566
Views
12
CrossRef citations to date
0
Altmetric
Articles

State of art of nanotechnology applications in the meat chain: A qualitative synthesis

ORCID Icon, , &

References

  • Abargues, R., Rodriguez-Canto, P. J., Albert, S., Suarez, I. and Martínez-Pastor, J. P. (2014). Plasmonic optical sensors printed from Ag–PVA nanoinks. J. Mater. Chem. C 2:908–915.
  • Abdalhai, M. H., Fernandes, A. M., Bashari, M., Ji, J., He, Q. and Sun, X. (2014). Rapid and Sensitive Detection of Foodborne Pathogenic Bacteria (Staphylococcus aureus) Using an Electrochemical DNA Genomic Biosensor and Its Application in Fresh Beef. J. Agric. Food Chem. 62:12659–12667.
  • Abdalhai, M. H., Fernandes, A. M., Xia, X., Musa, A., Ji, J. and Sun, X. (2015). Electrochemical genosensor to detect pathogenic bacteria (Escherichia coli O157:H7) as aplied in real food samples (Fresh beef) to improve food safety and quality control. J. Agric. Food Chem. 63:5017–5025.
  • Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C. and Subba Rao, A. (2015). Characterization of Zinc oxide NPs and their effect on growth of maize (Zea mays L.) plant. J. Plant Nutr. 38:1505–1515.
  • Ahmadi, F. (2012). Impact of Different Levels of Silver Nanoparticles (Ag-NPs) on Performance, Oxidative Enzymes and Blood Parameters in Broiler Chicks. Pak. Vet. J. 32:325–328.
  • Ahn, J. and Lim, H. B. (2014). Drop-Type Chemiluminescence (DCL) System and Sample Treatment Platform Using Magnetic Nanoparticles to Determine Enrofloxacin and Its Metabolite in a Chicken Meat. Food Anal. Methods 8:79–85.
  • Akbar, A. and Anal, A. K. (2014). Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95.
  • Ali, M. E., Hashim, U., Mustafa, S., Man, Y. B., Yusop, M. H. M., Kashif, M., et al. (2011a). Nanobiosensor for detection and quantification of DNA sequences in degraded mixed meats. J. Nanomater. 2011. Article ID 781098, 11 pages.
  • Ali, M. E., Hashim, U., Mustafa, S., Man, Y. B. C., Yusop, M. H. M., Bari, M. F., et al. (2011b). Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology 22(19):195503.
  • Ali, M. E., Hashim, U., Mustafa, S., Che Man, Y. B. and Islam, K. N. (2012a). Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J. Nanomater. 2012. Article ID 103607, 7 pgs.
  • Ali, M. E., Mustafa, S., Hashim, U., Man, Y. B. and Foo, K. L. (2012b). Nanobioprobe for the determination of pork adulteration in burger formulations. J. Nanomater. 2012. Article ID 832387, 7 pgs.
  • Ali, M. A., Eldin, T. a S., Moghazy, G. M. El, Tork, I. M. and Omara, I. I. (2014). Detection of E.coli O157: H7 in feed samples using gold nanoparticles sensor. Int. J. Curr. Microbiol. App. Sci. 3:697–708.
  • Amna, T., Yang, J., Ryu, K.-S. and Hwang, I. H. (2015). Electrospun antimicrobial hybrid mats: innovative packaging materia for meat and meat-products. J. Food Sci. Technol. 52:4600–4606.
  • ASTM. (2012). ASTM E2456 -06(2012) - Standard Terminology Relating to Nanotechnology. 14.
  • Babapoor, S., Neef, T., Mittelholzer, C., Girshick, T., Garmendia, A., Shang, H., et al. (2011). A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection. Influenza Res. Treat. 2011:126764, 1–12.
  • Baltić, Ž. M., Bošković, M., Ivanović, J., Dokmanović, M., Janjić, J., Lončina, J. and Baltić, T. (2013). Nanotechnology and its potential applications in meat industry. Tehcnol. Mesa 54:168–175.
  • Bystrzejewska-Piotrowska, G., Golimowski, J. and Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manag. 29:2587–2595.
  • Cao, S., Zhang, L., Chai, Y. and Yuan, R. (2013). An integrated sensing system for detection of cholesterol based on TiO2-graphene-Pt-Pd hybrid nanocomposites. Biosens.Bioelectron. 42:532–538.
  • Carroll, C., Booth, A. and Cooper, K. (2011). A worked example of “best fit” framework synthesis: a systematic review of views concerning the taking of some potential chemopreventive agents. BMC Med. Res. Methodol. 11:1–9.
  • Castillo-Garcia, M. L., Aguilar-Caballos, M. P. and Gomez-Hens, A. (2012). Application of Tb4O7 Nanoparticles for Lasalocid and Salicylate Determination in Food Analysis. J. Agric. Food Chem. 60:11741–11747.
  • Chantarasataporn, P., Tepkasikul, P., Kingcha, Y., Yoksan, R., Pichyangkura, R., Visessanguan, W. and Chirachanchai, S. (2014). Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chem. 159:463–470.
  • Chauke, N. and Siebrits, F. K. (2012). Evaluation of silver nanoparticles as a possible coccidiostat in broiler production. S. Afr. J. Anim. Sci. 42:493–497.
  • Cho, I.-H., Bhandari, P., Patel, P. and Irudayaraj, J. (2015). Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157: H7 in ground beef. Biosens.Bioelectron. 64:171–176.
  • Dang, M. C., Nguyen, D. S., Dang, T. M. D., Tedjini, S. and Fribourg-Blanc, E. (2014). Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition. Adv. Nat. Sci. Nanotechnol. 5:25012–25018.
  • Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S. M. and Dadashi, S. (2014). Thermal and antimicrobial properties of chitosan-nanocellulose films for extending shelf life of ground meat. Carbohydr. Polym. 109:148–154.
  • Dhawan, A. and Sharma, V. (2010). Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 398:589–605.
  • Domingos, R. F., Baalousha, M. A., Ju-Nam, Y., Reid, M. M., Tufenkji, N., Lead, J. R., et al. (2009). Characterizing manufactured nanoparticles in the environment: Multimethod determination of particle sizes. Environ. Sci. Technol. 43:7277–7284.
  • Dwivedi, A. D., Dubey, S. P., Sillanpaa, M., Kwon, Y. N., Lee, C. and Varma, R. S. (2015). Fate of engineered nanoparticles: Implications in the environment. Coord. Chem. Rev. 287:64–78.
  • EFSA. (2011). Scientific opinion on guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 9:2140–2176.
  • Elbarbary, A. M., El-Sawy, N. M. and Hegazy, E. S. A. (2015). Antioxidative properties of irradiated chitosan/vitamin C complex and their use as food additive for lipid storage. J. Appl. Polym. Sci. 132:1–8.
  • Fondevila, M., Herrer, R., Casallas, M. C., Abecia, L. and Ducha, J. J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Technol. 150:259–269.
  • Han, H., Kim, B., Lee, S. G. and Kim, J. (2013). An optimised method for the accurate determination of zeranol and diethylstilbestrol in animal tissues using isotope dilution-liquid chromatography/mass spectrometry. Food Chem. 140:44–51.
  • Herzallah, S. and Holley, R. (2015). Use of a nanoparticulate carboxymethyl cellulose film containing sinigrin as an antimicrobial precursor to kill Escherichia coli O157:H7 on fresh beef. Lett. Appl. Microbiol. 61:139–145.
  • ISO. (2015). ISO/TS 80004-1:2015 - Nanotechnologies.
  • Jang, S. I., Lillehoj, H. S., Lee, S. H., Lee, K. W., Lillehoj, E. P., Bertrand, F., et al. (2011a). Montanide IMS 1313 N VG PR nanoparticle adjuvant enhances antigen-specific immune responses to profilin following mucosal vaccination against Eimeria acervulina. Vet. Parasitol. 182:163–170.
  • Jang, S. I., Lillehoj, H. S., Lee, S. H., Lee, K. W., Lillehoj, E. P., Bertrand, F., et al. (2011b). Mucosal immunity against Eimeria acervulina infection in broiler chickens following oral immunization with profilin in MontanideTM adjuvants. Exp. Parasitol. 129:36–41.
  • Jayaseelan, C. and Rahuman, A. A. (2012). Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitol. Res. 111:1369–1378.
  • Jazayeri, S. D., Ideris, A., Zakaria, Z., Shameli, K., Moeini, H. and Omar, A. R. (2012). Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles. J. Control. Release 161:116–123.
  • Jiao, S., Jin, J. and Wang, L. (2015). One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sensors Actuators B Chem. 208:36–42.
  • Joe, M. M., Bradeeba, K., Parthasarathi, R., Sivakumaar, P. K., Chauhan, P. S., Tipayno, S., et al. (2012). Development of surfactin based nanoemulsion formulation from selected cooking oils: Evaluation for antimicrobial activity against selected food associated microorganisms. J. Taiwan Inst. Chem. Eng. 43:172–180.
  • Joyappa, D. H., Ashok Kumar, C., Banumathi, N., Reddy, G. R. and Suryanarayana, V. V. S. (2009). Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet. Microbiol. 139:58–66.
  • Ju-Nam, Y. and Lead, J. R. (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400:396–414.
  • Karthik, K., Das, P., Murugan, M. S. and Singh, P. (2013). Evaluation of bioelectronics sensor compared to other diagnostic test in diagnosis of Johne's disease in goats. Small Rumin. Res. 109:56–63.
  • Khah, M. M., Ahmadi, F. and Amanlou, H. (2015). Influence of dietary different levels of zinc oxide nano particles on the yield and quality carcass of broiler chickens during starter stage. Indian J. Anim. Sci. 85:287–290.
  • Khan, A., Salmieri, S., Fraschini, C., Bouchard, J., Riedl, B. and Lacroix, M. (2014). Genipin Cross-Linked Nanocomposite Films for the Immobilization of Antimicrobial Agent. ACS Appl. Mater. Interfaces 6:15232–15242.
  • Kim, G., Moon, J.-H., Moh, C.-Y. and Lim, J. (2015). A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens.Bioelectron. 67:243–247.
  • Kinsella, B., O'Mahony, J., Malone, E., Moloney, M., Cantwell, H., Furey, A. and Danaher, M. (2009). Current trends in sample preparation for growth promoter and veterinary drug residue analysis. J. Chromatogr. A 1216:7977–8015.
  • Kirthi, A. V., Rahuman, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., Jayaseelan, C. and Velayutham, K. (2011). Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol. Res. 109:461–472.
  • Kong, L.-J., Pan, M.-F., Fang, G.-Z., He, X., Yang, Y., Dai, J. and Wang, S. (2014). Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination. Biosens.Bioelectron. 51:286–292.
  • Kuiper, H. A., Noordam, M. Y., van Dooren-Flipsen, M. M., Schilt, R. and Roos, A. H. (1998). Illegal use of beta-adrenergic agonists: European Community. J. Anim. Sci. 76:195–207.
  • Li, S., Song, J., Yang, H., Cao, B., Chang, H. and Deng, A. (2014a). An immunochromatographic assay for rapid and direct detection of 3-amino-5-morpholino-2-oxazolidone (AMOZ) in meat and feed samples. J. Sci. Food Agric. 94:760–767.
  • Li, M., Yang, H., Li, S., Zhao, K., Li, J., Jiang, D., et al. (2014b). Ultrasensitive and Quantitative Detection of a New beta-Agonist Phenylethanolamine A by a Novel Immunochromatographic Assay Based on Surface-Enhanced Raman Scattering (SERS). J. Agric. Food Chem. 62:10896–10902.
  • Li, Z., Wang, Y., Kong, W., Wang, Z., Wang, L. and Fu, Z. (2012). Ultrasensitive detection of trace amount of clenbuterol residue in swine urine utilizing an electrochemiluminescent immunosensor. Sens. Actuat. B Chem. 174:355–358.
  • Lin, X., Ni, Y., Li, S. and Kokot, S. (2012). A novel method for simultaneous analysis of three beta(2)-agonists in foods with the use of a gold-nanoparticle modified glassy carbon electrode and chemometrics. Analyst 137:2086–2094.
  • Liu, R. and Lal, R. (2014). Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 4:5686–5692.
  • Liu, Z., Liu, X., Ran, X., Ju, E., Ren, J. and Qu, X. (2015). Single-layer tungsten oxide as intelligent photo-responsive nanoagents for permanent male sterilization. Biomaterials 69:56–64.
  • Long, F., Zhang, Z., Yang, Z., Zeng, J. and Jiang, Y. (2015). Imprinted electrochemical sensor based on magnetic multi-walled carbon nanotube for sensitive determination of kanamycin. J. Electroanal. Chem. 755:7–14.
  • Lu, C., Tang, Z., Liu, C., Kang, L. and Sun, F. (2015). Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Anal.Bioanal. Chem. 407:4155–4163.
  • Mahdi, S. S., Vadood, R. and Rokni, N. (2012). Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature. Glob. Vet. 9:284–289.
  • Mahony, D., Mody, K. T., Cavallaro, A. S., Hu, Q., Mahony, T. J., Qiao, S. and Mitter, N. (2015). Immunisation of sheep with bovine viral diarrhoea virus, E2 protein using a freeze-dried hollow silica mesoporous nanoparticle formulation. PLoS One 10:e0141870–e0141870.
  • Mohammadi, V., Ghazanfari, S., Mohammadi-Sangcheshmeh, A. and Nazaran, M. H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br. Poult. Sci. 56:486–493.
  • Moongkarndi, P., Rodpai, E. and Kanarat, S. (2011). Evaluation of an immunochromatographic assay for rapid detection of Salmonella enterica serovars Typhimurium and Enteritidis. J. Vet. Diagn. Investig. 23:797–801.
  • Mordmuang, A., Shankar, S., Chethanond, U. and Voravuthikunchai, S. P. (2015). Effects of Rhodomyrtus tomentosa Leaf Extract on Staphylococcal Adhesion and Invasion in Bovine Udder Epidermal Tissue Model. Nutrients 7:8503–8517.
  • Morsy, M. K., Khalaf, H. H., Sharoba, A. M., El-Tanahi, H. H. and Cutter, C. N. (2014). Incorporation of Essential Oils and Nanoparticles in Pullulan Films to Control Foodborne Pathogens on Meat and Poultry Products. J. Food Sci. 79:M675–M684.
  • Mroczek-Sosnowska, N., Lukasiewicz, M., Wnuk, A., Sawosz, E., Niemiec, J., Skot, A., et al. (2015). In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. J. Sci. Food Agric. 96:3058–3062.
  • Nguyen, Q. K., Nguyen, D. D., Nguyen, V. K., Nguyen, K. T., Nguyen, H. C., Tran, X. T., et al. (2015). Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens. Adv. Nat. Sci. Nanotechnol. 6:35017.
  • Paige, J. C., Tollefson, L. and Miller, M. A. (1999). Health implications of residues of veterinary drugs and chemicals in animal tissues. Vet. Clin. North Am. Anim. Pract. 15:31–43.
  • Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á. and Albertí, P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J. Food Eng. 123:104–112.
  • Peled, N., Ionescu, R., Nol, P., Barash, O., McCollum, M., VerCauteren, K., et al. (2012). Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis. Sens. Actuat. B, Chem. 171:588–594.
  • Peng, C. F., Duan, X. H., Pan, Q. L., Liu, L. Q. and Xue, F. (2013). Ultrasensitive nano-elisa for detecting sulfadimethoxine in chicken tissue. J. Chem. 2013: Article ID 234178, 5 pg.
  • Picouet, P. A., Fernandez, A., Realini, C. E. and Lloret, E. (2014). Influence of PA6 nanocomposite films on the stability of vacuum-aged beef loins during storage in modified atmospheres. Meat Sci. 96:574–580.
  • Pineda, L., Sawosz, E., Hotowy, A., Elnif, J., Sawosz, F., Ali, A. and Chwalibog, A. (2012a). Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comp. Biochem. Physiol. A-Molecular Integr. Physiol. 161:315–319.
  • Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., Elnif, J., et al. (2012b). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch. Anim. Nutr. 66:416–429.
  • Pineda, L., Sawosz, E., Lauridsen, C., Engberg, R. M., Elnif, J., Hotowy, A., et al. (2012c). Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim. Physiol. 4:1–8.
  • Ramachandraiah, K., Han, S. G. and Chin, K. B. (2015). Nanotechnology in meat processing and packaging: potential applications - a review. Asian-Australasian J. Anim. Sci. 28:290–302.
  • Ramos, F., Cristino, A., Carrola, P., Eloy, T., Silva, J. M., Castilho, M. D. C. and Noronha Da Silveira, M. I. (2003). Clenbuterol food poisoning diagnosis by gas chromatography-mass spectrometric serum analysis. Anal.Chim. Acta 483:207–213.
  • Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A. A., Santhoshkumar, T., et al. (2011). Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol. Res. 109:1403–1415.
  • Regiart, M., Fernandez Baldo, M. A., Spotorno, V. G., Bertolino, F. A. and Raba, J. (2013). Ultra sensitive microfluidic immunosensor for determination of clenbuterol in bovine hair samples using electrodeposited gold nanoparticles and magnetic micro particles as bio-affinity platform. Biosens.Bioelectron. 41:211–217.
  • Regiart, M., Pereira, S. V, Spotorno, V. G., Bertolino, F. a and Raba, J. (2014). Food safety control of zeranol through voltammetric immunosensing on Au-Pt bimetallic nanoparticle surfaces. Analyst 139:4702–4709.
  • RIKILT, and JRC. (2014). Inventory of Nanotechnology applications in the agricultural, feed and food sector. EFSA Support. Publ. 2014:EN-621:125 pgs.
  • Selim, N. A., Radwan, N. L., Youssef, S. F., Salah Eldin, T. A. and Abo Elwafa, S. (2015a). Effect of inclusion inorganic, organic or nanoselenium forms in broiler diets on: 1-Growth performance, carcass and meat characteristics. Int. J. Poult. Sci. 14:135–143.
  • Selim, N. A., Radwan, N. L., Youssef, S. F., Salah Eldin, T. A. and AboElwafa, S. (2015b). Effect of inclusion inorganic, Organic and nano Selenium forms in broiler diets on physiological, immunological and toxicity statuses of broiler chicks. Int. J. Poult. Sci. 14:144–155.
  • Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., et al. (2010). Nanomaterials for environmental studies: Classification, reference material issues, and strategies for physico-chemical characterisation. Sci. Total Environ. 408:1745–1754.
  • Sun, Q., Zhao, G. and Dou, W. (2015). A nonenzymatic optical immunoassay strategy for detection of Salmonella infection based on blue silica nanoparticles. Anal.Chim. Acta 898:109–115.
  • Sundari, Zuprizal, Yuwanta, T. and Martien, R. (2014). Effect of Nanocapsule Level on Broiler Performance and Fat Deposition. Int. J. Poult. Sci. 13:31–35.
  • Thomas, J. and Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med. Res. Methodol. 8:45–54.
  • Viswanathan, K., Gopinath, V. P. and Raj, G. D. (2014). Formulation of Newcastle disease virus coupled calcium phosphate nanoparticles: An effective strategy for oculonasal delivery to chicken. Colloids Surf. B Biointerf. 116:9–16.
  • Wang, C., Wang, M. Q., Ye, S. S., Tao, W. J. and Du, Y. J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poult. Sci. 90:2223–2228.
  • Wang, M. Q., Wang, C., Li, H., Du, Y. J., Tao, W. J., Ye, S. S. and He, Y. D. (2012a). Effects of chromium-loaded chitosan nanoparticles on growth, blood metabolites, immune traits and tissue chromium in finishing pigs. Biol. Trace Elem. Res. 149:197–203.
  • Wang, M. Q., Li, H., He, Y. D., Wang, C., Tao, W. J. and Du, Y. J. (2012b). Efficacy of dietary chromium (III) supplementation on tissue chromium deposition in finishing pigs. Biol. Trace Elem. Res. 148:316–321.
  • Wang, M. Q., Wang, C., Du, Y. J., Li, H., Tao, W. J., Ye, S. S., et al. (2014). Effects of chromium-loaded chitosan nanoparticles on growth, carcass characteristics, pork quality, and lipid metabolism in finishing pigs. Livest. Sci. 161:123–129.
  • Weidemaier, K., Carruthers, E., Curry, A., Kuroda, M., Fallows, E., Thomas, J., et al. (2015). Real-time pathogen monitoring during enrichment: a novel nanotechnology-based approach to food safety testing. Int. J. Food Microbiol. 198:19–27.
  • Zhang, J., Shao, X., Yue, J., Li, D. and Chen, Z. (2014). Preparation of ractopamine-tetraphenylborate complexed nanoparticles used as sensors to rapidly determine ractopamine residues in pork. Nanoscale Res. Lett. 9:1–7.
  • Zhihua, L., Xucheng, Z., Kun, W., Xiaobo, Z., Jiyong, S., Xiaowei, H. and Holmes, M. (2015). A novel sensor for determination of dopamine in meat based on ZnO-decorated reduced graphene oxide composites. Innov.Food Sci. Emerg. Technol. 31:196–203.
  • Zimoch-Korzycka, A. and Jarmoluk, A. (2015). The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. J. Food Sci. Technol. 52:5996–6002.
  • Zuprizal, Yuwanta, Supadmo, T., Kusmayadi, A., Wati, A. K., Martien, R., and Sundari. (2015). Effect of Liquid Nanocapsule Level on Broiler Performance and Total Cholesterol. Int. J. Poult. Sci. 14:403–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.