T. J. and Ferreira, D. (2004). Superoxide anion and α, α-diphenyl-β-picrylhydrazyl radical scavenging capacity of rooibos (Aspalathus linearis0) aqueous extracts, crude phenolic fractions, tannin and flavonoids. Food Res. Int. 37:133–138.
  • Joubert, J., Norman, R., Bradshaw, D., Goedecke, J. H., Steyn, N. P., Puoane, T. and South African Comparative Risk Assessment Collaborating Group. (2007). Estimating the burden of disease attributable to excess body weight in South Africa in 2000. S. Afr. Med. J. 97:683–690.
  • Kahn, S. E., Cooper, M. E. and Del Prato, S. (2014). Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present and future. Lancet. 383:1068–1083.
  • Kahn, S. E., Hull, R. L. and Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 444:840–846.
  • Kamakura, R., Son, M. J., de Beer, D., Joubert, E., Miura, Y. and Yagasaki, K. (2015). Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-Ay mice. Cytotechnology. 67:699–710.
  • Kawano, A., Nakamura, H., Hata, S., Minakawa, M., Miura, Y. and Yagasaki, K. (2009). Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine. 16:437–443.
  • Khan, A.-U. and Gilani, A. H. (2006). Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol. Eur. J. Nutr. 45:463–469.
  • Kim, E. K., Kwon, K. B., Song, M. Y., Han, M. J., Lee, J. H., Lee, Y. R., Lee, J. H., Ryu, D. G., Park, B. H. and Park, J. W. (2007). Flavonoids protect against cytokine-induced pancreatic beta-cell damage through suppression of nuclear factor κB activation. Pancreas. 35:e1–9.
  • Kim, J.-S., Kwon, C.-S. and Son, K. H. (2000). Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem. 64:2458–2461.
  • Kim, J., Lee, I., Seo, J., Jung, M., Kim, Y., Yim, N. and Bae, K. (2010). Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother. Res. 24:1543–1548.
  • Kim, M., Lee, J. and Han, J. (2014). Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J. Sci. Food Agric. 95:1925–1931.
  • Koch, I. S., Muller, N., de Beer, D., Næs, T. and Joubert, E. (2013). Impact of steam pasteurization on the sensory profile and phenolic composition of rooibos (Aspalathus linearis) herbal tea infusions. Food Res. Int. 53:704–712.
  • Koeppen, B. H. and Roux, D. G. (1965). Aspalathin: A novel C-glycosylflavonoid from Aspalathus linearis. Tetrahedron Lett. 6:3497–3503.
  • Krafczyk, N. and Glomb, M. A. (2008). Characterization of phenolic compounds in rooibos tea. J. Agric. Food Chem. 56:3368–3376.
  • Krafczyk, N., Heinrich, T., Porzel, A. and Glomb, M. A. (2009a). Oxidation of the dihydrochalcone aspalathin leads to dimerization. J. Agric. Food Chem. 57:6838–6843.
  • Krafczyk, N., Woyand, F. and Glomb, M. A. (2009b). Structure–antioxidant relationship of flavonoids from fermented rooibos. Mol. Nutr. Food Res. 53:635–642.
  • Kreuz, S., Joubert, E., Waldmann, K.-H. and Ternes, W. (2008). Aspalathin, a flavonoid in Aspalathus linearis (rooibos), is absorbed by pig intestine as a C-glycoside. Nutr. Res. 28:690–701.
  • Kumar, S., Narwal, S., Kumar, V. and Prakash, O. (2011). α-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 5:19–29.
  • Kunishiro, K., Tai, A. and Yamamoto, I. (2001). Effects of rooibos tea extract on antigen-specific antibody production and cytokine generation in vitro and in vivo. Biosci. Biotechnol. Biochem. 65:2137–2145.
  • Kuo, S. M. (2002). Flavonoids and gene expression in mammalian cells. Adv. Exp. Med. Biol. 505:191–200.
  • Lee, E. M., Lee, S. S., Chung, B. Y., Cho, J.-Y., Lee, I. C., Ahn, S. R., Jang, S. J. and Kim, T. H. (2010). Pancreatic lipase inhibition by C-glycosidic flavones isolated from Eremochloa ophiuroides. Molecules. 15:8251–8259.
  • Lee, W. and Bae, J.-P. (2015). Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation. 38:1502–1516.
  • Lee, Y.-H., Yang, S.-H., Chen, S.-L., Pan, Y.-F., Liu, C.-M., Li, M.-W., Chou, S. S., Chou, M.-Y. and Youn, S.-C. (2014). The anti-adipogenic effect of vitexin is via ERK 1/2 MAPK signaling in 3T3-L1 adipocytes. Int. J. Pharmacol. 6:206–214.
  • Li, D., Wang, Q., Yuan, Z., Zhang, L., Xu, L., Cui, Y. and Duan, K. (2008). Pharmacokinetics and tissue distribution study of orientin in rat by liquid chromatography. J. Pharmaceut. Biomed. Anal. 47:429–434.
  • Li, H., Song, F., Xing, J., Tsao, R., Liu, Z. and Liu, S. (2009a). Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MSn and SORI-CID FTICR MS. J. Am Soc. Mass Spectrom. 20:1496–1503.
  • Li, Y., Xu, S., Mihaylova, M. M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., Lefai, E., Shyy, John Y. J., Gao, B., Wierzbicki, M., Verbeuren, Tony J., Shaw, Reuben J., Cohen, Richard A. and Zang, M. (2011). AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13:376–388.
  • Li, Y. Q., Zhou, F. C., Gao, F., Bian, J. S. and Shan, F. (2009b). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem. 57:11463–11468.
  • Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23:3–35.
  • Liu, J.-F., Ma, Y., Wang, Y., Du, Z.-Y., Shen, J.-K. and Peng, H.-L. (2011). Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother. Res. 25:588–596.
  • Lu, N., Sun, Y. and Zheng, X. (2011). Orientin-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition. Planta Med. 77:984–991.
  • Malviya, N., Jain, S. and Malviya, S. (2010). Antidiabetic potential of medicinal plants. Acta Pol. Pharm. 67:113–118.
  • Manach, C., Williamson, G., Morand, C., Scalbert, A. and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81:230S–242S.
  • Manley, M., Joubert, E. and Botha, M. (2006). Quantification of the major phenolic compounds, soluble solid content and total antioxidant activity of green rooibos (Aspalathus linearis) by means of near infrared spectroscopy. J. Near Infrared Spectrosc. 14:213–222.
  • Mansukhani, R., Volino, L. and Varghese, R. (2014). Natural products for the treatment of type 2 diabetes mellitus. Pharmacol. Pharm. 5:487–503.
  • Marais, C., Janse van Rensburg, W., Ferreira, D. and Steenkamp, J. A. (2000). (S)- and (R)-Eriodictyol-6-C-ß-D-glucopyranoside, novel keys to the fermentation of rooibos (Aspalathus linearis). Phytochemistry. 55:43–49.
  • Marais, C., Steenkamp, J. A. and Ferreira, D. (1996). Occurrence of phenylpyruvic acid in woody plants: Biosynthetic significance and synthesis of an enolic glucoside derivative. J. Chem. Soc., Perkin Trans. 1:2915–2918.
  • Marais, S. S., Marais, C., Steenkamp, J. A., Malan, E. and Ferreira, D. (1998). Progress in the investigation of rooibos tea extractives. In: Abstracts of the 3rd Tannin Conference, Bend, Oregon, USA, pp. 129–130.
  • Marnewick, J. L., Rautenbach, F., Venter, I., Neethling, H., Blackhurst, D. M., Wolmarans, P. and Macharia, M. (2011). Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J. Ethnopharmacol. 133:46–52.
  • Mathijs, I., Da Cunha, D. A., Himpe, E., Ladriere, L., Chellan, N., Roux, C. R., Joubert, E., Muller, C., Cnop, M., Louw, J. and Bouwens, L. (2014). Phenylpropenoic acid glucoside augments pancreatic beta cell mass in high-fat diet-fed mice and protects beta cells from ER stress-induced apoptosis. Mol. Nutr. Food Res. 58:1980–1990.
  • Matsui, T., Kobayashi, M., Hayashida, S. and Matsumoto, K. (2002). Luteolin, a flavone, does not suppress postprandial glucose absorption through an inhibition of α-glucosidase action. Biosci. Biotechnol. Biochem. 66:689–692.
  • Mazibuko, S. E., Joubert, E., Johnson, R., Louw, J., Opoku, A. R. and Muller, C. J. F. (2015). Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol. Nutr. Food Res. 59:2199–2208.
  • Mazibuko, S. E., Muller, C. J. F., Joubert, E., de Beer, D., Johnson, R., Opoku, A. R. and Louw, J. (2013). Amelioration of palmitate-induced insulin resistance in C2C12 muscle cells by rooibos (Aspalathus linearis). Phytomedicine. 20:813–819.
  • Memon, R. A., Feingold, K. R., Moser, A. H., Fuller, J. and Grunfeld, C. (1998). Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am. J. Physiol. Endocrinol. Metab. 274:E210–E217.
  • Miranda, P. J., DeFronzo, R. A., Califf, R. M. and Guyton, J. R. (2005). Metabolic syndrome: Evaluation of pathological and therapeutic outcomes. Am. Heart J. 149:20–32.
  • Montane, J., Cadavez, L. and Novials, A. (2014). Stress and the inflammatory process: A major cause of pancreatic cell death in type 2 diabetes. Diabetes, Metab. Syndr. Obes.: Targets Ther. 7:25–34.
  • Mueller, M., Hobiger, S. and Jungbauer, A. (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 122:987–996.
  • Mueller, M. and Jungbauer, A. (2009). Culinary plants, herbs and spices – A rich source of PPARγ ligands. Food Chem. 117:660–667.
  • Muller, C. J. F., Joubert, E., de Beer, D., Sanderson, M., Malherbe, C. J., Fey, S. J. and Louw, J. (2012). Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine. 20:32–39.
  • Muller, C. J. F., Joubert, E., Pheiffer, C., Ghoor, S., Sanderson, M., Chellan, N., Fey, S. J. and Louw, J. (2013). Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, an α-hydroxy acid from rooibos (Aspalathus linearis) with hypoglycemic activity. Mol. Nutr. Food Res. 57:2216–2222.
  • Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G. and Dietz, W. H. (1999). The disease burden associated with overweight and obesity. JAMA. 282:1523–1529.
  • Nakamura, K. T. N., Jin, J.-S., Ma, C.-M., Komatsu, K., Iwashima, M. and Hattori, M. (2011). The C-glucosyl bond of puerarin was cleaved hydrolytically by a human intestinal bacterium strain PUE to yield its aglycone daidzein and an intact glucose. Chem. Pharm. Bull. 59:23–27.
  • Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., Abraham, J. P., Abu-Rmeileh, N. M. E., Achoki, T., AlBuhairan, F. S., Alemu, Z. A., Alfonso, R., Ali, M. K., Ali, R., Guzman, N. A., Ammar, W., Anwari, P., Banerjee, A., Barquera, S., Basu, S., Bennett, D. A., Bhutta, Z., Blore, J., Cabral, N., Nonato, I. C., Chang, J.-C., Chowdhury, R., Courville, K. J., Criqui, M. H., Cundiff, D. K., Dabhadkar, K. C., Dandona, L., Davis, A., Dayama, A., Dharmaratne, S. D., Ding, E. L., Durrani, A. M., Esteghamati, A., Farzadfar, F., Fay, D. F. J., Feigin, V. L., Flaxman, A., Forouzanfar, M. H., Goto, A., Green, M. A., Gupta, R., Hafezi-Nejad, N., Hankey, G. J., Harewood, H. C., Havmoeller, R., Hay, S., Hernandez, L., Husseini, A., Idrisov, B. T., Ikeda, N., Islami, F., Jahangir, E., Jassal, S. K., Jee, S. H., Jeffreys, M., Jonas, J. B., Kabagambe, E. K., Khalifa, S. E. A. H., Kengne, A. P., Khader, Y. S., Khang, Y.-H., Kim, D., Kimokoti, R. W., Kinge, J. M., Kokubo, Y., Kosen, S., Kwan, G., Lai, T., Leinsalu, M., Li, Y., Liang, X., Liu, S., Logroscino, G., Lotufo, P. A., Lu, Y., Ma, J., Mainoo, N. K., Mensah, G. A., Merriman, T. R., Mokdad, A. H., Moschandreas, J., Naghavi, M., Naheed, A., Nand, D., Narayan, K. M. V., Nelson, E. L., Neuhouser, M. L., Nisar, M. I., Ohkubo, T., Oti, S. O., Pedroza, A., Prabhakaran, D., Roy, N., Sampson, U., Seo, H., Sepanlou, S. G., Shibuya, K., Shiri, R., Shiue, I., Singh, G. M., Singh, J. A., Skirbekk, V., Stapelberg, N. J. C., Sturua, L., Sykes, B. L., Tobias, M., Tran, B. X., Trasande, L., Toyoshima, H., van de Vijver, S., Vasankari, T. J., Veerman, J. L., Velasquez-Melendez, G., Vlassov, V. V., Vollset, S. E., Vos, T., Wang, C., Wang, X., Weiderpass, E., Werdecker, A., Wright, J. L., Yang, Y. C., Yatsuya, H., Yoon, J., Yoon, S.-J., Zhao, Y., Zhou, M., Zhu, S., Lopez, A. D., Murray, C. J. L. and Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 384:766–781.
  • Oki, T., Matsui, T. and Matsumoto, K. (2000). Evaluation of α-glucosidase inhibition by using an immobilized assay system. Biol. Pharm. Bull. 23:1084–1087.
  • Oki, T., Matsui, T. and Osajima, Y. (1999). Inhibitory effect of α-glucosidase inhibitors varies according to its origin. J. Agric. Food Chem. 47:550–553.
  • Park, C. M. and Song, Y.-S. (2013). Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 7:423–429.
  • Patwardhan, B. and Mashelkar, R. A. (2009). Traditional medicine-inspired approaches to drug discovery: Can Ayurveda show the way forward? Drug Discov. Today. 14:804–811.
  • Peer, N., Steyn, K., Lombard, C., Lambert, E. V., Vythilingum, B. and Levitt, N. S. (2012). Rising diabetes prevalence among urban-dwelling black South Africans. PLoS ONE. 7:e43336.
  • Persson, I. A. L. (2012). The pharmacological mechanism of angiotensin-converting enzyme inhibition by green tea, rooibos and enalaprilat—A study on enzyme kinetics. Phytother. Res. 26:517–521.
  • Persson, I. A. L., Josefsson, M., Persson, K. and Andersson, R. G. G. (2006). Tea flavanols inhibit angiotensin-converting enzyme activity and increase nitric oxide production in human endothelial cells. J. Pharm. Pharmacol. 58:1139–1144.
  • Persson, I. A. L., Persson, K., Hägg, S. and Anderson, R. G. G. (2010). Effects of green tea, black tea and Rooibos tea on angiotensin converting enzyme and nitric oxide in healthy volunteers. Publ. Health Nutr,. 13:730–737.
  • Peters, S. E., Huxley, R. and Woodward, M. (2014). Diabetes as risk factor for incident coronary heart disease in women compared with men: A systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 57:1542–1551.
  • Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. and Shulman, G. I. (2004). Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350:664–671.
  • Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L. and Ardévol, A. (2008). Bioactivity of flavonoids on insulin-secreting cells. Comp. Rev. Food Sci. Food Saf. 7:299–308.
  • Potterat, O. and Hamburger, M. (2013). Concepts and technologies for tracking bioactive compounds in natural product extracts: Generation of libraries, and hyphenation of analytical processes with bioassays. Nat. Prod. Rep. 30:546–564.
  • Rasmussen, B. B., Holmbäck, U. C., Volpi, E., Morio-Liondore, B., Paddon-Jones, D. and Wolfe, R. R. (2002). Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J. Clin. Invest. 110:1687–1693.
  • Reagan-Shaw, S., Nihal, M. and Ahmad, N. (2008). Dose translation from animal to human studies revisited. FASEB J. 22:659–661.
  • Reaven, G. (2005). Compensatory hyperinsulinemia and the development of an atherogenic lipoprotein profile: The price paid to maintain glucose homeostasis in insulin-resistant individuals. Endocrinol. Metab. Clin. North Am. 34:49–62.
  • Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K. and Da Silva Pinto, M. (2012). Bioavailability of food components: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75:588–602.
  • Rosen, E. D. and MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7:885–896.
  • Ruiz, P. A. and Haller, D. (2006). Functional diversity of flavonoids in the inhibition of the proinflammatory NF-κB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J. Nutr. 136:664–671.
  • Sanderson, M., Mazibuko, S. E., Joubert, E., de Beer, D., Johnson, R., Pheiffer, C., Louw, J. and Muller, C. J. F. (2014). Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine. 21:109–117.
  • Sangul, K., Akao, T., Li, Y., Kakiuchi, N., Nakamura, N. and Hattori, M. (2005). Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond. Biol. Pharm. Bull. 28:1672–1678.
  • Scheen, A. J. (2003). Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs. 63:933–951.
  • Schloms, L., Storbeck, K.-H., Swart, P., Gelderblom, W. C. A. and Swart, A. C. (2012). The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: Quantification of steroid intermediates and end products in H295R cells. J. Steroid Biochem. Mol. Biol. 128:128–138.
  • Schoefer, L., Mohan, R., Schwiertz, A., Braune, A. and Blaut, M. (2003). Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl. Environ. Microbiol. 69:5849–5854.
  • Semplicini, A., Ceolotto, G., Massimino, M., Valle, R., Serena, L., De Toni, R., Pessina, A. C. and Dal Palù, C. (1994). Interactions between insulin and sodium homeostasis in essential hypertension. Am. J. Med. Sci. 307:S43–S46.
  • Sezik, E., Aslan, M., Yesilada, E. and Ito, S. (2005). Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci. 76:1223–1238.
  • Shaw, J. E., Sicree, R. A. and Zimmet, P. Z. (2009). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87:4–14.
  • Silveira, L. R., Fiamoncini, J., Hirabara, S. M., Procópio, J., Cambiaghi, T. D., Pinheiro, C. H., Lopes, L. R. and Curi, R. (2008). Updating the effects of fatty acids on skeletal muscle. J. Cell. Physiol. 217:1–12.
  • Sirikul, B., Gower, B. A., Hunter, G. R., Larson-Meyer, D. E. and Newcomer, B. R. (2006). Relationship between insulin sensitivity and in vivo mitochondrial function in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 294:E724–E728.
  • Snel, M., Jonker, J. T., Hammer, S., Kerpershoek, G., Lamb, H. J., Meinders, A. E., Pijl, H., de Roos, A., Romijn, J. A., Smit, J. W. A. and Jazet, I. M. (2012). Long-term beneficial effect of a 16-week very low calorie diet on pericardial fat in obese type 2 diabetes mellitus patients. Obesity. 20:1572–1576.
  • Snijman, P. W., Joubert, E., Ferreira, D., Li, X.-C., Ding, Y., Green, I. R. and Gelderblom, W. C. A. (2009). Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and trolox. J. Agric. Food Chem. 57:6678–6684.
  • Son, M. J., Minakawa, M., Miura, Y. and Yagasaki, K. (2013). Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur. J. Nutr. 52:1607–1619.
  • South African Rooibos Council (2013). Available at https://sarooibos.co.za.
  • Stalmach, A., Mullen, W., Pecorari, M., Serafini, M. and Crozier, A. (2009). Bioavailability of C-linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas. J. Agric. Food Chem. 57:7104–7111.
  • Sun, D., Huang, J., Zhang, Z., Gao, H., Li, J., Shen, M., Cao, F. and Wang, H. (2012). Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS ONE. 7:e33491.
  • Sun, K., Kusminski, C. M. and Scherer, P. E. (2011). Adipose tissue remodeling and obesity. J. Clin. Invest. 121:2094–2101.
  • Thielecke, F. and Boschmann, M. (2009). The potential role of green tea catechins in the prevention of the metabolic syndrome - a review. Phytochemistry. 70:11–24.
  • Tiwari, A. K. and Rao, J. M. (2002). Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Curr. Sci. 83:30–38.
  • Tucci, S. A., Boyland, E. J. and Halford, J. C. G. (2010). The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes, Metab. Syndr. Obes.: Targets Ther. 3:125–143.
  • Ulicná, O., Vancová, O., Bozek, P., Cársky, J., Sebeková, K., Boor, P., Nakano, M. and Greksák, M. (2006). Rooibos tea (Aspalathus linearis) partially prevents oxidative stress in streptozotocin-induced diabetic rats. Physiol. Res. 55:157–164.
  • Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E. and van Weel, C. (2005). α-Glucosidase inhibitors for patients with type 2 diabetes. Results from a Cochrane systematic review and meta-analysis. Diabetes Care. 28:154–163.
  • Van de Laar, F. A., Lucassen, P. L. B. J., Akkermans, R. P., Van de Lisdonk, E. H. and De Grauw, W. J. C. (2006). Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD005061.pub2.
  • Van der Merwe, J. D., Joubert, E., Manley, M., De Beer, D., Malherbe, C. J. and Gelderblom, W. C. A. (2010). In vitro hepatic biotransformation of aspalathin and nothofagin, dihydrochalcones of rooibos (Aspalathus linearis), and assessment of metabolite antioxidant activity. J. Agric. Food Chem. 58:2214–2220.
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W. and Kopple, K. D. (2002). Molecular properties that influences the oral bioavailability of drug candidates. J. Med. Chem. 45:2615–2623.
  • Von Gadow, A., Joubert, E. and Hansmann, C. F. (1997). Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J. Agric. Food Chem. 45:632–638.
  • Wedler, J., Daubitz, T., Schlotterbeck, G. and Butterweck, V. (2014). In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract – Identification of isoorientin as an active compound. Planta Med. 80:1678–1684.
  • WHO. (2012). Global status report on noncommunicable diseases 2010.
  • WHO. (2015). Obesity and overweight. Fact sheet N° 311.
  • Williams, R. J., Spencer, J. P. E. and Rice-Evans, C. (2004). Flavonoids: Antioxidants or signalling molecules? Free Radical Biol. Med. 36:838–849.
  • Wolfram, S., Wang, Y. and Thielecke, F. (2006). Anti-obesity effects of green tea: From bedside to bench. Mol. Nutr. Food Res. 50:176–187.
  • Wu, X., Xu, T., Li, D., Zhu, S., Chen, Q., Hu, W., Pan, D., Zhu, H. and Sun, H. (2013). ERK/PP1a/PLB/SERCA2a and JNK pathways are involved in luteolin-mediated protection of rat hearts and cardiomyocytes following ischemia/reperfusion. PLoS ONE. 8:e82957.
  • Xiao, J., Kai, G., Yamamoto, K. and Chen, X. (2012). Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr. 53:818–836.
  • Yao, L., Herlea-Pana, O., Heuser-Baker, J., Chen, Y. and Barlic-Dicen, J. (2014). Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. J. Immunol. Res. doi: 10.1155/2014/181450.
  • Yao, Y., Cheng, X., Wang, L., Wang, S. and Ren, G. (2011). A determination of potential α-glucosidase inhibitors from azuki beans (Vigna angularis). Int. J. Mol. Sci. 12:6445–6451.
  • Yun, J. W. (2010). Possible anti-obesity therapeutics from nature—A review. Phytochemistry. 71:1625–1641.
  • Zammit, V. A. (2008). Carnitine palmitoyltransferase 1: Central to cell function. IUBMB Life. 60:347–354.
  • Zhang, Y., Xiaowei, T., Bili, B., Xiaoqin, W. and Ying, Z. (2007). Metabolism of flavone C-glucosides and p-coumaric acid from antioxidant of bamboo leaves (AOB) in rats. Br. J. Nutr. 97:484–494.
  • Zhou, H., Danger, D. P., Dock, S. T., Hawley, L., Roller, S. G., Smith, C. D. and Handlon, A. L. (2010). Synthesis and SAR of benzisothiazole- and indolizine-β-D-glucopyranoside inhibitors of SGLT2. ACS Med. Chem. Lett. 1:19–23.
  • Zimmet, P., Magliano, D., Matsuzawa, Y., Alberti, G. and Shaw, J. (2005). The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 12:295–300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.