1,798
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Antioxidative and antibacterial peptides derived from bovine milk proteins

ORCID Icon, , &

References

  • Agyei, D. and Danquah, M. K. (2011). Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 29(3):272–277. doi: 10.1016/j.biotechadv.2011.01.001
  • Agyei, D. and Danquah, M. K. (2012). Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci. Technol. 23(2):62–69. doi: 10.1016/j.tifs.2011.08.010
  • Alvarez-Ordóñez, A., Begley, M., Clifford, T., Deasy, T., Considine, K. and Hill, C. (2013). Structure-activity relationship of synthetic variants of the milk-derived antimicrobial peptide αS2-casein f(183–207). Appl. Environ. Microbiol. 79(17):5179–5185. doi: 10.1128/AEM.01394-13
  • Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S. and Robards, K. (2002). Methods for testing antioxidant activity. Analyst. 127(1):183–198. doi: 10.1039/b009171p
  • Ao, J. and Li, B. (2013). Stability and antioxidative activities of casein peptide fractions during simulated gastrointestinal digestion in vitro: Charge properties of peptides affect digestive stability. Food Res. Int. 52(1):334–341. doi: 10.1016/j.foodres.2013.03.036
  • Appendini, P. and Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 3(2):113–126. doi: 10.1016/S1466-8564(02)00012-7
  • Azarkan, M., Matagne, A., Wattiez, R., Bolle, L., Vandenameele, J. and Baeyens-Volant, D. (2011). Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. Phytochemistry. 72(14–15):1718–1731. doi: 10.1016/j.phytochem.2011.05.009
  • Bahar, A. A. and Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals. 6(12):1543–1575. doi: 10.3390/ph6121543
  • Barbosa, C. M. S., Morais, H. A., Delvivo, F. M., Mansur, H. S., De Oliveira, M. C. and Silvestre, M. P. C. (2004). Papain hydrolysates of casein: Molecular weight profile and encapsulation in lipospheres. J. Sci. Food Agric. 84(14):1891–1900. doi: 10.1002/jsfa.1855
  • Bargeman, G., Koops, G. H., Houwing, J., Breebaart, I., Van Der Horst, H. C. and Wessling, M. (2002). The development of electro-membrane filtration for the isolation of bioactive peptides: The effect of membrane selection and operating parameters on the transport rate. Desalination. 149(1–3):369–374. doi: 10.1016/S0011-9164(02)00824-X
  • Bechinger, B., Zasloff, M. and Opella, S. J. (1993). Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 2(12):2077–2084. doi: 10.1002/pro.5560021208
  • Benkerroum, N. (2010). Antimicrobial peptides generated from milk proteins: A survey and prospects for application in the food industry. A review. Int. J. Dairy Technol. 63(3):320–338. doi: 10.1111/j.1471-0307.2010.00584.x
  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3(3):238–250. doi: 10.1038/nrmicro1098
  • Butnariu, M. and Grozea, L. (2012). Antioxidant (antiradical) compounds. J. Bioequivalence Bioavailab. 4(6):xvii–xix. doi: 10.4172/jbb.10000e18
  • Calkins, M. J., Manczak, M. and Reddy, P. H. (2012). Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer's disease. Pharmaceuticals. 5(10):1103–1119. doi: 10.3390/ph5101103
  • Chen, H. M., Muramoto, K. and Yamauchi, F. (1995). Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food. Chem. 43(3):574–578. doi: 10.1021/jf00051a004
  • Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food. Chem. 44(9):2619–2623.
  • Chen, M. and Li, B. (2012). The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion. Innov. Food Sci. Emerg. Technol. 16:341–348.doi: 10.1016/j.ifset.2012.07.009
  • Choudhari, S. K., Chaudhary, M., Gadbail, A. R., Sharma, A. and Tekade, S. (2014). Oxidative and antioxidative mechanisms in oral cancer and precancer: A review. Oral Oncol. 50(1):10–18. doi: 10.1016/j.oraloncology.2013.09.011
  • Christensen, J. E., Dudley, E. G., Pederson, J. A. and Steele, J. L. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 76(1–4):217–246. doi: 10.1023/A:1002001919720
  • Contreras, M. D. M., Hernández-Ledesma, B., Amigo, L., Martín-Álvarez, P. J. and Recio, I. (2011). Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. LWT–Food Sci. Technol. 44(1):9–15. doi: 10.1016/j.lwt.2010.06.017
  • da Silva Jr, A., and Teschke, O. (2003). Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochim. Biophys. Acta. 1643(1–3):95–103. doi: 10.1016/j.bbamcr.2003.10.001
  • Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G. and Jean, J. (2013). Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. Int. Dairy J. 28(2):94–101. doi: 10.1016/j.idairyj.2012.09.003
  • Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R. D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India. 52(OCT):794–804.
  • Di Pierro, G., O'Keeffe, M. B., Poyarkov, A., Lomolino, G. and Fitzgerald, R. J. (2014). Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chem. 156:305–311.doi: 10.1016/j.foodchem.2014.01.080
  • Díaz, M. and Decker, E. A. (2004). Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J. Agric. Food. Chem. 52(26):8208–8213. doi: 10.1021/jf048869e
  • Dionysius, D. A. and Milne, J. M. (1997). Antibacterial peptides of bovine lactoferrin: Purification and characterization. J. Dairy Sci. 80(4):667–674. doi: 10.3168/jds.S0022-0302(97)75985-X
  • Dziuba, B. and Dziuba, M. (2014). New milk protein-derived peptides with potential antimicrobial activity: An approach based on bioinformatic studies. Int. J. Mol. Sci. 15(8):14531–14545. doi: 10.3390/ijms150814531
  • Elbarbary, H. A., Abdou, A. M., Nakamura, Y., Park, E. Y., Mohamed, H. A. and Sato, K. (2012). Identification of novel antibacterial peptides isolated from a commercially available casein hydrolysate by autofocusing technique. Bio Factors. 38(4):309–315. doi: 10.1002/biof.1023
  • Elfahri, K. R., Vasiljevic, T., Yeager, T. and Donkor, O. N. (2016). Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. J. Dairy Sci. 99(1):31–40. doi: 10.3168/jds.2015-10160
  • Elias, R. J., Kellerby, S. S. and Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 48(5):430–441. doi: 10.1080/10408390701425615
  • Ellegård, K. H., Gammelgård-Larsen, C., Sørensen, E. S. and Fedosov, S. (1999). Process scale chromatographic isolation, characterization and identification of tryptic bioactive casein phosphopeptides. Int. Dairy J. 9(9):639–652. doi: 10.1016/S0958-6946(99)00135-1
  • Faist, V., Drusch, S., Kiesner, C., Elmadfa, I. and Erbersdobler, H. F. (2000). Determination of lysinoalanine in foods containing milk protein by high-performance chromatography after derivatisation with dansyl chloride. Int. Dairy J. 10(5–6):339–346. doi: 10.1016/S0958-6946(00)00075-3
  • Farvin, K. H. S., Baron, C. P., Nielsen, N. S., Otte, J. and Jacobsen, C. (2010). Antioxidant activity of yoghurt peptides: Part 2–Characterisation of peptide fractions. Food Chem. 123(4):1090–1097. doi: 10.1016/j.foodchem.2010.05.029
  • Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trindade, M. A. and Netto, F. M. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll. 24(4):336–340. doi: 10.1016/j.foodhyd.2009.10.012
  • FitzGerald, R. J. (1998). Potential uses of caseinophosphopeptides. Int. Dairy J. 8(5–6):451–457. doi: 10.1016/S0958-6946(98)00068-5
  • Furukawa, T., Akutagawa, T., Funatani, H., Uchida, T., Hotta, Y., Niwa, M., and Takaya, Y. (2012). Cyclic dipeptides exhibit potency for scavenging radicals. Bioorg. Med. Chem. 20(6):2002–2009. doi: 10.1016/j.bmc.2012.01.050
  • Giangaspero, A., Sandri, L. and Tossi, A. (2001). Amphipathic α helical antimicrobial peptides: A systematic study of the effects of structural and physical properties on biological activity. Eur. J. Biochem. 268(21):5589–5600. doi: 10.1046/j.0014-2956.2001.02494.x
  • Gill, I., López-Fandiño, R., Jorba, X. and Vulfson, E. N. (1996). Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18(3):163–183. doi: 10.1016/0141-0229(95)00097-6
  • Hancock, R. E. W. and Rozek, A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 206(2):143–149. doi: 10.1016/S0378-1097(01)00480-3
  • Hancock, R. E. W. and Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24(12):1551–1557. doi: 10.1038/nbt1267
  • Hernández-Ledesma, B., Contreras, M. M. and Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci. 165(1):23–35. doi: 10.1016/j.cis.2010.11.001
  • Hernández-Ledesma, B., Dávalos, A., Bartolomé, B. and Amigo, L. (2005). Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulln. Identification of active peptides by HPLC-MS/MS. J. Agric. Food. Chem. 53(3):588–593. doi: 10.1021/jf048626m
  • Hogan, S., Zhang, L., Li, J., Wang, H. and Zhou, K. (2009). Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chem. 117(3):438–443. doi: 10.1016/j.foodchem.2009.04.040
  • Huang, D., Boxin, O. U. and Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53(6):1841–1856. doi: 10.1021/jf030723c
  • Ibraheem, D., Elaissari, A. and Fessi, H. (2014). Administration strategies for proteins and peptides. Int. J. Pharm. 477(1–2):578–589. doi: 10.1016/j.ijpharm.2014.10.059
  • Ji, N., Sun, C., Zhao, Y., Xiong, L. and Sun, Q. (2014). Purification and identification of antioxidant peptides from peanut protein isolate hydrolysates using UHR-Q-TOF mass spectrometer. Food Chem. 161:148–154.doi: 10.1016/j.foodchem.2014.04.010
  • Johansen, J. S., Harris, A. K., Rychly, D. J. and Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc. Diabetol. 4:5–15. doi: 10.1186/1475-2840-4-5
  • Jones, F. S., Simms, H. S. and Maaroufi, A. (1930). The bacterial growth inhibitor (lactenin) of milk: I. The preparation in concentrated form. J. Exp. Med. 51(2):327–339.
  • Juillard, V., Laan, H., Kunji, E. R. S., Jeronimus-Stratingh, C. M., Bruins, A. P. and Konings, W. N. (1995). The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. J. Bacteriol. 177(12):3472–3478.
  • Jun, S. Y., Park, P. J., Jung, W. K. and Kim, S. K. (2004). Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219(1):20–26. doi: 10.1007/s00217-004-0882-9
  • Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergéres, G., Portmann, R. and Egger, L. (2012). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. J. Nutr. 142(2):245–250. doi: 10.3945/jn.111.148635
  • Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R. and Egger, L. (2014). Impact of milk processing on the generation of peptides during digestion. Int. Dairy J. 35(2):130–138. doi: 10.1016/j.idairyj.2013.10.012
  • Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. J. Funct. Foods. 1(2):177–187. doi: 10.1016/j.jff.2009.01.007
  • Korhonen, H. and Pihlanto, A. (2003). Food-derived bioactive peptides—Opportunities for designing future foods. Curr. Pharm. Des. 9(16):1297–1308. doi: 10.2174/1381612033454892
  • Korhonen, H. and Pihlanto, A. (2006). Bioactive peptides: production and functionality. Int. Dairy J. 16(9):945–960. doi: 10.1016/j.idairyj.2005.10.012
  • Korhonen, H. and Pihlanto, A. (2007). Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr. Pharm. Des. 13(8):829–843. doi: 10.2174/138161207780363112
  • Kudoh, Y., Matsuda, S., Igoshi, K. and Oki, T. (2001). Antioxidative peptide from milk fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953. J. Jpn Soc Food Sci. 48(1):44–50.
  • Kunji, E. R. S., Mierau, I., Poolman, B. and Konings, W. N. (1996). The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 70(2–4):187–221.
  • Lahov, E. and Regelson, W. (1996). Antibacterial and immunostimulating casein-derived substances from milk: Casecidin, isracidin peptides. Food Chem. Toxicol. 34(1):131–145. doi: 10.1016/0278-6915(95)00097-6
  • Lee, H. J. (2002). Protein drug oral delivery: The recent progress. Arch. Pharmacol. Res. 25(5):572–584. doi: 10.1007/BF02976925
  • Lee, K. D., Lo, C. G. and Warthesen, J. J. (1996). Removal of bitterness from the bitter peptides extracted from Cheddar cheese with peptidases from Lactococcus lactis ssp. cremoris SK11. J. Dairy Sci. 79(9):1521–1528. doi: 10.3168/jds.S0022-0302(96)76512-8
  • Li, Y. W., Li, B., He, J. and Qian, P. (2011). Quantitative structure–activity relationship study of antioxidative peptide by using different sets of amino acids descriptors. J. Mol. Struct. 998(1–3):53–61. doi: 10.1016/j.molstruc.2011.05.011
  • López-Expósito, I., Amigo, L. and Recio, I. (2008). Identification of the initial binding sites of αS2-casein f(183–207) and effect on bacterial membranes and cell morphology. Biochim. Biophys. Acta Biomembr. 1778(10):2444–2449. doi: 10.1016/j.bbamem.2008.06.018
  • López-Expósito, I., Gómez-Ruiz, J. A., Amigo, L. and Recio, I. (2006a). Identification of antibacterial peptides from ovine αS2-casein. Int. Dairy J. 16(9):1072–1080. doi: 10.1016/j.idairyj.2005.10.006
  • López-Expósito, I., Minervini, F., Amigo, L. and Recio, I. (2006b). Identification of antibacterial peptides from bovine κ-casein. J. Food Prot. 69(12):2992–2997.
  • López-Expósito, I., Quirós, A., Amigo, L. and Recio, I. (2007). Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Lait. 87(4–5):241–249. doi: 10.1051/lait:2007019
  • López-Fandiño, R., Otte, J. and van Camp, J. (2006). Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy J. 16(11):1277–1293. doi: 10.1016/j.idairyj.2006.06.004
  • Maehashi, K., Matano, M., Wang, H., Vo, L. A., Yamamoto, Y. and Huang, L. (2008). Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochem. Biophys. Res. Commun. 365(4):851–855. doi: 10.1016/j.bbrc.2007.11.070
  • Malkoski, M., Dashper, S. G., O'Brien-Simpson, N. M., Talbo, G. H., Macris, M., Cross, K. J. and Reynolds, E. C. (2001). Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob. Agents Chemother. 45(8):2309–2315. doi: 10.1128/AAC.45.8.2309-2315.2001
  • McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H. and Coventry, M. J. (2005). Isolation and characterisation of antibacterial peptides derived from the f(164–207) region of bovine αS2-casein. Int. Dairy J. 15(2):133–143. doi: 10.1016/j.idairyj.2004.06.008
  • Mehra, T., Köberle, M., Braunsdorf, C., Mailänder-Sanchez, D., Borelli, C. and Schaller, M. (2012). Alternative approaches to antifungal therapies. Exp. Dermatol. 21(10):778–782. doi: 10.1111/exd.12004
  • Meisel, H. and FitzGerald, R. J. (2003). Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9(16):1289–1295.
  • Mellander, O. (1950). The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta Soc. Med. Ups. 55(5–6):247–255.
  • Mendanha, D. V., Ortiz, S. E. M., Favaro-Trindade, C. S., Mauri, A., Monterrey-Quintero, E. S. and Thomazini, M. (2009). Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res. Int. 42(8):1099–1104. doi: 10.1016/j.foodres.2009.05.007
  • Mielnik, M. B., Aaby, K. and Skrede, G. (2003). Commercial antioxidants control lipid oxidation in mechanically deboned turkey meat. Meat Sci. 65(3):1147–1155. doi: 10.1016/S0309-1740(02)00345-5
  • Mills, S., Ross, R. P., Hill, C., Fitzgerald, G. F. and Stanton, C. (2011). Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 21(6):377–401. doi: 10.1016/j.idairyj.2010.12.011
  • Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M. and Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int. 91(4):965–980.
  • Neklyudov, A. D., Ivankin, A. N. and Berdutina, A. V. (2000). Production and purification of protein hydrolysates (review). Appl. Biochem. Microbiol. 36(4):317–324. doi: 10.1007/BF02738038
  • Ney, K. H. (1971). Prediction of bitterness of peptides from their amino acid composition. Z. Lebensm. Unters. Forsch. 147(2):64–68. doi: 10.1007/BF01879606
  • Nguyen, L. T., Haney, E. F. and Vogel, H. J. (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29(9):464–472. doi: 10.1016/j.tibtech.2011.05.001
  • Oren, Z., Hong, J. and Shai, Y. (1997). A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. J. Biol. Chem. 272(23):14643–14649. doi: 10.1074/jbc.272.23.14643
  • Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J. and McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 83:60–73.doi: 10.1016/j.foodres.2016.02.018
  • Pathak, N., Salas-Auvert, R., Ruche, G., Janna, M. H., McCarthy, D. and Harrison, R. G. (1995). Comparison of the effects of hydrophobicity, amphiphilicity, and α-helicity on the activities of antimicrobial peptides. Proteins: Struct. Funct. Genet. 22(2):182–186. doi: 10.1002/prot.340220210
  • Pellegrini, A., Dettling, C., Thomas, U. and Hunziker, P. (2001). Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin. Biochim. Biophys. Acta, Gen. Subj. 1526(2):131–140. doi: 10.1016/S0304-4165(01)00116-7
  • Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P. and Von Fellenberg, R. (1999). Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochim. Biophys. Acta Gen. Subj. 1426(3):439–448. doi: 10.1016/S0304-4165(98)00165-2
  • Peng, X., Kong, B., Xia, X. and Liu, Q. (2010). Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. Int. Dairy J. 20(5):360–365. doi: 10.1016/j.idairyj.2009.11.019
  • Peng, X., Xiong, Y. L. and Kong, B. (2009). Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem. 113(1):196–201. doi: 10.1016/j.foodchem.2008.07.068
  • Pescuma, M., Hébert, E. M., Haertlé, T., Chobert, J. M., Mozzi, F. and Font De Valdez, G. (2015). Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin. Food Chem. 170:407–414.doi: 10.1016/j.foodchem.2014.08.086
  • Phanturat, P., Benjakul, S., Visessanguan, W. and Roytrakul, S. (2010). Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT–Food Sci. Technol. 43(1):86–97. doi: 10.1016/j.lwt.2009.06.010
  • Pichereau, C. and Allary, C. (2005). Therapeutic peptides under the spotlight. EBR Eur. Biopharm. Rev. (WINTER):88–93.
  • Pihlanto-Leppälä, A. (2000). Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 11(9–10):347–356. doi: 10.1016/S0924-2244(01)00003-6
  • Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. Int. Dairy J. 16(11):1306–1314. doi: 10.1016/j.idairyj.2006.06.005
  • Qian, B., Xing, M., Cui, L., Deng, Y., Xu, Y., Huang, M. and Zhang, S. (2011). Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J. Dairy Res. 78(1):72–79.
  • Rahaman, T., Vasiljevic, T. and Ramchandran, L. (2016). Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 49:24–34.doi: 10.1016/j.tifs.2016.01.001
  • Rahimi, R., Nikfar, S., Larijani, B. and Abdollahi, M. (2005). A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother. 59(7):365–373. doi: 10.1016/j.biopha.2005.07.002
  • Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y. and Kim, S. K. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38(2):175–182. doi: 10.1016/j.foodres.2004.10.002
  • Ranathunga, S., Rajapakse, N. and Kim, S. K. (2006). Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur. Food Res. Technol. 222(3–4):310–315. doi: 10.1007/s00217-005-0079-x
  • Recio, I. and Visser, S. (1999a). Identification of two distinct antibacterial domains within the sequence of bovine αs2-casein. Biochim. Biophys. Acta Gen. Subj. 1428(2–3):314–326. doi: 10.1016/S0304-4165(99)00079-3
  • Recio, I. and Visser, S. (1999b). Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane. J. Chromatogr. A. 831(2):191–201. doi: 10.1016/S0021-9673(98)00950-9
  • Reddi, S., Kapila, R., Dang, A. K. and Kapila, S. (2012). Evaluation of allergenic response of milk bioactive peptides using mouse mast cell. Milchwissenschaft. 67(2):189–191.
  • Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y. and Xue, S. J. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108(2):727–736. doi: 10.1016/j.foodchem.2007.11.010
  • Rival, S. G., Boeriu, C. G. and Wichers, H. J. (2001). Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food. Chem. 49(1):295–302. doi: 10.1021/jf0003911
  • Rizzello, C. G., Losito, I., Gobbetti, M., Carbonara, T., De Bari, M. D. and Zambonin, P. G. (2005). Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J. Dairy Sci. 88(7):2348–2360.
  • Saadi, S., Saari, N., Anwar, F., Hamid, A. A. and Ghazali, H. M. (2015). Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnol. Adv. 33(1):80–116. doi: 10.1016/j.biotechadv.2014.12.003
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2014). Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 156:264–270. doi: 10.1016/j.foodchem.2014.01.105
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2015a). Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel. J. Dairy Sci. 98(9):5905–5916. doi: 10.3168/jds.2015-9450
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2015b). Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: A critical review. Compr. Rev. Food Sci. Food Saf. 14(2):123–138. doi: 10.1111/1541-4337.12126
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2016a). Antibacterial and antiproliferative peptides in synbiotic yogurt–Release and stability during refrigerated storage. J. Dairy Sci. 99(6):4233–4242. doi: 10.3168/jds.2015-10499
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2016b). Effect of pineapple waste powder on probiotic growth, antioxidant and antimutagenic activities of yogurt. J Food Sci Technol. 53(3):1698–1708. doi: 10.1007/s13197-015-2100-0
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2016c). Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT–Food Sci. Technol. 65:978–986.doi: 10.1016/j.lwt.2015.09.027
  • Sah, B. N. P., Vasiljevic, T., McKechnie, S. and Donkor, O. N. (2016d). Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells. Int. Dairy J. 63:99–106. doi: 10.1016/j.idairyj.2016.08.003
  • Saha, B. C. and Hayashi, K. (2001). Debittering of protein hydrolyzates. Biotechnol. Adv. 19(5):355–370. doi: 10.1016/S0734-9750(01)00070-2
  • Sakanaka, S., Tachibana, Y., Ishihara, N. and Juneja, L. R. (2005). Antioxidant properties of casein calcium peptides and their effects on lipid oxidation in beef homogenates. J. Agric. Food. Chem. 53(2):464–468.
  • Sarmadi, B. H. and Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides. 31(10):1949–1956. doi: 10.1016/j.peptides.2010.06.020
  • Sedaghati, M., Ezzatpanah, H., Boojar, M. M. A., Ebrahimi, M. T. and Aminafshar, M. (2014). Plasmin digest of κ-casein as a source of antibacterial peptides. J. Dairy Res. 81(2):245–251. doi: 10.1017/S0022029914000120
  • Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D. and Hernandez-Escalante, V. M. (2011). Bioavailability of bioactive peptides. Food Rev. Int. 27(3):213–226. doi: 10.1080/87559129.2011.563395
  • Sharma, N. (2014). Free radicals, antioxidants and disease. Biol. Med. 6(3):doi: 10.4172/0974-8369.1000214
  • Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H. and Bielikowicz, K. (2009). Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19(4):252–257. doi: 10.1016/j.idairyj.2008.10.007
  • Srigiridhar, K., Nair, K. M., Subramanian, R. and Singotamu, L. (2001). Oral repletion of iron induces free radical mediated alterations in the gastrointestinal tract of rat. Mol. Cell. Biochem. 219(1–2):91–98. doi: 10.1023/A:1011023111048
  • Su, R., Qi, W., He, Z., Yuan, S. and Zhang, Y. (2007). Pancreatic hydrolysis of bovine casein: Identification and release kinetics of phosphopeptides. Food Chem. 104(1):276–286. doi: 10.1016/j.foodchem.2006.11.039
  • Suetsuna, K., Ukeda, H. and Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11(3):128–131. doi: 10.1016/S0955-2863(99)00083-2
  • Sun, J., He, H. and Bi, J. X. (2004). Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. J. Agric. Food. Chem. 52(21):6646–6652. doi: 10.1021/jf0495136
  • Tang, W., Yuan, H., Zhang, H., Wang, L., Qian, H. and Qi, X. (2015). An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method. Food Control. 50:413–422.doi: 10.1016/j.foodcont.2014.09.030
  • Tekiner-Gulbas, B., Westwell, A. D. and Suzen, S. (2013). Oxidative stress in carcinogenesis: New synthetic compounds with dual effects upon free radicals and cancer. Curr. Med. Chem. 20(36):4451–4459. doi: 10.2174/09298673113203690142
  • van Aardt, M., Duncan, S. E., Long, T. E., O'Keefe, S. F., Marcy, J. E. and Sims, S. R. (2004). Effect of antioxidants on oxidative stability of edible fats and oils: Thermogravimetric analysis. J. Agric. Food. Chem. 52(3):587–591. doi: 10.1021/jf030304f
  • Viljanen, K., Kivikari, R. and Heinonen, M. (2004). Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. J. Agric. Food. Chem. 52(5):1104–1111. doi: 10.1021/jf034785e
  • Vizioli, J. and Salzet, M. (2002). Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. 23(11):494–495. doi: 10.1016/S0165-6147(02)02105-3
  • Xie, N., Wang, C., Ao, J. and Li, B. (2013). Non-gastrointestinal-hydrolysis enhances bioavailability and antioxidant efficacy of casein as compared with its in vitro gastrointestinal digest. Food Res. Int. 51(1):114–122. doi: 10.1016/j.foodres.2012.12.001
  • Yamauchi, K., Tomita, M., Giehl, T. J., and Ellison III, R. T. (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61(2):719–728.
  • Yeaman, M. R. and Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55(1):27–55. doi: 10.1124/pr.55.1.2
  • Zucht, H. D., Raida, M., Adermann, K., Mägert, H. J. and Forssmann, W. G. (1995). Casocidin-I: a casein-αs2 derived peptide exhibits antibacterial activity. FEBS Lett. 372(2–3):185–188. doi: 10.1016/0014-5793(95)00974-E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.