2,954
Views
140
CrossRef citations to date
0
Altmetric
Articles

Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review

&

References

  • Aburto, J., Thiebaud, S., Alric, I., Borredon, E., Bikiaris, D., Prinos, J. and Panayiotou, C. (1997). Properties of octanoated starch and its blends with polyethylene. Carbohydr. Polym. 34(1):101–112.
  • Ai, Y. (2013). Structures, Properties, and Digestibility of Resistant Starch. Ph.D. thesis, Iowa State University.
  • Alexander, L. E. (1969). X-Ray Diffraction Methods in Polymer Science. New York: Wiley-Interscience.
  • Arcila, J. A. and Rose, D. J. (2015). Repeated cooking and freezing of whole wheat flour increases resistant starch with beneficial impacts on in vitro fecal fermentation properties. J. Funct. Foods 12:230–236.
  • Ashwar, B. A., Gani, A., Shah, A., Wani, I. A. and Masoodi, F. A. (2015). Preparation, health benefits and applications of resistant starch–A review. Starch - Stärke 9(2):555–559.
  • Atichokudomchai, N., Varavinit, S. and Chinachoti, P. (2004). A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr. Polym. 58(4):383–389.
  • Baghurst, P. A., Baghurst, K. and Record, S. (1996). Dietary fibre, non-starch polysaccharides and resistant starch: A review. Food Australia 48(3):S3–S35.
  • Baik, M. Y., Dickinson, L. C. and Chinachoti, P. (2003). Solid-state 13C CP/MAS NMR studies on aging of starch in white bread. J. Agric. Food Chem. 51(5):1242–1248.
  • Bednar, G. E., Patil, A. R., Murray, S. M., Grieshop, C. M., Merchen, N. R. and Fahey, G. C. (2001). Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 131(2):276–286.
  • Behall, K. M., Scholfield, D. J. and Canary, J. (1988). Effect of starch structure on glucose and insulin responses in adults. Am. J. Clin. Nutr. 47(3):428–432.
  • Biliaderis, C. G. (1983). Differential scanning calorimetry in food research–A review. Food Chem. 10(4):239–265.
  • Blazek, J. and Gilbert, E. P. (2010). Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11(12):3275–3289.
  • Blazek, J. and Gilbert, E. P. (2011). Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr. Polym. 85(2):281–293.
  • Buléon, A., Colonna, P., Planchot, V. and Ball, S. (1998). Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 23(2):85–112.
  • Cairns, P., Morris, V., Botham, R. and Ring, S. (1996). Physicochemical studies on resistant tarch in vitro and in vivo. J. Cereal Sci. 23(3):265–275.
  • Cairns, P., Sun, L., Morris, V. and Ring, S. (1995). Physicochemical studies using amylose as an in vitro model for resistant starch. J. Cereal Sci. 21(1):37–47.
  • Cai, L., Shi, Y. C., Rong, L. and Hsiao, B. S. (2010). Debranching and crystallization of waxy maize starch in relation to enzyme digestibility. Carbohydr. Polym. 81(2):385–393.
  • Cameron, R. and Donald, A. (1992). Small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer 33(12):2628–2635.
  • Cao, J., Billows, C. A., Cao, J. and Billows, C. A. (1999). Crystallinity determination of native and stretched wool by X-ray diffraction. Polymer Int. 48(48):1027–1033.
  • Capron, I., Robert, P., Colonna, P., Brogly, M. and Planchot, V. (2007). Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydr. Polym. 68(2):249–259.
  • Chang, J. L. and Moon, T. W. (2015). Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch. Carbohydr. Polym. 125:200–205.
  • Chanvrier, H., Uthayakumaran, S., Appelqvist, I. A., Gidley, M. J., Gilbert, E. P. and López-Rubio, A. (2007). Influence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches. J. Agric. Food Chem. 55(24):9883–9890.
  • Charalampopoulos, D., Wang, R., Pandiella, S. and Webb, C. (2002). Application of cereals and cereal components in functional foods: A review. Int. J. Food Microbiol. 79(1):131–141.
  • Chatel, S., Voirin, A. and Artaud, J. (1997). Starch identification and determination in sweetened fruit preparations. 2. Optimization of dialysis and gelatinization steps, infrared identification of starch chemical modifications. J. Agric. Food Chem. 45(2):425–430.
  • Cheetham, N. W. and Tao, L. (1998). Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 36(4):277–284.
  • Chiu, C. W., Henley, M. and Altieri, P. (1994). Process for making amylase resistant starch from high amylose starch. US Patent 5281276.
  • Cooke, D. and Gidley, M. J. (1992). Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition. Carbohydr. Res. 227(0):103–112.
  • Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A. and Englyst, H. N. (1996). Digestion and physiological properties of resistant starch in the human large bowel. Br. J. Nutr. 75(5):733–747.
  • Cummings, J. H. and Englyst, H. N. (1991). Measurement of starch fermentation in the human large intestine. Can. J. Physiol. Pharmacol. 69(1):121–129.
  • DeVries, J. W. (2004). Dietary fiber: The influence of definition on analysis and regulation. J. AOAC Int. 87(3):682–706.
  • Dongowski, G., Jacobasch, G. and Schmiedl, D. (2005). Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. J. Agric. Food Chem. 53(23):9257–9267.
  • Eerlingen, R. C., Crombez, M. and Delcour, J. A. (1993a). Enzyme-Resistant starch. I. Quantitative and qualitative influence of incubation-time and temperature of autoclaved starch on resistant starch formation. Cereal Chem. 70(3):339–344.
  • Eerlingen, R.C, Deceuninck, M. and Delcour, J. A. (1993b). Enzyme-Resistant starch. II. Influence of amylose chain length on resistant starch formation. Cereal Chem. 70(3):345–350.
  • Englyst, H. N. and Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. Am. J. Clin. Nutr. 44(1):42–50.
  • Englyst, H. N. and Cummings, J. H. (1987). Resistant starch, a new food component: A classification of starch for nutritional purposes. In: Cereals in a European Context. First European Conference on Food Science and Technology, pp. 221–233. Morton, I. D. (Ed.). Chichester: Ellis Horwood.
  • Englyst, H. N., Kingman, S. and Cummings, J. (1992). Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46:S33–S50.
  • Faisant, N., Champ, M., Colonna, P., Buleon, A., Molis, C., Langkilde, A., Schweizer, T., Flourie, B. and Galmiche, J. (1993). Structural features of resistant starch at the end of the human small intestine. Eur. J. Clin. Nutr. 47(4):285–296.
  • Fan, D., Ma, W., Wang, L., Huang, J., Zhang, F., Zhao, J., Zhang, H. and Chen, W. (2013). Determining the effects of microwave heating on the ordered structures of rice starch by NMR. Carbohydr. Polym. 92(2):1395–1401.
  • Faraj, A., Vasanthan, T. and Hoover, R. (2004). The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Res. Int. 37(5):517–525.
  • Ferguson, L. R., Tasman-Jones, C., Englyst, H. and Harris, P. J. (2000). Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Nutr. Cancer 36(2):230–237.
  • Flores-Morales, A., Jiménez-Estrada, M. and Mora-Escobedo, R. (2012). Determination of the structural changes by FT-IR, Raman, and CP/MAS 13 C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 87(1):61–68.
  • Fuentes-Zaragoza, E., Sánchez-Zapata, E., Sendra, E., Sayas, E., Navarro, C., Fernández-López, J. and Pérez-Alvarez, J. A. (2011). Resistant starch as prebiotic: A review. Starch-Stärke 63(7):406–415.
  • Gallant, D. J., Bouchet, B. and Baldwin, P. M. (1997). Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 32(97):177–191.
  • García-Rosas, M., Bello-Pérez, A., Yee-Madeira, H., Ramos, G., Flores-Morales, A. and Mora-Escobedo, R. (2009). Resistant starch content and structural changes in maize (zea mays) tortillas during storage. Starch - Stärke 61(7):414–421.
  • Gidley, M. J. (1987). Factors affecting the crystalline type (A–C) of native starches and model compounds: A rationalisation of observed effects in terms of polymorphic structures. Carbohydr. Res. 161(2):301–304.
  • Gidley, M. J. and Bociek, S. M. (1985). Molecular organization in starches: A carbon 13 CP/MAS NMR study. J. Am. Chem. Soc. 107(24):7040–7044.
  • Gidley, M. J. and Bociek, S. M. (1988). Carbon-13 CP/MAS NMR studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: Relationships between glycosidic linkage conformation and solid-state carbon-13 chemical shifts. J. Am. Chem. Soc. 110(12):3820–3829.
  • Gidley, M., Cooke, D., Darke, A., Hoffmann, R., Russell, A. and Greenwell, P. (1995). Molecular order and structure in enzyme-resistant retrograded starch. Carbohydr. Polym. 28(1):23–31.
  • Godet, M. C., Bizot, H. and Buléon, A. (1995). Crystallization of amylose–Fatty acid complexes prepared with different amylose chain lengths. Carbohydr. Polym. 27(1):47–52.
  • González-Soto, R., Mora-Escobedo, R., Hernández-Sánchez, H., Sanchez-Rivera, M. and Bello-Pérez, L. (2007). The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. Food Res. Int. 40(2):304–310.
  • Goodfellow, B. J. and Wilson, R. H. (1990). A Fourier transform IR study of the gelation of amylose and amylopectin. Biopolymers 30(13–14):1183–1189.
  • Han, X.-Z., Ao, Z., Janaswamy, S., Jane, J.-L., Chandrasekaran, R. and Hamaker, B. R. (2006). Development of a low glycemic maize starch: Preparation and characterization. Biomacromolecules 7(4):1162–1168.
  • Hanashiro, I., Abe, J. I. and Hizukuri, S. (1996). A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr. Res. 283(10):151–159.
  • Han, S. H., Seog-Won, L. and Chul, R. (2009). Effect of heat treatment of digestion-resistant fraction from soybean on retarding of bile acid transport in vitro. Nutrition Research & Practice 3(2):149–155.
  • Haralampu, S. (2000). Resistant starch–A review of the physical properties and biological impact of RS 3. Carbohydr. Polym. 41(3):285–292.
  • Haralampu, S. G. (2001). In: Advanced dietary fibre technology Mccleary, pp. 413–201. Prosky, B. V., L. (Ed.). Oxford: Blackwell Science.
  • Hasjim, J. and Jane, J.-L. (2009). Production of resistant starch by extrusion cooking of acid-modified normal-maize starch. J. Food Sci. 74(7):C556–C562.
  • Hizukuri, S. H., Takeda, Y., Abe, J., Hanashiro, I., Matsunobu, G. and Kiyota, H. (1997). Analytical developments: Molecular and microstructural characterization. In: Starch: Structure and Functionality. pp. 121. Frazier, P. J., Richmond, P., and Donal, A. M. (Eds.). London: Royal Society of Chemistry.
  • Homayouni, A., Amini, A., Keshtiban, A. K., Mortazavian, A. M., Esazadeh, K. and Pourmoradian, S. (2014). Resistant starch in food industry: A changing outlook for consumer and producer. Starch - Starke 6(1–2):102–114.
  • Hoover, R. and Zhou, Y. (2003). In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes–A review. Carbohydr. Polym. 54(4):401–417.
  • Hospers, J. J., Amelsvoort, J. M. M. V. and Weststrate, J. A. (1994). Amylose-to-amylopectin ratio in pastas affects postprandial glucose and insulin responses and satiety in males. J. Food Sci. 59(5):1144–1149.
  • Htoon, A., Shrestha, A., Flanagan, B., Lopez-Rubio, A., Bird, A., Gilbert, E. and Gidley, M. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydr. Polym. 75(2):236–245.
  • Hu, G. F. (1995). Fluorophore-assisted carbohydrate electrophoresis technology and applications. J. Chromatogr. A 705(1):89–103.
  • Jane, J.-L. (2004). In: Chemical and Functional Properties of Food Saccharides, pp. 81–101. Tomasik, P. (Ed.). New York: CRC Press.
  • Jane, J.-L. (2006). Current understanding on starch granule structures. J. Appl. Glycosci. 53(3):205–213.
  • Jane, J.-L. (2007). Structure of starch granules. J. Appl. Glycosci. 54(1):31–36.
  • Jane, J., Chen, Y. Y., Lee, L. F., Mcpherson, A. E., Wong, K. S., Radosavljevic, M. and Kasemsuwan, T. (1999). Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 76(5):629–637.
  • Jiang, H., Campbell, M., Blanco, M. and Jane, J.-L. (2010a). Characterization of maize amylose-extender (ae) mutant starches: Part II. Structures and properties of starch residues remaining after enzymatic hydrolysis at boiling-water temperature. Carbohydr. Polym. 80(1):1–12.
  • Jiang, H., Horner, H. T., Pepper, T. M., Blanco, M., Campbell, M. and Jane, J.-L. (2010b). Formation of elongated starch granules in high-amylose maize. Carbohydr. Polym. 80(2):533–538.
  • Jiang, H., Lio, J., Blanco, M., Campbell, M. and Jane, J.-L. (2010c). Resistant-starch formation in high-amylose maize starch during kernel development. J. Agric. Food Chem. 58(13):8043–8047.
  • Karim, A. A., Norziah, M. and Seow, C. (2000). Methods for the study of starch retrogradation. Food chem. 71(1):9–36.
  • Kim, N. H., Kim, J. H., Lee, S., Lee, H., Yoon, J. W., Wang, R. and Yoo, S. H. (2010). Combined effect of autoclaving-cooling and cross-linking treatments of normal corn starch on the resistant starch formation and physicochemical properties. Starch-Stärke 62(7):358–363.
  • Lehmann, U., Jacobasch, G. and Schmiedl, D. (2002). Characterization of resistant starch type III from banana (Musa acuminata). J. Agric. Food Chem. 50(18):5236–5240.
  • Lesmes, U., Beards, E. J., Gibson, G. R., Tuohy, K. M. and Shimoni, E. (2008). Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J. Agric. Food Chem. 56(13):5415–5421.
  • Leszczyñski, W. (2004). Resistant starch–Classification, structure, production. Pol. J. Food Nutr. Sci. 13(54):37–50.
  • Lopez, H. W., Coudray, C., Bellanger, J., Levrat-Verny, M. A., Demigne, C., Rayssiguier, Y. and Remesy, C. (2000). Resistant starch improves mineral assimilation in rats adapted to a wheat bran diet. Nutr. Res. 20(1):141–155.
  • Lopez-Rubio, A., Flanagan, B. M., Gilbert, E. P. and Gidley, M. J. (2008a). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 89(9):761–768.
  • Lopez-Rubio, A., Flanagan, B. M., Shrestha, A. K., Gidley, M. J. and Gilbert, E. P. (2008b). Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules 9(7):1951–1958.
  • Lopez-Rubio, A. and Gilbert, E. P. (2010). Neutron scattering: A natural tool for food science and technology research. Trends Food Sci. Technol. 20(11–12):576–586.
  • Lopez-Rubio, A., Htoon, A. and Gilbert, E. P. (2007). Influence of extrusion and digestion on the nanostructure of high-amylose maize starch. Biomacromolecules 8(5):1564–1572.
  • Luckett, C. (2012). Effect of Enzymatic Treatments on the Physiochemical Properties of Different Corn Starches. MSc. thesis, University of Arkansas.
  • Lunn, J. and Buttriss, J. L. (2007). Carbohydrates and dietary fibre. Nutr. Bull. 32:21–64.
  • Lösel, D. and Claus, R. (2005). Dose-dependent effects of resistant potato starch in the diet on intestinal skatole formation and adipose tissue accumulation in the pig. J. Vet. Med. A 52(5):209–212.
  • Mahadevamma, S., Prashanth, K. H. and Tharanathan, R. (2003). Resistant starch derived from processed legumes–Purification and structural characterization. Carbohydr. Polym. 54(2):215–219.
  • Mangala, S. L., Malleshi, N. G. and Tharanathan, R. N. (1999b). Resistant starch from differently processed rice and ragi (finger millet). Eur. Food Res. Technol. 209(1):32–37.
  • Mangala, S., Ramesh, H., Udayasankar, K. and Tharanathan, R. (1999a). Resistant starch derived from processed ragi (finger millet, Eleusine coracana) flour: Structural characterization. Food chem. 64(4):475–479.
  • Mangala, S. L. and Tharanathan, R. N. (1999). Structural studies of resistant starch derived from processed (autoclaved) rice. Eur. Food Res. Technol. 209(1):38–42.
  • Miao, M., Jiang, B. and Zhang, T. (2009). Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydr. Polym. 76(2):214–221.
  • Morell, M. K., Konik-Rose, C., Ahmed, R., Li, Z. and Rahman, S. (2004). Synthesis of resistant starches in plants. J. AOAC Int. 87(3):740–748.
  • Morrison, W. R., Law, R. V. and Snape, C. E. (1993). Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches. J. Cereal Sci. 18(2):107–109.
  • Mutungi, C., Onyango, C., Doert, T., Paasch, S., Thiele, S., Machill, S., Jaros, D. and Rohm, H. (2011). Long- and short-range structural changes of recrystallised cassava starch subjected to in vitro digestion. Food Hydrocolloids 25(3):477–485.
  • Niba, L. L. (2002). Resistant starch: A potential functional food ingredient. Nutr. Food Sci. 32(2):62–67.
  • Nugent, A. P. (2005). Health properties of resistant starch. Nutr. Bull. 30(1):27–54.
  • Nunes, F. M., Lopes, E. S., Moreira, A. S. P., Simões, J., Coimbra, M. A. and Domingues, R. M. (2016). Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: A model study. Carbohydr. Polym. 141:253–262.
  • Ogawa, K., Yamazaki, I., Yoshimura, T., Ono, S., Rengakuji, S., Nakamura, Y. and Shimasaki, C. (1998). Studies on the retrogradation and structural properties of waxy corn starch. Bull. Chem. Soc. Jpn. 71(5):1095–1100.
  • Onyango, C., Bley, T., Jacob, A., Henle, T. and Rohm, H. (2006). Influence of incubation temperature and time on resistant starch type III formation from autoclaved and acid-hydrolysed cassava starch. Carbohydr. Polym. 66(4):494–499.
  • Paramahans, S. V. and Tharanathan, R. N. (1982). Scanning electron microscopy of enzyme digested varagu starch granules. Starch - Stärke 34(3):73–76.
  • Perera, A., Meda, V. and Tyler, R. (2010). Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int. 43(8):1959–1974.
  • Pikus, S. (2005). Small-angle X-ray scattering (SAXS) studies of the structure of starch and starch products. Fibres Text. East. Eur. 13(5):82–86.
  • Pohu, A., Putaux, J. L., Planchot, V., Buleon, A. and Colonna, P. (2004). Origin of the limited alpha-amylolysis of debranched maltodextrins crystallized in the A form: A TEM study on model substrates. Biomacromolecules 5(1):119–125.
  • Polesi, L. F. and Sarmento, S. B. S. (2011). Structural and physicochemical characterization of RS prepared using hydrolysis and heat treatments of chickpea starch. Starch-Stärke 63(4):226–235.
  • Raben, A., Andersen, K., Karberg, M. A., Holst, J. J. and Astrup, A. (1997). Acetylation of or beta-cyclodextrin addition to potato beneficial effect on glucose metabolism and appetite sensations. Am. J. Clin. Nutr. 66(2):304–314.
  • Raigond, P., Ezekiel, R. and Raigond, B. (2015). Resistant starch in food: A review. J. Sci. Food Agric. 95(10):1968–1978.
  • Reddy, C. K., Suriya, M. and Haripriya, S. (2013). Physico-chemical and functional properties of resistant starch prepared from red kidney beans (Phaseolus vulgaris. L) starch by enzymatic method. Carbohydr. Polym. 95(1):220–226.
  • Robertson, J. A., Monredon, F. D. D., Dysseler, P., Guillon, F., Amado, R. and Thibault, J. F. (2000). Hydration properties of dietary fibre and resistant starch: A European collaborative study. Lebensmittel-Wissenschaft und-Technologie 33(2):72–79.
  • Ruiz-Matute, A. I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M. L. and Martínez-Castro, I. (2010). Derivatization of carbohydrates for GC and GC-MS analyses. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 879(17–18):1226–1240.
  • Russell, P. L., Berry, C. S. and Greenwell, P. (1989). Characterisation of resistant starch from wheat and maize. J. Cereal Sci. 9(1):1–15.
  • Sajilata, M. G., Singhal, R. S. and Kulkarni, P. R. (2006). Resistant starch–A review. Compr. Rev. Food Sci. Food Saf. 5(1):1–17.
  • Samuels, R. J. (1970). X-ray diffraction methods in polymer science. In: Materials Science & Engineering, pp. 66, Alexander, L. E. (Ed.). New York: Wiley-Interscience.
  • Sang, Y. and Seib, P. A. (2006). Resistant starches from amylose mutants of corn by simultaneous heat-moisture treatment and phosphorylation. Carbohydr. Polym. 63(2):167–175.
  • Schmidt, P. W. (1991). Small-sngle scattering studies of disordered, porous and fractal systems. J. Appl. Crystallogr. 24(5):414–435.
  • Schmidt-Rohr, K. (2007). Simulation of small-angle scattering curves by numerical Fourier transformation. J. Appl. Crystallogr. 40(1):16–25.
  • Schmiedl, D., Bauerlein, M., Bengs, H. and Jacobasch, G. (2000). Production of heat-stable, butyrogenic resistant starch. Carbohydr. Polym. 43(2):183–193.
  • Schulz, A. G., Van Amelsvoort, J. M. and Beynen, A. C. (1993). Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. J. Nutr. 123(10):1724–1731.
  • Shamai, K., Shimoni, E. and Bianco-Peled, H. (2004). Small angle X-ray scattering of resistant starch type III. Biomacromolecules 5(1):219–223.
  • Sharma, A., Yadav, B. S. and Ritika (2008). Resistant starch: Physiological roles and food applications. Food Rev. Int. 24(2):193–234.
  • Shi, M. M. and Gao, Q. Y. (2011). Physicochemical properties, structure and in vitro digestion of resistant starch from waxy rice starch. Carbohydr. Polym. 84(3):1151–1157.
  • Shrestha, A. K., Blazek, J., Flanagan, B. M., Dhital, S., Larroque, O., Morell, M. K., Gilbert, E. P. and Gidley, M. J. (2015). Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches. Carbohydr. Polym. 118(118C):224–234.
  • Shukla, T. (1996). Enzyme-resistant starch: A new specialty food ingredient. Cereal Foods World, 40(11):882–883.
  • Sievert, D., Czuchajowska, Z. and Pomeranz, Y. (1991). Enzyme-resistant starch. III. X-ray diffraction of autoclaved amylomaize VII starch and enzyme-resistant starch residues. Cereal Chem. 68:86–91.
  • Sievert, D. and Pomeranz, Y. (1989). Enzyme-resistant starch. I. Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chem. 66(4):342–347.
  • Sievert, D. and Wursch, P. (1993). Thermal behavior of potato amylose and enzyme-resistant starch from maize. J. Appl. Phys. 75(3):66–72.
  • Siljeström, M., Eliasson, A. C. and Björck, I. (1989). Characterization of resistant starch from autoclaved wheat starch. Starch - Stärke 41(4):147–151.
  • Simsek, S. and El, S. N. (2012). Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Carbohydr. Polym. 90(3):1204–1209.
  • Soest, J. J. G. V., Tournois, H., Wit, D. D. and Vliegenthart, J. F. G. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 279(95):201–214.
  • Song, Y. and Jane, J. (2000). Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydr. Polym. 41(4):365–377.
  • Starr, C. M., Masada, R. I., Hague, C., Skop, E. and Klock, J. C. (1996). Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J. Chromatogr. A 720(1–2):295–321.
  • Suzuki, T., Chiba, A. and Yarno, T. (1997). Interpretation of small angle x-ray scattering from starch on the basis of fractals. Carbohydr. Polym. 34(4):357–363.
  • Tharanathan, M. and Tharanathan, R. (2001). Resistant starch in wheat-based products: Isolation and characterisation. J. Cereal Sci. 34(1):73–84.
  • Thérien, H. (2007). Study of hydration of cross-linked high amylose starch by solid state 13C NMR spectroscopy. Carbohydr. Res. 342(11):1525–1529.
  • Thompson, D. B. (2000). Strategies for the manufacture of resistant starch. Trends Food Sci. Technol. 11(7):245–253.
  • van Soest, J. J. G., De Wit, D., Tournois, H. and Vliegenthart, J. F. G. (1994). Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy. Starch - Stärke 46(12):453–457.
  • van Soest, J. J., Tournois, H., de Wit, D. and Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 279:201–214.
  • Wang, Z. G., Hsiao, B. S. and Murthy, N. S. (2007). Comparison of intensity profile analysis and correlation function methods for studying the lamellar structures of semi-crystalline polymers using small-angle X-ray scattering. J. Appl. Crystallogr. 33(3):690–694.
  • Wang, Y. J., Kozlowski, R. and Delgado, G. A. (2001). Enzyme resistant dextrins from high amylose corn mutant starches. Starch-Stärke 53(1):21–26.
  • Wang, J., Tang, X. J., Chen, P. S. and Huang, H. H. (2014). Changes in resistant starch from two banana cultivars during postharvest storage. Food chem. 156:319–325.
  • Weickert, M., Mohlig, M., Koebnick, C., Holst, J., Namsolleck, P., Ristow, M., Osterhoff, M., Rochlitz, H., Rudovich, N. and Spranger, J. (2005). Impact of cereal fibre on glucose-regulating factors. Diabetologia 48(11):2343–2353.
  • Williamson, G., Belshaw, N. J., Self, D. J., Noel, T. R., Ring, S. G., Cairns, P., Morris, V. J., Clark, S. A. and Parker, M. L. (1992). Hydrolysis of A-and B-type crystalline polymorphs of starch by α-amylase, β-amylase and glucoamylase 1. Carbohydr. Polym. 18(3):179–187.
  • Won, C. Y., Chu, C. C. and Yu, T. J. (1997). Synthesis of starch-based drug carrier for the control/release of estrone hormone. Carbohydr. Polym. 32(3):239–244.
  • Wu, A. C., Li, E. P. and Gilbert, R. G. (2014). Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr. Polym. 114(1):36–42.
  • Xie, X. and Liu, Q. (2004). Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch - Stärke 56(8):364–370.
  • Xie, X., Liu, Q. and Cui, S. W. (2006). Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Res. Int. 39(3):332–341.
  • Yang, Z., Gu, Q., Lam, E., Tian, F., Chaieb, S. and Hemar, Y. (2016). In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS. Food Hydrocolloids 56:58–61.
  • Yao, N., Paez, A. V. and White, P. J. (2009). Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles. J. Agric. Food Chem. 57(5):2040–2048.
  • Yin, H. L., Karim, A. A. and Norziah, M. H. (2007). Effect of pullulanase debranching of sago (Metroxylon sagu) starch at subgelatinization temperature on the yield of resistant starch. Starch - Stärke 59(1):21–32.
  • Yonekura, L. and Suzuki, H. (2005). Effects of dietary zinc levels, phytic acid and resistant starch on zinc bioavailability in rats. Eur. J. Nutr. 44(6):384–391.
  • Yuryev, V. P., Krivandin, A. V., Kiseleva, V. I., Wasserman, L. A., Genkina, N. K., Fornal, J., Blaszczak, W. and Schiraldi, A. (2004). Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydr. Res. 339(16):2683–2691.
  • Zabar, S., Shimoni, E. and Bianco-Peled, H. (2008). Development of nanostructure in resistant starch type III during thermal treatments and cycling. Macromol. Biosci. 8(2):163–170.
  • Zeng, S., Wu, X., Shan, L., Zeng, H., Xu, L., Yi, Z. and Zheng, B. (2015). Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chem. 186:213–222.
  • Zhang, J., Chen, F., Liu, F. and Wang, Z. W. (2010). Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocolloids 24(1):27–34.
  • Zhang, B., Chen, L., Xie, F., Li, X., Truss, R. W., Halley, P. J., Shamshina, J. L., Rogers, R. D. and Mcnally, T. (2015). Understanding the structural disorganization of starch in water-ionic liquid solutions. Phys. Chem. Chem. Phys. 17(21):13860–13871.
  • Zhang, Y., Zeng, H., Wang, Y., Zeng, S. and Zheng, B. (2014). Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food chem. 155:311–318.
  • Zhao, X. H. and Yang, L. (2009). Resistant starch prepared from high-amylose maize starch with citric acid hydrolysis and its simulated fermentation in vitro. Eur. Food Res. Technol. 228(6):1015–1021.
  • Zhou, Z., Cao, X. and Zhou, J. Y. (2013). Effect of resistant starch structure on short-chain fatty acids production by human gut microbiota fermentation in vitro. Starch - Stärke 65(5–6):509–516.
  • Zhou, Y., Meng, S., Chen, D., Zhu, X. and Yuan, H. (2014). Structure characterization and hypoglycemic effects of dual modified resistant starch from indica rice starch. Carbohydr. Polym. 103:81–86.
  • Zobel, H. (1988). Starch crystal transformations and their industrial importance. Starch-Stärke 40(1):1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.