1,912
Views
72
CrossRef citations to date
0
Altmetric
Articles

Lactic acid fermentation as a tool for increasing the folate content of foods

, , & ORCID Icon

References

  • Akhtar, M. J., Khan, M. A. and Ahmad, I. (1999). Photodegradation of folic acid in aqueous solution. J. Pharm. Biomed. Anal. 19:269–275.
  • Akhtar, M. J., Khan, M. A. and Ahmad, I. (2003). Identification of photoproducts of folic acid and its degradation pathways in aqueous solution. J. Pharm. Biomed. Anal. 31:579–588.
  • Arcot, J., Wong, S. and Shrestha, A. K. (2002). Comparison of folate losses in soybean during the preparation of tempeh and soymilk. J. Sci. Food Agric. 82:1365–1368.
  • Arsenault, J. E., Nikiema, L., Allemand, P., Ayassou, K. A., Lanou, H., Moursi, M., De Moura, F. F. and Martin-Prevel, Y. (2014). Seasonal differences in food and nutrient intakes among young children and their mothers in rural Burkina Faso. J. Nutr. Sci. 3:e55, page 1 of 9.
  • Assantachai, P. and Lekhakula, S. (2007). Epidemiological survey of vitamin deficiencies in older Thai adults: Implications for national policy planning. Public Health Nutr. 10:65–70.
  • Ayad, E. H. E. (2009). Starter culture development for improving safety and quality of Domiati cheese. Food Microbiol. 26:533–541.
  • Ball, G. F. M. (2005). Vitamins In Foods: Analysis, Bioavailability, and Stability. pp. 231–274. Chapter 13. Folate. (CRC Press).
  • Bell, K. N. and Oakley, G. P. (2009). Update on prevention of folic acid-preventable spina bifida and anencephaly. Birt. Defects Res. A. Clin. Mol. Teratol. 85:102–107.
  • Beuchat, L. R. (1997). Traditional fermented foods. In Food Microbiology: Fundamentals and Frontiers, pp. 629–648. Doyle, M. P., Beuchat, L. R. and Montville,T. J., Eds.ASM Press, Washington, DC.
  • Bhutta, Z. A., Salam, R. A. and Das, J. K. (2013). Meeting the challenges of micronutrient malnutrition in the developing world. Br. Med. Bull. 106:7–17.
  • Blakley, R. L. (1987). Nomenclature and symbols for folic acid and related compounds. Eur. J. Biochem. 168:251–253.
  • Blandino, A., Al-Aseeri, M. E., Pandiella, S. S., Cantero, D. and Webb, C. (2003). Cereal-based fermented foods and beverages. Food Res. Int. 36:527–543.
  • Brouwer, I. A., Dusseldorp, M., Van, West, C. E., Meyboom, S., Thomas, C. M. G., Duran, M., Hof, K. H., Van Het, Eskes, T. K. A. B., Hautvast, J. G. A. J. and Steegers-Theunissen, R. P. M. (1999).Dietary folate from vegetables and citrus fruit decreases plasma homocysteine concentrations in humans in a dietary controlled trial. J. Nutr. 129:1135–1139.
  • Brunst, K. J., Wright, R. O., DiGioia, K., Enlow, M. B., Fernandez, H., Wright, R. J. and Kannan, S. (2014). Racial/ethnic and sociodemographic factors associated with micronutrient intakes and inadequacies among pregnant women in an urban US population. Public Health Nutr. 17:1960–1970.
  • Campbell-Platt, G. (1994). Fermented foods—a world perspective. Food Res. Int. 27:253–257.
  • Capozzi, V., Russo, P., Teresa Duenas, M., Lopez, P. and Spano, G. (2012). Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 96:1383–1394.
  • Cárdenas, N., Laiño, J. E., Delgado, S., Jiménez, E., Del Valle, M. J., De Giori, G. S., Sesma, F., Mayo, B., Fernández, L., LeBlanc, J. G., et al. (2015). Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl. Microbiol. Biotechnol. 99:4343–4353.
  • Chandler, C. J., Wang, T. T. and Halsted, C. H. (1986). Pteroylpolyglutamate hydrolase from human jejunal brush borders. Purification and characterization. J. Biol. Chem. 261:928–933.
  • De Crecy-Lagard, V., El Yacoubi, B., De la Garza, R. D., Noiriel, A. and Hanson, A. D. (2007). Comparative genomics of bacterial and plant folate synthesis and salvage: Predictions and validations. BMC Genomics 8:245.
  • Crittenden, R. G., Martinez, N. R. and Playne, M. J. (2003). Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 80:217–222.
  • Czarnowska, M. and Gujska, E. (2012). Effect of freezing technology and storage conditions on folate content in selected vegetables. Plant Foods Hum. Nutr. 67:401–406.
  • D'Aimmo, M. r., Mattarelli, P., Biavati, B., Carlsson, N. g. and Andlid, T. (2012). The potential of bifidobacteria as a source of natural folate. J. Appl. Microbiol. 112:975–984.
  • D'Aimmo, M. R., Modesto, M., Mattarelli, P., Biavati, B. and Andlid, T. (2014). Biosynthesis and cellular content of folate in bifidobacteria across host species with different diets. Anaerobe 30:169–177.
  • Dana, M. G., Salmanian, A. H., Yakhchali, B. and Jazi, F. R. (2010). High folate production by naturally occurring Lactobacillus sp with probiotics potential isolated from dairy products in Ilam and Lorestan provinces of Iran. Afr. J. Biotechnol. 9:5383–5391.
  • De Brouwer, V., Zhang, G.-F., Storozhenko, S., Van Der Straeten, D. and Lambert, W. E. (2007). pH stability of individual folates during critical sample preparation steps in prevision of the analysis of plant folates. Phytochem. Anal. 18:496–508.
  • Donnelly-Vanderloo, M., O'Connor, D. L. and Shoukri, M. (1994). Impact of pasteurization and procedures commonly used to rethermalize stored human milk on folate content. Nutr. Res. 14:1305–1316.
  • Edelmann, M. (2014). Occurrence and Natural Enhancement of Folate in Oats and Barley.
  • Edelmann, M., Kariluoto, S., Nyström, L. and Piironen, V. (2012). Folate in oats and its milling fractions. Food Chem. 135:1938–1947.
  • Edelmann, M., Kariluoto, S., Nyström, L. and Piironen, V. (2013). Folate in barley grain and fractions. J. Cereal Sci. 58:37–44.
  • Ekıncı, R. (2005). The effect of fermentation and drying on the water-soluble vitamin content of tarhana, a traditional Turkish cereal food. Food Chem. 90:127–132.
  • Ende, G. (2015). Proton Magnetic Resonance Spectroscopy: Relevance of Glutamate and GABA to Neuropsychology. Neuropsychol. Rev. 25:315–325.
  • FAOSTAT (2015). Food and agriculture organization of the United Nations Statistics Division. Available from http://faostat3.fao.org/home/E.
  • FAO/WHO (2005). Vitamin and mineral requirements in human nutrition, Second edition. Available from http://www.who.int/nutrition/publications/micronutrients/9241546123/en/.
  • FDA (2016). Labeling & Nutrition - Guidance for Industry: A Food Labeling Guide (10. Appendix B: Additional Requirements for Nutrient Content Claims).
  • Food Fortification Initiative (2015). Enhancing Grains for Healthier Lives. Available from http://www.ffinetwork.org/index.html.
  • Ford, J. E., Hurrell, R. F. and Finot, P. A. (1983). Storage of milk powders under adverse conditions. Br. J. Nutr. 49:355–364.
  • Forssén, K. M., Jägerstad, M. I., Wigertz, K. and Witthöft, C. M. (2000). Folates and Dairy Products: A Critical Update. J. Am. Coll. Nutr. 19:100S–110S.
  • Frommherz, L., Martiniak, Y., Heuer, T., Roth, A., Kulling, S. E. and Hoffmann, I. (2014). Degradation of folic acid in fortified vitamin juices during long term storage. Food Chem. 159:122–127.
  • Gangadharan, D. and Nampoothiri, K. M. (2011). Folate production using Lactococcus lactis ssp cremoris with implications for fortification of skim milk and fruit juices. LWT—Food Sci. Technol. 44:1859–1864.
  • Ghishan, F. K., Said, H. M., Wilson, P. C., Murrell, J. E. and Greene, H. L. (1986). Intestinal transport of zinc and folic acid: A mutual inhibitory effect. Am. J. Clin. Nutr. 43:258–262.
  • Gregory, J. F. (2012). Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr. Res. 56:5809.
  • Gregory, J. F.3rd (1989). Chemical and nutritional aspects of folate research: Analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Adv. Food Nutr. Res. 33:1–101.
  • GregoryIII, J. F., Quinlivan, E. P. and Davis, S. R. (2005). Integrating the issues of folate bioavailability, intake and metabolism in the era of fortification. Trends Food Sci. Technol. 16:229–240.
  • Gujska, E., Michalak, J. and Klepacka, J. (2009). Folates stability in two types of Rye breads during processing and frozen storage. Plant Foods Hum.Nutr.64:129–134.
  • Guyot, J.-P. (2012). Cereal-based fermented foods in developing countries: Ancient foods for modern research. Int. J. Food Sci. Technol. 47:1109–1114.
  • Hannon-Fletcher, M. P., Armstrong, N. C., Scott, J. M., Pentieva, K., Bradbury, I., Ward, M., Strain, J. J., Dunn, A. A., Molloy, A. M., Kerr, M. A., et al. (2004). Determining bioavailability of food folates in a controlled intervention study. Am. J. Clin. Nutr. 80:911–918.
  • Harrington, J., Perry, I., Lutomski, J., Morgan, K., McGee, H., Shelley, E., Watson, D. and Barry, M. (2008). SLÁN 2007: Survey of Lifestyle, Attitudes and Nutrition in Ireland. Dietary Habits of the Irish Population, Department of Health and Children. Dublin: The Stationery Office.
  • Hefni, M. and Witthöft, C. M. (2011). Increasing the folate content in Egyptian baladi bread using germinated wheat flour. LWT—Food Sci. Technol.44:706–712.
  • Hefni, M. E., Shalaby, M. T. and Witthöft, C. M. (2015). Folate content in Faba beans (Vicia faba L.)—effects of cultivar, maturity stage, industrial processing, and bioprocessing. Food Sci. Nutr. 3:65–73.
  • Hemery, Y., Holopainen, U., Lampi, A.-M., Lehtinen, P., Nurmi, T., Piironen, V., Edelmann, M. and Rouau, X. (2011). Potential of dry fractionation of wheat bran for the development of food ingredients. Part II. Electrostatic separation of particles. J. Cereal Sci. 53:9–18.
  • Herranen, M., Kariluoto, S., Edelmann, M., Piironen, V., Ahvenniemi, K., Iivonen, V., Salovaara, H. and Korhola, M. (2010). Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int. J. Food Microbiol. 142:277–285.
  • Hjartaker, A., Lagiou, A., Slimani, N., Lund, E., Chirlaque, M. D., Vasilopoulou, E., Zavitsanos, X., Berrino, F., Sacerdote, C., Ocke, M. C., et al. (2002). Consumption of dairy products in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: Data from 35955 24-hour dietary recalls in 10 European countries. Public Health Nutr. 5:1259–1271.
  • Hjortmo, S., Patring, J., Jastrebova, J. and Andlid, T. (2005). Inherent biodiversity of folate content and composition in yeasts. Trends Food Sci. Technol. 16:311–316.
  • Hjortmo, S., Patring, J., Jastrebova, J. and Andlid, T. (2008a). Biofortification of folates in white wheat bread by selection of yeast strain and process. Int. J. Food Microbiol. 127:32–36.
  • Hjortmo, S. B., Hellström, A. M. and Andlid, T. A. (2008b). Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res. 8:781–787.
  • Holasova, M., Fiedlerova, V., Roubal, P. and Pechacova, M. (2004). Biosynthesis of folates by lactic acid bacteria and propionibacteria in fermented milk. Czech J. Food Sci. 22:175–181.
  • Holasova, M., Fiedlerova, V., Roubal, P. and Pechacova, M. (2005). Possibility of increasing natural folate content in fermented milk products by fermentation and fruit component addition. Czech J. Food Sci. 23:196–201.
  • Hugenschmidt, S., Schwenninger, S. M., Gnehm, N. and Lacroix, C. (2010). Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. Int. Dairy J. 20:852–857.
  • Hugenschmidt, S., Schwenninger, S. M. and Lacroix, C. (2011). Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochem. 46:1063–1070.
  • Iyer, R., Tomar, S. K. and Singh, A. K. (2010). Response surface optimization of the cultivation conditions and medium components for the production of folate by Streptococcus thermophilus. J. Dairy Res. 77:350–356.
  • Iyer, R., Tomar, S. K., Mohanty, A. K., Singh, P. and Singh, R. (2011). Bioprospecting of strains of Streptococcus thermophilus from Indian fermented milk products for folate production. Dairy Sci. Technol. 91:237–246.
  • Jägerstad, M. and Jastrebova, J. (2013). Occurrence, stability, and determination of formyl folates in foods. J. Agric. Food Chem. 61:9758–9768.
  • Jägerstad, M., Jastrebova, J. and Svensson, U. (2004). Folates in fermented vegetables—A pilot study. LWT—Food Sci. Technol. 37:603–611.
  • Kariluoto, S. (2008). Folates in rye: Determination and enhancement by food processing. PhD thesis.
  • Kariluoto, S., Vahteristo, L., Salovaara, H., Katina, K., Liukkonen, K. H. and Piironen, V. (2004). Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem. 81:134–139.
  • Kariluoto, S., Aittamaa, M., Korhola, M., Salovaara, H., Vahteristo, L. and Piironen, V. (2006a). Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int. J. Food Microbiol. 106:137–143.
  • Kariluoto, S., Liukkonen, K.-H., Myllymäki, O., Vahteristo, L., Kaukovirta-Norja, A. and Piironen, V. (2006b). Effect of Germination and Thermal Treatments on Folates in Rye. J. Agric. Food Chem. 54:9522–9528.
  • Kariluoto, S., Edelmann, M., Nyström, L., Sontag-Strohm, T., Salovaara, H., Kivelä, R., Herranen, M., Korhola, M. and Piironen, V. (2014). In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices. Int. J. Food Microbiol. 176:38–48.
  • KEGG (2014). Kyoto Encyclopedia of Genes and Genomes, available online: Available from http://www.genome.jp/kegg/.
  • Kelly, P., McPartlin, J., Goggins, M., Weir, D. G. and Scott, J. M. (1997). Unmetabolized folic acid in serum: Acute studies in subjects consuming fortified food and supplements. Am. J. Clin. Nutr. 65:1790–1795.
  • Koehler, P., Hartmann, G., Wieser, H. and Rychlik, M. (2007). Changes of folates, dietary fiber, and proteins in Wheat as affected by germination. J. Agric. Food Chem. 55:4678–4683.
  • Konings, E. J. M. (1999). A validated liquid chromatographic method for determining folates in vegetables, milk powder, liver, and flour. J. AOAC Int. 82:119–127.
  • Korhola, M., Hakonen, R., Juuti, K., Edelmann, M., Kariluoto, S., Nyström, L., Sontag-Strohm, T. and Piironen, V. (2014). Production of folate in oat bran fermentation by yeasts isolated from barley and diverse foods. J. Appl. Microbiol. 117:679–689.
  • Kuratsu, M., Hamano, Y. and Dairi, T. (2010). Analysis of the Lactobacillus metabolic pathway. Appl. Environ. Microbiol. 76:7299–7301.
  • Laiño, J. E., Guy LeBlanc, J. and Savoy de Giori, G. (2012). Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts. Can. J. Microbiol. 58:581–588.
  • Laiño, J. E., Juarez del Valle, M., Savoy de Giori, G. and LeBlanc, J. G. J. (2013). Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. LWT—Food Sci. Technol. 54:1–5.
  • Laiño, J. E., Juarez del Valle, M., Savoy de Giori, G. and LeBlanc, J. G. J. (2014). Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. Int. J. Food Microbiol. 191:10–16.
  • LeBlanc, J., Folate production by, G., Smid, E., Hugenholtz, J. and Sesma, F. (2008). Folate production by lactic acid bacteria and other food-grade microorganisms. J. Appl. Microbiol. 112:975–984.
  • LeBlanc, J. G., Sybesma, W., Starrenburg, M., Sesma, F., De Vos, W. M., De Giori, G. S. and Hugenholtz, J. (2010). Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26:835–841.
  • LeBlanc, J. G., Laino, J. E., Juarez del Valle, M., Vannini, V., Van Sinderen, D., Taranto, M. P., Font de Valdez, G., Savoy de Giori, G. and Sesma, F. (2011). B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications. J. Appl. Microbiol. 111:1297–1309.
  • Leichter, J., Landymore, A. and Krumdieck, C. (1979). Folate conjugase activity in fresh vegetables and its effect on the determination of free folate content. Am. J. Clin. Nutr. 32:92–95.
  • Liang, L., Zhang, J., Zhou, P. and Subirade, M. (2013). Protective effect of ligand-binding proteins against folic acid loss due to photodecomposition. Food Chem. 141:754–761.
  • Lin, M. Y. and Young, C. M. (2000a). Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 10:409–413.
  • Lin, M. Y. and Young, C. M. (2000b). Biosynthesis of folates by Streptococcus thermophilus and Lactobacillus delbruekii ssp bulgaricus. J. Food Drug Anal. 8:195–199.
  • Lucock, M. D., Nayeemuddin, F. A., Habibzadeh, N., Schorah, C. J., Hartley, R. and Levene, M. I. (1994). Methylfolate exhibits a negative in-vitro interaction with important dietary metal cations. Food Chem. 50:307–310.
  • Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., et al. (2006). Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103:15611–15616.
  • Malin, J. (1977). Total folate activity in Brussels-Sprouts—Effects of Storage, Processing, Cooking and Ascorbic-Acid Content. J. Food Technol. 12:623–632.
  • Masuda, M., Ide, M., Utsumi, H., Niiro, T., Shimamura, Y. and Murata, M. (2012). Production Potency of Folate, Vitamin B-12, and Thiamine by Lactic Acid Bacteria Isolated from Japanese Pickles. Biosci. Biotechnol. Biochem. 76:2061–2067.
  • McLean, E., De Benoist, B. and Allen, L. H. (2008). Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food Nutr. Bull. 29:38–51.
  • McNulty, H. and Pentieva, K. (2004). Folate bioavailability. Proc. Nutr. Soc. 63:529–536.
  • Metz, J. (1963). Folates in megaloblastic anaemia. Bull. World Health Organ. 28:517–529.
  • Mnkeni, A. and Beveridge, T. (1982). Thermal-destruction of Pteroylglutamic acid in buffer and model food systems. J. Food Sci. 47:2038–2041.
  • Mo, H., Kariluoto, S., Piironen, V., Zhu, Y., Sanders, M. G., Vincken, J.-P., Wolkers-Rooijackers, J. and Nout, M. J. R. (2013). Effect of Soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in Tofu and Tempe. Food Chem. 141:2418–2425.
  • Monks, J. L. F., Vanier, N. L., Casaril, J., Berto, R. M., De Oliveira, M., Gomes, C. B., De Carvalho, M. P., Dias, A. R. G. and Elias, M. C. (2013). Effects of milling on proximate composition, folic acid, fatty acids and technological properties of rice. J. Food Compos. Anal. 30:73–79.
  • Moslehi-Jenabian, S., Lindegaard, L. and Jespersen, L. (2010). Beneficial effects of probiotic and food borne Yeasts on human Health. Nutrients 2:449–473.
  • Mouquet-Rivier, C., Icard-Vernière, C., Guyot, J.-P., Hassane Tou, E., Rochette, I. and Trèche, S. (2008). Consumption pattern, biochemical composition and nutritional value of fermented pearl millet gruels in Burkina Faso. Int. J. Food Sci. Nutr. 59:716–729.
  • Munyaka, A. W., Verlinde, P., Mukisa, I. M., Oey, I., Van Loey, A. and Hendrickx, M. (2010). Influence of thermal processing on hydrolysis and stability of folate poly-γ-glutamates in Broccoli (Brassica oleracea var. italica), Carrot (Daucus carota) and Tomato (Lycopersicon esculentum). J. Agric. Food Chem. 58:4230–4240.
  • Murdock, F. A. and Fields, M. L. (1984). B-Vitamin Content of Natural Lactic Acid Fermented Cornmeal. J. Food Sci. 49:373–375.
  • Nor, N. M., Mohamad, R., Foo, H. L. and Rahim, R. A. (2010). Improvement of folate biosynthesis by lactic acid bacteria using response surface methodology. Food Technol. Biotechnol. 48:243–250.
  • Nout, M. J. R. (2009). Rich nutrition from the poorest—Cereal fermentations in Africa and Asia. Food Microbiol. 26:685–692.
  • O'Hare, T. J., Pyke, M., Scheelings, P., Eaglesham, G., Wong, L., Houlihan, A. and Graham, G. (2012). Impact of low temperature storage on active and storage forms of folate in choy sum (Brassica rapa subsp. parachinensis). Postharvest Biol. Technol. 74:85–90.
  • Oyewole, O. B. (1997). Lactic fermented foods in Africa and their benefits. Food Control 8:289–297.
  • Padalino, M., Perez-Conesa, D., López-Nicolás, R., Frontela-Saseta, C. and Ros-Berruezo, G. (2012). Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. Int. Dairy J. 27:27–33.
  • Paine-Wilson, B. and Chen, T.-S. (1979). Thermal destruction of folacin: Effect of PH and buffer ions. J. Food Sci. 44:717–722.
  • Park, S.-Y., Do, J.-R., Kim, Y.-J., Kim, K.-S.andLim, S.-D.(2014). Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood. Korean J. Food Sci. Anim. Resour. 34:106–114.
  • Phillips, K. M., Ruggio, D. M., Ashraf-Khorassani, M. and Haytowitz, D. B. (2006). Difference in folate content of green and red sweet peppers (Capsicum annuum) determined by liquid chromatography−mass spectrometry. J. Agric. Food Chem. 54:9998–10002.
  • Phillips, K. M., Ruggio, D. M. and Haytowitz, D. B. (2011). Folate composition of 10 types of mushrooms determined by liquid chromatography–mass spectrometry. Food Chem. 129:630–636.
  • Phillips, K. M., Pehrsson, P. R., Agnew, W. W., Scheett, A. J., Follett, J. R., Lukaski, H. C. and Patterson, K. Y. (2014). Nutrient composition of selected traditional United States Northern Plains Native American plant foods. J. Food Compos. Anal. 34:136–152.
  • Pomeranz, Y. (1988). Wheat: Chemistry and technology. Volume I. Chemical composition of kernel structures. pp. 97–158 (American Association of Cereal Chemists).
  • Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D. and Rossi, M. (2007). Folate Production by Bifidobacteria as a Potential Probiotic Property. Appl. Environ. Microbiol. 73:179–185.
  • Quinlivan, E. P., Hanson, A. D. and Gregory, J. F. (2006). The analysis of folate and its metabolic precursors in biological samples. Anal.Biochem. 348:163–184.
  • Reisenauer, A. and Halsted, C. (1987). Human Folate Requirements. J. Nutr. 117:600–602.
  • Ringling, C. and Rychlik, M. (2013). Analysis of seven folates in food by LC–MS/MS to improve accuracy of total folate data. Eur. Food Res. Technol. 236:17–28.
  • Rong, N., Selhub, J., Goldin, B. and Rosenberg, I. (1991). Bacterially synthesized folate in rat large-intestine is incorporated into host tissue Folyl Polyglutamates. J. Nutr. 121:1955–1959.
  • Rosenthal, J., Lopez-Pazos, E., Dowling, N. F., Pfeiffer, C. M., Mulinare, J., Vellozzi, C., Zhang, M., Lavoie, D. J., Molina, R., Ramirez, N., et al. (2015). Folate and Vitamin B12 Deficiency Among Non-pregnant Women of Childbearing-Age in Guatemala 2009–2010: Prevalence and Identification of Vulnerable Populations. Matern. Child Health J. 19:2272–2285.
  • Rychlik, M. and Adam, S. T. (2008). Glucosinolate and folate content in sprouted broccoli seeds. Eur. Food Res. Technol. 226:1057–1064.
  • Rychlik, M., Englert, K., Kapfer, S. and Kirchhoff, E. (2007). Folate contents of legumes determined by optimized enzyme treatment and stable isotope dilution assays. J. Food Compos. Anal. 20:411–419.
  • Saini, P. K. and Rosenberg, I. H. (1974). Isolation of pteroly-gamma-oligoglutamyl endopeptidase from chicken intestine with the aid of affinity chromatography. J. Biol. Chem. 249:5131–5134.
  • Sanna, M. G., Mangia, N. P., Garau, G., Murgia, M. A., Massa, T. G., Franco, M. A. and Deiana, P. (2005). Selection of folate-producing lactic acid bacteria for improving fermented goat milk. Ital. J. Food Sci. 17:143–154.
  • Santos, F., Wegkamp, A., Vos, W. M., De Smid, E. J. and Hugenholtz, J. (2008). High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl. Environ. Microbiol. 74:3291–3294.
  • Satoh, Y., Kuratsu, M., Kobayashi, D. and Dairi, T. (2014). New gene responsible for para-aminobenzoate biosynthesis. J. Biosci. Bioeng. 117:178–183.
  • Sedehi, M. (2013). Deficiencies of the microelements, Folate and Vitamin B12 in women of the child bearing ages in Gorgan, Northern Iran. J. Clin. Diagn. Res. 7:1102–1104.
  • Shohag, M. J. I., Wei, Y., Yu, N., Zhang, J., Wang, K., Patring, J., He, Z. and Yang, X. (2011). Natural variation of Folate content and composition in Spinach (Spinacia oleracea) Germplasm. J. Agric. Food Chem. 59:12520–12526.
  • Shohag, M. J. I., Wei, Y., Yu, N., Lu, L., Zhang, J., He, Z., Patring, J. and Yang, X. (2012). Folate content and composition of vegetables commonly consumed in China. J. Food Sci. 77:H239–H245.
  • Sotiriadis, P. K. and Hoskins, F. H. (1982). Vitamin retention during storage of processed foods. I. Effect of ascorbic acid on folates in cowpeas, okra and tomatoes. Sci. Hortic. 16:125–130.
  • Souci, S., Fachmann, W. and Kraut, H. (2000). Food composition and nutrition tables. CRC Press.
  • Stadlmayr, B., Charrondiere, U. R., Enujiugha, V. N., Bayili, R. G., Fagbohoun, E. G., Samb, B., Addy, P., Barikmo, I., Ouattara, F., Oshaug, A., et al. (2012). West African Food Composition Table.
  • Strandler, H. S., Patring, J., Jägerstad, M. and Jastrebova, J. (2015). Challenges in the determination of unsubstituted food folates: Impact of stabilities and conversions on analytical results. J. Agric. Food Chem. 63:2367–2377.
  • Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M. H. N. and Hugenholtz, J. (2003). Effects of cultivation conditions on folate production by lactic acid Bacteria. Appl. Environ. Microbiol. 69:4542–4548.
  • Tabor, H. and Wyngarden, L. (1959). The enzymatic formation of formiminotetrahydrofolic acid, 5,10-methenyltetrahydrofolic acid, and 10-formyltetrahydrofolic acid in the metabolism of formiminoglutamic acid. J. Biol. Chem. 234:1830–1846.
  • Tamura, T., Shin, Y. S., Buehring, K. U. and Stokstad, E. L. R. (1976). The availability of folates in man: Effect of orange juice supplement on intestinal conjugase. Br. J. Haematol. 32:123–134.
  • Tomar, S. K., Srivatsa, N., Iyer, R. and Singh, R. (2009). Estimation of folate production by Streptococcus thermophilus using modified microbiological assay. Milchwiss.—Milk Sci. Int. 64:260–263.
  • Turpin, W., Humblot, C. and Guyot, J.-P. (2011). Genetic screening of functional properties of lactic acid bacteria in a fermented pearl Millet Slurry and in the Metagenome of fermented starchy foods. Appl. Environ. Microbiol. 77:8722–8734.
  • Tyagi, A., Penzkofer, A., Batschauer, A. and Wolf, E. (2009). Thermal degradation of (6R,S)-5,10-methenyltetrahydrofolate in aqueous solution at pH 8. Chem. Phys. 358:132–136.
  • USDA (2015). National Agricultural Library.USDA Nutrient Data Laboratory. Available from http://fnic.nal.usda.gov/food-composition/usda-nutrient-data-laboratory.
  • Vahteristo, L., Ollilainen, V. and Varo, P. (1996). HPLC determination of Folate in liver and liver products. J. Food Sci. 61:524–526.
  • Van het Hof, K. H., Tijburg, L. B. M., Pietrzik, K. and Weststrate, J. A. (1999). Influence of feeding different vegetables on plasma levels of carotenoids, folate and vitamin C. Effect of disruption of the vegetable matrix. Br. J. Nutr. 82:203–212.
  • Viñas, B. R., Ribas Barba, L., Ngo, J., Gurinovic, M., Novakovic, R., Cavelaars, A., De Groot, L. C. P. G. M., Van't Veer, P., Matthys, C. and Serra Majem, L. (2011). Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab. 59:84–95.
  • Wang, C., Riedl, K. M. and Schwartz, S. J. (2013). Fate of folates during vegetable juice processing — Deglutamylation and interconversion. Food Res. Int. 53:440–448.
  • WHO (2012). Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. World Health Organization, Geneva. Available from http://www.who.int/nutrition/publications/micronutrients/guidelines/daily_ifa_supp_pregnant_women/en/.
  • Wieringa, F. T., Laillou, A., Guyondet, C., Jallier, V., Moench-Pfanner, R. and Berger, J. (2014). Stability and retention of micronutrients in fortified rice prepared using different cooking methods. Ann. N. Y. Acad. Sci. 1324:40–47.
  • Wilson, S. D. and Horne, D. W. (1983). Evaluation of ascorbic acid in protecting labile folic acid derivatives. Proc. Natl. Acad. Sci. USA 80:6500–6504.
  • Wouters, J.T.M., Ayad, E. H. E., Hugenholtz, J. and Smit, G. (2002). Microbes from raw milk for fermented dairy products. Int. Dairy J. 12:91–109.
  • Xue, S., Ye, X., Shi, J., Jiang, Y., Liu, D., Chen, J., Shi, A. and Kakuda, Y. (2011). Degradation kinetics of folate (5-methyltetrahydrofolate) in navy beans under various processing conditions. LWT - Food Sci. Technol. 44:231–238.
  • Youngblood, M. E., Williamson, R., Bell, K. N., Johnson, Q., Kancherla, V. and Oakley, G. P. (2013). 2012 Update on global prevention of folic acid–preventable spina bifida and anencephaly. Birt. Defects Res. A. Clin. Mol. Teratol. 97:658–663.
  • Zamudio, M., González, A. and Medina, J. A. (2001). Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol. 32:181–184.
  • Zhao, R., Diop-Bove, N., Visentin, M. and Goldman, I. D. (2011). Mechanisms of membrane transport of folates into cells and across Epithelia. Annu. Rev. Nutr. 31:177–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.