792
Views
7
CrossRef citations to date
0
Altmetric
Articles

Predictive modeling of microbial single cells: A review

, , , , , & show all

References

  • Adams, J. D., Kim, U. and Soh, H. T. (2008). Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. USA. 105(47):18165–18170.
  • Aguirre, J. S., Gonzalez, A., Ozcelik, N., Rodriguez, M. R. and Garcia De Fernando, G. D. (2013). Modeling the Listeria innocua micropopulation lag phase and its variability. Int. J. Food Microbiol. 164(1):60–69.
  • Aguirre, J. S., Monis, A. and Garcia De Fernando, G. D. (2014). Improvement in the lag phase estimation of individual cells that have survived mild heat treatment. Int. J. Food Microbiol. 49(3):884–894.
  • Aguirre, J. S., Rodriguez, M. R. and Garcia De Fernando, G. D. (2011). Effects of electron beam irradiation on the variability in survivor number and duration of lag phase of four food-borne organisms. Int. J. Food Microbiol. 149(3):236–246.
  • Augustin, J. C. and Carlier, V. (2000). Mathematical modelling of the growth rate and lag time for Listeria monocytogenes. Int. J. Food Microbiol. 56(1):29–51.
  • Augustin, J., Ferrier, R., Hezard, B., Lintz, A. and Stahl, V. (2015). Comparison of individual-based modeling and population approaches for prediction of foodborne pathogens growth. Food Microbiol. 45:205–215.
  • Augustin, J. and Czarnecka-Kwasiborski, A. (2012). Single-cell growth probability of Listeria monocytogenes at suboptimal temperature, pH, and water activity. Front. Microbiol. 3:157.
  • Baert, K., Valero, A., De Meulenaer, B., Samapundo, S., Ahmed, M. M., Bo, L., Debevere, J. and Devlieghere, F. (2007). Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Int. J. Food Microbiol. 118(2):139–150.
  • Baka, M., Noriega, E., Stamati, I., Logist, F. and Van Impe, J. F. M. (2015). Critical assessment of the time‐to‐detection method for accurate estimation of microbial growth parameters. J. Food Safety 35(2):179–192.
  • Baranyi, J. (1998). Comparison of stochastic and deterministic concepts of bacterial lag. J. Theor. Biol. 192(3):403–408.
  • Baranyi, J. (2002). Stochastic modelling of bacterial lag phase. Int. J. Food Microbiol. 73(2):203–206.
  • Baranyi, J., George, S. M. and Kutalik, Z. (2009). Parameter estimation for the distribution of single cell lag times. J. Theor. Biol. 259(1):24–30.
  • Baranyi, J. and Pin, C. (1999). Estimating bacterial growth parameters by means of detection times. Appl. Environ. Microbiol. 65(2):732–736.
  • Baranyi, J. and Pin, C. (2001). A parallel study on bacterial growth and inactivation. J. Theor. Biol. 210(3):327–336.
  • Baranyi, J. and Roberts, T. A. (1994). A dynamic approach to predicting bacterial-growth in food. Int. J. Food Microbiol. 23(3–4):277–294.
  • Baranyi, J. and Roberts, T. A. (1995). Mathematic of predictive food microbiology. Int. J. Food Microbiol. 26(2):199–218.
  • Begot, C., Desnier, I., Daudin, J. D., Labadie, J. C. and Lebert, A. (1996). Recommendations for calculating growth parameters by optical density measurements. J. Microbiol. Methods 25(3):225–232.
  • Besse, N. G., Audinet, N., Barre, L., Cauquil, A., Cornu, M. and Colin, P. (2006). Effect of the inoculum size on Listeria monocytogenes growth in structured media. Int. J. Food Microbiol. 110(1):43–51.
  • Bessette, P. H., Hu, X., Soh, H. T. and Daugherty, P. S. (2007). Microfluidic library screening for mapping antibody epitopes. Anal. Chem. 79(5):2174–2178.
  • Boedicker, J. Q., Li, L., Kline, T. R. and Ismagilov, R. F. (2008). Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272.
  • Brehm-Stecher, B. F. and Johnson, E. A. (2004). Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68(3):538.
  • Bridier, A., Hammes, F., Canette, A., Bouchez, T. and Briandet, R. (2015). Fluorescence-based tools for single-cell approaches in food microbiology. Int. J. Food Microbiol. 213:2–16.
  • Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J. M., Link, D. R., Perrimon, N. and Samuels, M. L. (2009). Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl. Acad. Sci. USA 106(34):14195–14200.
  • Buchanan, R. L., Whiting, R. C. and Damert, W. C. (1997). When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 14(4):313–326.
  • Cai, L., Friedman, N. and Xie, X. S. (2006). Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–362.
  • Castro-Rosas, J., Cerna-Cortes, J. F., Mendez-Reyes, E., Lopez-Hernandez, D., Gomez-Aldapa, C. A. and Estrada-Garcia, T. (2012). Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. Int. J. Food Microbiol. 156(2):176–180.
  • CDC. (2011). Multistate Outbreak of Human Salmonella Hadar Infections Associated with Turkey Burgers (Final Update). Accessed October 20, 2015. Available from http://www.cdc.gov/salmonella/2011/turkey-burger-4–4-2011.html
  • CDC. (2013). Multistate Outbreak of Shiga toxin-producing Escherichia coli O157:H7 Infections Linked to Ready-to-Eat Salads (Final Update). Accessed October 20, 2015. Available from http://www.cdc.gov/ecoli/2013/O157H7–11-13/index.html
  • CDC. (2015). Multistate Outbreak of Salmonella Poona Infections Linked to Imported Cucumbers. Accessed December 12, 2015. Available from http://www.cdc.gov/salmonella/poona-09–15/index.html
  • Clausell-Tormos, J., Lieber, D., Baret, J., El-Harrak, A., Miller, O. J., Frenz, L., Blouwolff, J., Humphry, K. J., Koester, S., Duan, H., Holtze, C., Weitz, D. A., Griffiths, A. D. and Merten, C. A. (2008). Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms (vol15, pg427, 2008). Chem. Biol. 15(8):875.
  • D'Arrigo, M., de Fernando, G., de Diego, R. V., Ordonez, J. A., George, S. M. and Pin, C. (2006). Indirect measurement of the lag time distribution of single cells of Listeria innocua in food. Appl. Environ. Microbiol. 72(4):2533–2538.
  • Davey, H. M. and Kell, D. B. (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Mol. Biol. Rev. 60(4):641.
  • Davies, D. (2007). Cell Sorting by Flow Cytometry. In Flow Cytometry. New York: Humana Press.
  • Dens, E. J., Bernaerts, K., Standaert, A. R., Kreft, J. U. and Van Impe, J. F. (2005). Cell division theory and individual-based modeling of microbial lag—part II. Modeling lag phenomena induced by temperature shifts. Int. J. Food Microbiol. 101(3):319–332.
  • Diaz, M., Herrero, M., Garcia, L. A. and Quiros, C. (2010). Application of flow cytometry to industrial microbial bioprocesses. Biochem. Eng. J. 48(3):385–407.
  • Ding, X., Lin, S. S., Kiraly, B., Yue, H., Li, S., Chiang, I., Shi, J., Benkovic, S. J. and Huang, T. J. (2012). On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 109(28):11105–11109.
  • Dong, Q., Wang, X., Ding, T., Liu, Q. and Liu, Y. (2014). Growth of pseudomonas aeruginosa single cells and cell colonies. Trans. Chin. Soc. Agric. Mach. 45:204–209.
  • Dufrene, Y. F. (2014). Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. Mbio. 5(4):e01363–14.
  • Dupont, C. and Augustin, J. (2009). Influence of stress on single-cell lag time and growth probability for Listeria monocytogenes in half fraser broth. Appl. Environ. Microbiol. 75(10):3069–3076.
  • Elfwing, A., LeMarc, Y., Baranyi, J. and Ballagi, A. (2004). Observing growth and division of large numbers of individual bacteria by image analysis. Appl. Environ. Microbiol. 70(2):675–678.
  • Fernandes, R. L., Nierychlo, M., Lundin, L., Pedersen, A. E., Tellez, P. E. P., Dutta, A., Carlquist, M., Bolic, A., Schapper, D., Brunetti, A. C., Helmark, S., Heins, A. L., Jensen, A. D., Nopens, I., Rottwitt, K., Szita, N., van Elsas, J. D., Nielsen, P. H., Martinussen, J., Sorensen, S. J., Lantz, A. E. and Gernaey, K. V. (2011). Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol. Adv. 29(6):575–599.
  • Ferrer, J., Prats, C., Lopez, D. and Vives-Rego, J. (2009). Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis. Int. J. Food Microbiol. 134(1):2–8.
  • Ferrier, R., Hezard, B., Lintz, A., Stahl, V. and Augustin, J. (2013). Combining individual-based modeling and food microenvironment descriptions to predict the growth of Listeria monocytogenes on smear soft cheese. Appl. Environ. MIicrobiol. 79(19):5870–5881.
  • Francois, K., Devlieghere, F., Smet, K., Standaert, A. R., Geeraerd, A. H., Van Impe, J. F. and Debevere, J. (2005). Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes. Int. J. Food Microbiol. 100(1):41–53.
  • Francois, K., Devlieghere, F., Standaert, A. R., Geeraerd, A. H., Van Impe, J. F. and Debevere, J. (2003). Modelling the individual cell lag phase. Isolating single cells: protocol development. Lett. Appl. Microbiol. 37(1):26–30.
  • Francois, K., Devlieghere, F., Standaert, A. R., Geeraerd, A. H., Van Impe, J. F. and Debevere, J. (2006). Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes. Int. J. Food Microbiol. 108(3):326–335.
  • Francois, K., Valero, A., Geeraerd, A. H., Van Impe, J. F., Debevere, J., Garcia-Gimeno, R. M., Zurera, G. and Devlieghere, F. (2007). Effect of preincubation temperature and pH on the individual cell lag phase of Listeria monocytogenes, cultured at refrigeration temperatures. Food Microbiol. 24(1):32–43.
  • Froehling, A., Baier, M., Ehlbeck, J., Knorr, D. and Schlueter, O. (2012). Atmospheric pressure plasma treatment of Listeria innocua and Escherichia coli at polysaccharide surfaces: inactivation kinetics and flow cytometric characterization. Innov. Food Sci. Emerg. 13:142–150.
  • Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. and Quake, S. R. (1999). A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17(11):1109–1111.
  • Gao, J., Yin, X. F. and Fang, Z. L. (2004). Application of microfluidic chip systems for the research of single cell. Prog. Chem. 16(6):975–983.
  • Garcia, D., Ramos, A. J., Sanchis, V. and Marin, S. (2010). Modelling mould growth under suboptimal environmental conditions and inoculum size. Food Microbiol. 27(7):909–917.
  • Gaynor, K., Park, S. Y., Kanenaka, R., Colindres, R., Mintz, E., Ram, P. K., Kitsutani, P., Nakata, M., Wedel, S., Boxrud, D., Jennings, D., Yoshida, H., Tosaka, N., He, H., Ching-Lee, M. and Effler, P. V. (2009). International foodborne outbreak of Shigella sonnei infection in airline passengers. Epidemiol. Infect. 137(3):335–341.
  • Golding, I., Paulsson, J., Zawilski, S. M. and Cox, E. C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell. 123(6):1025–1036.
  • Gould, L. H., Walsh, K. A., Vieira, A. R., Herman, K., Williams, I. T., Hall, A. J. and Cole, D. (2013). Surveillance for foodborne disease outbreaks - United States, 1998–2008. MMWR Surveill. Summar. 62(2):1–34.
  • Greeson, J. N., Organ, L. E., Pereira, F. A. and Raphael, R. M. (2006). Assessment of prestin self-association using fluorescence resonance energy transfer. Brain Res. 1091:140–150.
  • Guillier, L., Pardon, P. and Augustin, J. C. (2005). Influence of stress on individual lag time distributions of Listeria monocytogenes. Appl. Environ. Microbiol. 71(6):2940–2948.
  • Guillier, L., Pardon, P. and Augustin, J. C. (2006). Automated image analysis of bacterial colony growth as a tool to study individual lag time distributions of immobilized cells. J. Microbiol. Methods 65(2):324–334.
  • Guillier, L. and Augustin, J. (2006). Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions. Int. J. Food Microbiol. 111(3):241–251.
  • Hansma, H. G. (1999). Varieties of imaging with scanning probe microscopes. Proc. Natl. Acad. Sci. USA 96(26):14678–14680.
  • He, M. Y., Edgar, J. S., Jeffries, G., Lorenz, R. M., Shelby, J. P. and Chiu, D. T. (2005). Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 77(6):1539–1544.
  • HILLS, B. P. and WRIGHT, K. M. (1994). A new model for bacterial growth in heterogeneous systems. J. Theor. Biol. 168(1):31–41.
  • Hu, X. Y., Bessette, P. H., Qian, J. R., Meinhart, C. D., Daugherty, P. S. and Soh, H. T. (2005). Marker-specific sorting of rare cells using dielectrophoresis. Proc. Natl. Acad. Sci. USA 102(44):15757–15761.
  • Huang, B., Bates, M. and Zhuang, X. (2009). Super resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993.
  • Huchet, V., Thuault, D. and Bourgeois, C. M. (1995). Development of a model predicting the effects of pH, lactic acid, glycerol and sodium chloride content on the growth of vegetative cells of Clostridium tyrobutyricum in a culture medium. Lait 75(6):585–593.
  • Ishii, S., Tago, K. and Senoo, K. (2010). Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Appl. Microbiol. Biotechnol. 86(5):1281–1292.
  • Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H. and Iwasaki, K. (2011). Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22(3):601–607.
  • Issa-Zacharia, A., Kamitani, Y., Morita, K. and Iwasaki, K. (2010). Sanitization potency of slightly acidic electrolyzed water against pure cultures of Escherichia coli and Staphylococcus aureus, in comparison with that of other food sanitizers. Food Control 21(5):740–745.
  • Joux, F. and Lebaron, P. (2000). Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microb. Infect. 2(12):1523–1535.
  • Kaufmann, B. B. and van Oudenaarden, A. (2007). Stochastic gene expression: from single molecules to the proteome. Curr. Opin. Genet. Dev. 17(2):107–112.
  • Kelly, C. D. and Rahn, O. (1932). The growth rate of individual bacterial cells. J. Bacteriol. 23(2):147–153.
  • Kim, H., Lee, S. and Kim, J. (2012). Hydrodynamic trap-and-release of single particles using dual-function elastomeric valves: design, fabrication, and characterization. Microfluid. Nanofluid. 13(5):835–844.
  • Konig, K. (2000). Laser tweezers and multiphoton microscopes in life sciences. Histochem. Cell Biol. 114(2):79–92.
  • Kortmann, H., Blank, L. M. and Schmid, A. (2011). Single Cell Analytics: An overview. In High Resolution Microbial Single Cell Analytics. Springer Berlin: Heidelberg.
  • Kose, A. R., Fischer, B., Mao, L. and Koser, H. (2009). Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc. Natl. Acad. Sci. USA 106(51):21478–21483.
  • Koutsoumanis, K. P. and Lianou, A. (2013). Stochasticity in colonial growth dynamics of individual bacterial cells. Appl. Environ. Microbiol. 79(7):2294–2301.
  • Koutsoumanis, K. P. and Sofos, J. N. (2005). Effect of inoculum size on the combined temperature, pH and a(w) limits for growth of Listeria monocytogenes. Int. J. Food Microbiol. 104(1):83–91.
  • Koutsoumanis, K. (2008). A study on the variability in the growth limits of individual cells and its effect on the behavior of microbial populations. Int. J. Food Microbiol. 128(1):116–121.
  • Kutalik, Z., Razaz, M., Elfwing, A., Ballagi, A. and Baranyi, J. (2005). Stochastic modelling of individual cell growth using flow chamber microscopy images. Int. J. Food Microbiol. 105(2):177–190.
  • Lecault, V., White, A. K., Singhal, A. and Hansen, C. L. (2012). Microfluidic single cell analysis: from promise to practice. Curr. Opin. Chem. Biol. 16(3):381–390.
  • Lee, S. S., Avalos Vizcarra, I., Huberts, D. H. E. W., Lee, L. P. and Heinemann, M. (2012). Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc. Natl. Acad. Sci. USA 109(13):4916–4920.
  • Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C., Chain, P. S., Hallam, S. J. and Hansen, C. L. (2012). A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl. Acad. Sci. USA 109(20):7665–7670.
  • Lewis, H. C., Kirk, M., Ethelberg, S., Stafford, R., Olsen, K., Nielsen, E. M., Lisby, M., Madsen, S. B. and Molbak, K. (2007). Outbreaks of shigellosis in Denmark and Australia associated with imported baby corn, August 2007–final summary. Eurosurveillance 12(10):E71002–E71004.
  • Li, P., Wen, P., Xu, H., Wang, Y., Tong, P., Wang, L. and Liu, C. (2013). Research progress in application of flow cytometry in detection of foodborne pathogen. Sci. Tecnol. Food Ind. 34:375–379.
  • Li, Y., Odumeru, J. A., Griffiths, M. and McKellar, R. C. (2006). Effect of environmental stresses on the mean and distribution of individual cell lag times of Escherichia coli O157: H7. Int. J. Food Microbiol. 110(3):278–285.
  • Lianou, A. and Koutsoumanis, K. P. (2011). Effect of the growth environment on the strain variability of Salmonella enterica kinetic behavior. Food Microbiol. 28(4):828–837.
  • Lieu, V. H., House, T. A. and Schwartz, D. T. (2012). Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal. Chem. 84(4):1963–1968.
  • Link, A. J., Jeong, K. J. and Georgiou, G. (2007). Beyond toothpicks: new methods for isolating mutant bacteria. Nat. Rev. Microbiol. 5(9):680–688.
  • Liu, W., Kim, H. J., Lucchetta, E. M., Du, W. and Ismagilov, R. F. (2009). Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab. Chip 9(15):2153–2162.
  • Long, Z., Nugent, E., Javer, A., Cicuta, P., Sclavi, B., Lagomarsino, M. C. and Dorfman, K. D. (2013). Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab. Chip 13(5):947–954.
  • Masana, M. O. and Baranyi, J. (2000). Growth/no growth interface of Brochothrix thermosphacta as a function of pH and water activity. Food Microbiol. 17(5):485–493.
  • Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D. and Heyman, J. A. (2013). Single-cell analysis and sorting using droplet-based microfluidics. Nat. Prot. 8(5):870–891.
  • Mcclure, P. J., Cole, M. B., Davies, K. W. and Anderson, W. A. (1993). The use of automated tubidimetric data for the construction of kinetic models. J. Ind. Microbiol. 12(3–5):277–285.
  • McKellar, R. C. (1997). A heterogeneous population model for the analysis of bacterial growth kinetics. Int. J. Food Microbiol. 36(2):179–186.
  • McKellar, R. C. (2001). Development of a dynamic continuous-discrete-continuous model describing the lag phase of individual bacterial cells. J. Appl. Microbiol. 90(3):407–413.
  • McKellar, R. C., Lu, X. and Knight, K. P. (2002). Proposal of a novel parameter to describe the influence of pH on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 73(2):127–135.
  • McKellar, R. C. and Hawke, A. (2006). Assessment of distributions for fitting lag times of individual cells in bacterial populations. Int. J. Food Microbiol. 106(2):169–175.
  • McKellar, R. C. and Knight, K. (2000). A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 54(3):171–180.
  • McKellar, R. C. and Lu, X. (2005). Development of a global stochastic model relating the distribution of individual cell and population physiological states. Int. J. Food Microbiol. 100(1):33–40.
  • Metris, A., George, S. M., Mackey, B. M. and Baranyi, J. (2008). Modeling the variability of single-cell lag times for Listeria innocua populations after Sublethal and Lethal heat treatments. Appl. Environ. Microbiol. 74(22):6949–6955.
  • Metris, A., George, S. M. and Baranyi, J. (2006). Use of optical density detection times to assess the effect of acetic acid on single-cell kinetics. Appl. Environ. Microbiol. 72(10):6674–6679.
  • Métris, A., George, S., Peck, M. and Baranyi, J. (2002). Effect of sodium chloride and pH on the distribution of the lag times of individual cells of Listeria innocua. In Conference Proceedings: 7ème Journées Européennes, Agroindustrie et Methodes Statistiques, Lille. Villeneuve d' Asq, France.
  • Metris, A., Le Marc, Y., Elfwing, A., Ballagi, A. and Baranyi, J. (2005). Modelling the variability of lag times and the first generation times of single cells of E. coli. Int. J. Food Microbiol. 100(1):13–19.
  • Mettetal, J. T., Muzzey, D., Pedraza, J. M., Ozbudak, E. M. and van Oudenaarden, A. (2006). Predicting stochastic gene expression dynamics in single cells. Proc. Natl. Acad. Sci. USA 103(19):7304–7309.
  • Mody, R. K., Greene, S. A., Gaul, L., Sever, A., Pichette, S., Zambrana, I., Dang, T., Gass, A., Wood, R., Herman, K., Cantwell, L. B., Falkenhorst, G., Wannemuehler, K., Hoekstra, R. M., McCullum, I., Cone, A., Franklin, L., Austin, J., Delea, K., Behravesh, C. B., Sodha, S. V., Yee, J. C., Emanuel, B., Al-Khaldi, S. F., Jefferson, V., Williams, I. T., Griffin, P. M. and Swerdlow, D. L. (2011). National outbreak of salmonella serotype saintpaul infections: importance of Texas restaurant investigations in implicating jalapeno peppers. Plos One 6(2):e165792.
  • Munoz, M., Guevara, L., Palop, A. and Fernandez, P. S. (2010). Prediction of time to growth of Listeria monocytogenes using Monte Carlo simulation or regression analysis, influenced by sublethal heat and recovery conditions. Food Microbiol. 27(4):468–475.
  • Munoz-Cuevas, M., Fernandez, P. S., George, S. and Pin, C. (2010). Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values. Appl. Environ. Microbiol. 76(9):2908–2915.
  • Nerbrink, E., Borch, E., Blom, H. and Nesbakken, T. (1999). A model based on absorbance data on the growth rate of Listeria monocytogenes and including the effects of pH, NaCl, Na-lactate and Na-acetate. Int. J. Food Microbiol. 47(1):99–109.
  • Neu, T. R. and Lawrence, J. R. (2014). Investigation of microbial biofilm structure by laser scanning microscopy. In Productive Biofilms., Eds. Kai Muffler, Roland Ulber. New York: Springer International Publishing 1–51.
  • Niven, G. W., Fuks, T., Morton, J. S., Rua, S. and Mackey, B. M. (2006). A novel method for measuring lag times in division of individual bacterial cells using image analysis. J. Microb. Methods 65(2):311–317.
  • Niven, G. W., Morton, J. S., Fuks, T. and Mackey, B. A. (2008). Influence of environmental stress on distributions of times to first division in Escherichia coli populations, as determined by digital-image analysis of individual cells. Appl. Environ. Microbiol. 74(12):3757–3763.
  • Ostergaard, N. B., Christiansen, L. E. and Dalgaard, P. (2015). Stochastic modelling of Listeria monocytogenes single cell growth in cottage cheese with mesophilic lactic acid bacteria from aroma producing cultures. Int. J. Food Microbiol. 204:55–65.
  • Pascual, C., Robinson, T. P., Ocio, M. J., Aboaba, O. O. and Mackey, B. M. (2001). The effect of inoculum size and sublethal injury on the ability of Listeria monocytogenes to initiate growth under suboptimal conditions. Lett. Appl. Microbiol. 33(5):357–361.
  • Pérez-Rodríguez, F. and Valero, A. (2013). Predictive Microbiology in Foods. Springer: New York.
  • Pezzoli, L., Elson, R., Little, C., Fisher, I., Yip, H., Peters, T., Hampton, M., De Pinna, E., Coia, J. E., Mather, H. A., Brown, D. J., Nielsen, E. M., Ethelberg, S., Heck, M., de Jager, C. and Threlfall, J. (2007). International outbreak of Salmonella Senftenberg in 2007. Eurosurveillance. 12(6):E70614.
  • Pin, C. and Baranyi, J. (2006). Kinetics of single cells: observation and modeling of a stochastic process. Appl. Environ. Microbiol. 72(3):2163–2169.
  • Pirt, S. J. (1975). Principles of Microbe and Cell Cultivation. Hoboken, New Jersey: Blackwell Scientific Publications.
  • Poschet, F., Bernaerts, K., Geeraerd, A. H., Scheerlinck, N., Nicolai, B. M. and Van Impe, J. F. (2004). Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Math. Comput. Simul. 65(3):231–243.
  • Powell, E. O. (1956). An improved culture chamber for the study of living bacteria. J. R. Microsc. Soc. 75(4):235–243.
  • Pozarowski, P., Holden, E. and Darzynkiewicz, Z. (2013). Laser scanning cytometry: principles and applications-an update. Cell Imag. Tech.: Methods Protocols 187–212.
  • Probst, C., Gruenberger, A., Wiechert, W. and Kohlheyer, D. (2013). Microfluidic growth chambers with optical tweezers for full spatial single-cell control and analysis of evolving microbes. J. Microbiol. Methods 95(3):470–476.
  • Rasch, M., Metris, A., Baranyi, J. and Budde, B. B. (2007). The effect of reuterin on the lag time of single cells of Listeria innocua grown on a solid agar surface at different pH and NaCl concentrations. Int. J. Food Mirobiol. 113(1):35–40.
  • Robinson, T. P., Aboaba, O. O., Kaloti, A., Ocio, M. J., Baranyi, J. and Mackey, B. M. (2001). The effect of inoculum size on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 70(1):163–173.
  • Robinson, T. P., Ocio, M. J., Kaloti, A. and Mackey, B. M. (1998). The effect of the growth environment on the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 44(1):83–92.
  • Rubakhin, S. S., Lanni, E. J. and Sweedler, J. V. (2013). Progress toward single cell metabolomics. Curr. Opin. Biotech. 24(1):95–104.
  • Ryall, B., Eydallin, G. and Ferenci, T. (2012). Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol. Mol. Biol. Rev. 76(3):597.
  • Salih, M., Mytilinaios, I., Schofield, H. K. and Lambert, R. J. W. (2012). Modelling of bacterial growth with shifts in temperature using automated methods with Listeria monocytogenes and Pseudomonas aeruginosa as examples. Int. J. Food Mirobiol. 155(1):29–35.
  • Schmid, A., Kortmann, H., Dittrich, P. S. and Blank, L. M. (2010). Chemical and biological single cell analysis. Curr. Opin. Biotechol. 21(1):12–20.
  • Shroff, H., Galbraith, C. G., Galbraith, J. A. and Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5(5):417–423.
  • Siegal-Gaskins, D. and Crosson, S. (2008). Tightly regulated and heritable division control in single bacterial cells. Biophys. J. 95(4):2063–2072.
  • Smelt, J., Otten, G. D. and Bos, A. P. (2002). Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. Int. J. Food Microbiol. 73(2):207–212.
  • Standaert, A. R., Francois, K., Devlieghere, F., Debevere, J., Van Impe, J. F. and Geeraerd, A. H. (2007). Modeling individual cell lag time distributions for Listeria monocytogenes. Risk Anal. 27(1):241–254.
  • Standaert, A. R., Geeraerd, A. H., Bernaerts, K., Francois, K., Devlieghere, F., Debevere, J. and Van Impe, J. F. (2005). Obtaining single cells: analysis and evaluation of an experimental protocol by means of a simulation model. Int. J. Food Microbiol. 100(1):55–66.
  • Steen, H. B. and Boye, E. (1981). Escherichia coli growth studied by dual-parameter flow cytophotometry. J. Bacteriol. 145(2):1091–1094.
  • Stephens, P. J., Joynson, J. A., Davies, K. W., Holbrook, R., LappinScott, H. M. and Humphrey, T. J. (1997). The use of an automated growth analyser to measure recovery times of single heat-injured Salmonella cells. J. Appl. Microbiol. 83(4):445–455.
  • Stringer, S. C., Webb, M. D. and Peck, M. W. (2011). Lag time variability in individual spores of Clostridium botulinum. Food Microbiol. 28(2):228–235.
  • Suo, B., Wang, X., Pan, Z., Wang, N., Ai, Z., Yu, S. and Salazar, J. K. (2014). Inactivation and sublethal injury kinetics of Staphylococcus aureus in broth at low temperature storage. J. Food Prot. 77(10):1689–1695.
  • Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99(20):12795–12800.
  • Taban, B. M. and Halkman, A. K. (2011). Do leafy green vegetables and their ready-to-eat [RTE] salads carry a risk of foodborne pathogens?. Anaerobe 17(6):286–287.
  • Ueckert, J. E., VonCaron, G. N., Bos, A. P. and TerSteeg, P. F. (1997). Flow cytometric analysis of Lactobacillus plantarum to monitor lag times, cell division and injury. Lett. Appl. Microbiol. 25(4):295–299.
  • Uyttendaele, M. R., Neyts, K. D., Lips, R. M. and Debevere, J. M. (1997). Incidence of Listeria monocytogenes in poultry and poultry products obtained from Belgian and French abbatoirs. Food Microbiol. 14(4):339–345.
  • Valero, A., Perez-Rodriguez, F., Carrasco, E., Garcia-Gimeno, R. M. and Zurera, G. (2006). Modeling the growth rate of Listeria monocytogenes using absorbance measurements and calibration curves. J. Food Sci. 71(7):M257–M264.
  • Vasdekis, A. E. and Stephanopoulos, G. (2015). Review of methods to probe single cell metabolism and bioenergetics. Metab. Eng. 27:115–135.
  • Vasseur, C., Baverel, L., Hebraud, M. and Labadie, J. (1999). Effect of osmotic, alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes. J. Appl. Microbiol. 86(3):469–476.
  • Wakamoto, Y., Inoue, I., Moriguchi, H. and Yasuda, K. (2001). Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Fresen. J. Anal. Chem. 371(2):276–281.
  • Wakamoto, Y., Ramsden, J. and Yasuda, K. (2005). Single-cell growth and division dynamics showing epigenetic correlations. Analyst 130(3):311–317.
  • Wang, J. and Ding, T. (2011). Research progress on application of electrolyzed water in food sterilization. Food Sci. 32:241–246.
  • Wang, P., Robert, L., Pelletier, J., Dang, W. L., Taddei, F., Wright, A. and Jun, S. (2010). Robust growth of Escherichia coli. Curr. Biol. 20(12):1099–1103.
  • Webb, M. D., Pin, C., Peck, M. W. and Stringer, S. C. (2007). Historical and contemporary NaCl concentrations affect the duration and distribution of lag times from individual spores of nonproteolytic Clostridium botulinum. Appl. Environ. Microbiol. 73(7):2118–2127.
  • Wesche, A. M., Gu rtler, J. B., Marks, B. P. and Ryser, E. T. (2009). Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Prot. 72(5):1121–1138.
  • Whing, R. C. and Buchanan, R. L. (1993). A classification of models in predictive microbiology—reply. Food Microbiol. 10(2):175–177.
  • Xu, Y. Z., Metris, A., Stasinopoulos, D. M., Forsythe, S. J. and Sutherland, J. P. (2015). Effect of heat shock and recovery temperature on variability of single cell lag time of Cronobacter turicensis. Food Microbiol. 45:195–204.
  • Zhang, H. and Liu, K. (2008). Optical tweezers for single cells. J. R. Soc. Interf. 5(24):671–690.
  • Zhao, W., Yang, R., Shen, X., Zhang, S. and Chen, X. (2013). Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control 32(1):6–12.
  • Zhou, K., George, S., Baranyi, J. and Li, P. (2012). Modeling the growth distribution of salmonella at different inoculum levels. Food Sci. 33:254–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.