3,338
Views
62
CrossRef citations to date
0
Altmetric
Articles

Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review

ORCID Icon, &

References

  • Ali, A., Shehzad, A., Khan, M. R., Shabbir, M. A, and Amjid, M. R. (2012). Yeast, its types and role in fermentation during bread making process—A review. Pakistan J. Food Sci. 22:171–179.
  • Alves-Jr, S. L., Herberts, R. A., Hollatz, C., Miletti, L. C. and Stambuk, B. U. (2007). Maltose and maltotriose active transport and fermentation by Saccharomyces cerevisiae. Am. Soc. Brew. Chem. 65(2):99–104.
  • Amendola, J. and Rees, N. (2003). Understanding Baking: The Art and Science of Baking, 3rd ed. Hoboken, New Jersey: John Wiley & Sons, Inc.
  • Ansell, R., Granath, K., Hohmann, S., Thevelein, J. M. and Adler, L. (1997). The two isoenzymes for yeast NAD+ -dependent glycerol 3-phosphate dehydrogenase encoded by GDP1 and GDP2 have distinct roles in osmoadaption and redox regulation. EMBO J. 16:2179–2187.
  • Anson, N. M., Selinheimo, E., Havenaar, R., Aura, A. M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K. and Haenen, G. R. M. M. (2009). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J. Agric. Food Chem. 57:6148–6155.
  • Arikawa, Y., Kobayashi, M., Kodaira, R., Shimosaka, M., Muratsubaki, H., Enomoto, K. and Okazaki, M. (1999a). Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. J. Biosci. Bioeng. 87:333–339.
  • Arikawa, Y., Kuroyanagi, T., Shimosaka, M., Muratsubaki, H., Enomoto, K., Kodaira, R. and Okazaki, M. (1999b). Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J. Biosci. Bioeng. 87:28–36.
  • Ashoor, S. H. and Zent, J. B. (1984). Maillard Browning of common amino acids and sugars. J. Food Sci. 49:1206–1207.
  • Attfield, P. V. (1997). Stress tolerance: The key to effective strains of industrial Baker's yeast. Nat. Biotechnol. 15(13):1351–1357.
  • Axel, C., Röcker, B., Brosnan, B., Zannini, E., Furey, A., Coffey, A. and Arendt, E. K. (2015). Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol. 47:36–44.
  • Axel, C., Zannini, E., Arendt, E. K., Waters, D. M. and Czerny, M. (2014). Quantification of cyclic dipeptides from cultures of Lactobacillus brevis R2Δ by HRGC/MS using stable isotope dilution assay. Anal. Bioanal. Chem. 406:2433–2444.
  • Bakker, B. M., Overkamp, K. M., Van Maris, A. J. A, Kötter, P., Luttik, M. A. H., Van Dijken, J. P. and Pronk, J. T. (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:15–37.
  • Batifoulier, F., Verny, M. A., Chanliaud, E., Rémésy, C. and Demigné, C. (2005). Effect of different breadmaking methods on thiamine, riboflavin and pyridoxine contents of wheat bread. J. Cereal Sci. 42:101–108.
  • Bekatorou, A., Psarianos, C. and Koutinas, A. A. (2006). Production of food grade yeasts. Food Technol. Biotechnol. 44:407–415.
  • Benedito De Barber, C., Prieto, J. A. and Collar, C. (1989). Reversed-phase high-performance liquid chromatography analysis of changes in free amino acids during wheat bread dough fermentation. Cereal Chem. 66:283–288.
  • Berni, E. and Scaramuzza, N. (2013). Effect of ethanol on growth of Chrysonilia sitophila (‘the red bread mould’) and Hyphopichia burtonii (‘the chalky mould’) in sliced bread. Lett. Appl. Microbiol. 57:344–349.
  • Berthels, N. J., Cordero Otero, R. R., Bauer, F. F., Thevelein, J. M. and Pretorius, I. S. (2004). Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 4:683–689.
  • Birch, A. N., Petersen, M. A., Arneborg, N. and Hansen, Å. S. (2013a). Influence of commercial Baker's yeasts on bread aroma profiles. Food Res. Int. 52:160–166.
  • Birch, A. N., Petersen, M. A. and Hansen, Å. S. (2013b). The aroma profile of wheat bread crumb influenced by yeast concentration and fermentation temperature. LWT–Food Sci. Technol. 50:480–488.
  • Birch, A. N., Petersen, M. A. and Hansen, Å. S. (2014). Aroma of wheat bread crumb. Cereal Chem. 91:105–114.
  • Bokulich, N. A. and Bamforth, C. W. (2013). The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. 77:157–172.
  • Boskov Hansen, H., Andreasen, M. F., Nielsen, M. M., Larsen, L. M., Bach Knudsen, K. E., Meyer, A. S., Christensen, L. P. and Hansen, A. (2002). Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur. Food Res. Technol. 214:33–42.
  • Cairns, P., Miles, M. J. and Morris, V. J. (1991). Studies of the effect of the sugars ribose, xylose and fructose on the retrogradation of wheat starch gels by X-ray diffraction. Carbohydr. Polym. 16:355–365.
  • Cauvain, S. P. and Young, L. S. (2007). Technology of Breadmaking, 2nd ed. New York: Springer.
  • Chaoui, A., Faid, M. and Belhcen, R. (2003). Effect of natural starters used for sourdough bread in Marocco on phytate biodegradation. East. Mediterr. Heal. J. 9:141–147.
  • Cho, I. H. and Peterson, D. G. (2010). Chemistry of bread aroma: A review. Food Sci. Biotechnol. 19:575–582.
  • Coda, R., Cassone, A., Rizzello, C. G., Nionelli, L., Cardinali, G. and Gobbetti, M. (2011). Antifungal activity of wickerhamomyces anomalus and lactobacillus plantarum during sourdough fermentation: Identification of novel compounds and long-term effect during storage of wheat bread. Appl. Environ. Microbiol. 77:3484–3492.
  • Coda, R., Rizzello, C. G., Di Cagno, R., Trani, A., Cardinali, G. and Gobbetti, M. (2013). Antifungal activity of Meyerozyma guilliermondii: Identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol. 33:243–251.
  • Codina, G. G. and Voica, D. (2010). The influence of different forms of backery yeast Saccharomyces cerevisie type strain on the concentration of individual sugars and their utilization during fermentation. Rom. Biotechnol. Lett. 15:5417–5422.
  • Collar, C., Mascaros, A. and Benedito de Barber, C. (1992). Amino acid metabolism by yeasts and lactic ccid bacteria during bread dough fermentation. J. Food Sci. 57:1423–1427.
  • Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L. and Rossi, J. (2000). Combined effect of sourdough lactic acid bacteria and additives bread firmness and staling. J. Agric. Food Chem. 48:3044–3051.
  • Dashko, S., Zhou, N., Tinta, T., Sivilotti, P., Lemut, M. S., Trost, K., Gamero, A., Boekhout, T., Butinar, L., Vrhovsek, U. and Piskur, J. (2015). Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. J. Ind. Microbiol. Biotechnol. 997–1010.
  • De Angelis, M., Gallo, G., Corbo, M. R., McSweeney, P. L. H., Faccia, M., Giovine, M. and Gobbetti, M. (2003). Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 87:259–270.
  • De Deken, R. H. (1966). The Crabtree effect: A regulatory system in yeast. J. Gen. Microbiol. 44:149–156.
  • De Vuyst, L. and Neysens, P. (2005). The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 16:43–56.
  • Delcour, J. A. and Hoseney, R. C. (2010). Chapter 12: Yeast-leavened products, In: Principles of Cereal Science and Technology, pp. 177–206. Minnesota: AACC International, Inc.
  • Dequin, S. (2001). The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl. Microbiol. Biotechnol. 56:577–588.
  • DeRisi, J. L., Iyer, V. R. and Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686.
  • Dewettinck, K., Van Bockstaele, F., Kühne, B., Van de Walle, D., Courtens, T. M. and Gellynck, X. (2008). Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 48:243–257.
  • Dobraszczyk, B. J. (2003). The physics of baking: Rheological and polymer molecular structure-function relationships in breadmaking. Polish J. food Nutr. Sci. 12:24–31.
  • Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W. and Holzer, H. (1969). Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 10:83–89.
  • EFSA. (2012). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J. 10:3020. doi:10.2903/j.efsa.2013.3449
  • Fearn, T. and Russell, P. (1982). A kinetic-study of bread staling by differential scanning calorimetry. the effect of loaf specific volume. J. Sci. Food Agric. 33:537–548.
  • Fernandez, E., Moreno, F. and Rodicio, R. (1992). The ICL1 gene from Saccharomyces cerevisiae. Eur. J. Biochem. 204:983–990.
  • Fiaux, J., Cakar, P. Z., Sonderegger, M., Wüthrich, K., Szyperski, T. and Sauer, U. (2003). Metabolic-flux profling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot. Cell 2:170–180.
  • Finot, P. (1990). The Maillard Reaction in Food Processing, Human Nutrition and Physiology, 1st ed. Advances in Life Sciences. Birkhäuser Basel, Basel.
  • Fleet, G. H. (2007). Yeasts in foods and beverages: Impact on product quality and safety. Curr. Opin. Biotechnol. 18:170–175.
  • Foulkes, E. C. (1951). The occurrence of the tricarboxylic acid cycle in yeast. Biochem. J. 48:378–383.
  • Frasse, P., Lambert, S., Richard-Molard, D. and Chiron, H. (1993). The influence of fermentation on volatile compounds in French bread dough. LWT–Food Sci. Technol. 26:126–132.
  • Frater, R., and Hird, F. J. (1963). The reaction of glutathione with serum albumin, gluten and flour proteins. Biochem. J. 88:100–105.
  • Galdieri, L., Mehrotra, S., Yu, S. and Vancura, A. (2010). Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS 14:629–638.
  • Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334–361.
  • Gangloff, S. P., Marguet, D. and Lauquin, G. J. (1990). Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol. Cell. Biol. 10:3551–3561..
  • Gasch, A. P. and Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2:181–192.
  • Gassenmeier, K. and Schieberle, P. (1995). Potent aromatic compounds in the crumb of wheat bread (French-type)—Influence of pre-ferments and studies on the formation of key odorants during dough processing. Z. Lebensm. Unters. Forsch. 201:241–248.
  • Gélinas, P. and McKinnon, C. M. (2006). Effect of wheat variety, farming site, and bread-baking on total phenolics. Int. J. Food Sci. Technol. 41:329–332.
  • Giménez, A., Varela, P., Salvador, A., Ares, G., Fiszman, S. and Garitta, L. (2007). Shelf life estimation of brown pan bread: A consumer approach. Food Qual. Prefer. 18:196–204.
  • Goesaert, H., Brijs, K., Veraverbeke, W. S., Courtin, C. M., Gebruers, K. and Delcour, J. A. (2005). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 16:12–30.
  • Hazelwood, L. A., Daran, J.-M., van Maris, A. J. A., Pronk, J. T. and Dickinson, J. R. (2008). The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74:2259–2266.
  • Heitmann, M., Zannini, E. and Arendt, E. K. (2015). Impact of different beer yeasts on wheat dough and bread quality parameters. J. Cereal Sci. 63:49–56.
  • Herrmann, K. M. and Weaver, L. M. (1999). The Shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:473–503.
  • Huang, J., Zhuang, S., Fu, J., Wang, C., Sun, Y.-H. and Wang, Y. (2010). Analysis of aroma compounds of different yeast strains & its molecular identification by bioinformatics. In: Proceedings of the 2010 Int. Conf. Comput. Commun. Technol. Agric. Eng. pp. 25–30. Chengdu, China.
  • Hudec, J., Kobida, Ľ., Čanigová, M., Lacko-Bartošová, M., Ložek, O., Chlebo, P., Mrázová, J., Ducsay, L. and Bystrická, J. (2015). Production of γ-aminobutyric acid by microorganisms from different food sources. J. Sci. Food Agric. 95:1190–1198.
  • Hui, Y. (2006). Bakery Products: Science and Technology, 1st ed. Blackwell Publishing Professional, Iowa.
  • I'Anson, K. J., Miles, M. J., Morris, V. J., Besford, L. S., Jarvis, D. A. and Marsh, R. A. (1990). The effects of added sugars on the retrogradation of wheat starch gels. J. Cereal Sci. 11:243–248.
  • Kariluoto, S., Aittamaa, M., Korhola, M., Salovaara, H., Vahteristo, L. and Piironen, V. (2006). Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int. J. Food Microbiol. 106:137–143.
  • Kariluoto, S., Vahteristo, L., Salovaara, H., Katina, K., Liukkonen, K. H. and Piironen, V. (2004). Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem. 81:134–139.
  • Katarína, F., Katarína, M., Katarína, Ď., Ivan, Š. and Fedor, M. (2014). Influence of yeast strain on aromatic profile of Gewürztraminer wine. LWT–Food Sci. Technol. 59:256–262.
  • Katina, K., Liukkonen, K. H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S. M., Lampi, A. M., Pihlava, J. M. and Poutanen, K. (2007). Fermentation-induced changes in the nutritional value of native or germinated rye. J. Cereal Sci. 46:348–355.
  • Khetarpaul, N. and Chauhan, B .M. (1989). Effect of fermentation on protein, fat, minerals and thiamine content of pearl millet. Plant Foods Hum. Nutr. 39:169–177.
  • Koshland, D. E. J. and Westheimer, F. H. (1950). Mechanism of alcoholic fermentation. The fermentation of glucose-1-C14. J. Am. Chem. Soc. 72:3383–3388.
  • Kroh, L. W. (1994). Caramelisation in food and beverages. Food Chem. 51:373–379.
  • Kulp, K., and Ponte, J. G. (1981). Staling white pan bread: fundamental causes. Crit. Rev. Food Sci. Nutr. 15:1–48.
  • Kunze, W. (2014). Technology Brewing and Malting, 5th ed. VLB Berlin, Berlin.
  • Lamberts, L., Joye, I. J., Beliën, T. and Delcour, J. A. (2012). Dynamics of γ-aminobutyric acid in wheat flour bread making. Food Chem. 130:896–901.
  • Legan, J. D. (1993). Mould spoilage of bread: The problem and some solutions. Int. Biodeterior. Biodegradation 32:33–53.
  • Levine, H. and Slade, L. (1990). Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs amd baked products. Dough Rheol. Baked Prod. Texture 157–330.
  • Li, W., Tsiami, A. A., Bollecker, S. S. and Schofield, J. D. (2004). Glutathione and related thiol compounds II. The importance of protein bound glutathione and related protein-bound compounds in gluten proteins. J. Cereal Sci. 39:213–224.
  • Linko, Y., Javanainen, P. and Linko, S. (1997). Biotechnology of bread baking. Trends Food Sci. Technol. 8:339–344.
  • Maeda, T., Kikuma, S., Araki, T., Ikeda, G., Takeya, K. and Sagara, Y. (2009). The effects of mixing stage and fermentation time on the quantity of flavor compounds and sensory intensity of flavor in white bread. Food Sci. Technol. Res. 15:117–126.
  • Maga, J. A. and Pomeranz, Y. (1974). Bread flavor. Crit. Rev. Food Technol. 5:55–142.
  • Magnusson, J. and Schnürer, J. (2001). Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67:1–5.
  • Martinez-Villaluenga, C., Michalska, A., Frias, J., Piskula, M. K., Vidal-Valverde, C. and Zieliński, H. (2009). Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J. Food Sci. 74:doi:10.1111/j.1750-3841.2008.01008.x
  • McKinnon, C. M., Gélinas, P. and Simard, R. E. (1996). Wine yeast preferment for enhancing bread aroma and flavor. Cereal Chem. 73:45–50.
  • Michalska, A., Ceglinska, A., Amarowicz, R., Piskula, M. K., Szawara-Nowak, D. and Zielinski, H. (2007). Antioxidant contents and antioxidative properties of traditional rye breads. J. Agric. Food Chem. 55:734–740.
  • Mo, E. K. and Sung, C. K. (2014). Production of white pan bread leavened by Pichia anomala SKM-T. Food Sci. Biotechnol. 23:431–437.
  • Molina, A. M., Swiegers, J. H., Varela, C., Pretorius, I. S. and Agosin, E. (2007). Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biotechnol. 77:675–687.
  • Mondal, A. and Datta, A. K. (2008). Bread baking—A review. J. Food Eng. 86:465–474.
  • Nevoigt, E., Pilger, R., Mast-Gerlach, E., Schmidt, U., Freihammer, S., Eschenbrenner, M., Garbe, L. and Stahl, U. (2002). Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res. 2:225–232.
  • Nevoigt, E. and Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21:231–241.
  • Niku-Paavola, M. L., Laitila, A., Mattila-Sandholm, T. and Haikara, A. (1999). New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86:29–35.
  • Nilsson, U., Öste, R. and Jägerstad, M. (1987). Cereal fructans: Hydrolysis by yeast invertase, in vitro and during fermentation. J. Cereal Sci. 6:53–60.
  • O'Brien, J., Morrisey, P. A. and Ames, J. M. (1989). Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit. Rev. Food Sci. Nutr. 28:211–248.
  • Okkers, D. J., Dicks, L. M. T., Silvester, M., Joubert, J. J., and Odendaal, H. J. (1999). Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J. Appl. Microbiol. 87:726–734.
  • Ormrod, B. I. H. L., Lalor, E. F. and Sharpe, F. R. (1991). The release of yeast proteolytic enzymes into beer. J. Inst. Brew. 97:441–443.
  • Osinga, K. A., Beudeker, R. F., Van der Plaat, J. B. and De Hollander, J. A. (1988). New yeast strains providing for an enhanced rate of the fermentation of sugars, a process to obtain such yeasts and the use of these yeasts. Eur Patent 0306107A2. Eur. Pat. Off. doi:10.1017/CBO9781107415324.004
  • Osseyi, E. S., Wehling, R. L. and Albrecht, J. A. (2001). HPLC determination of stability and distribution of added folic acid and some endogenous folates during breadmaking. Cereal Chem. 78:375–378.
  • Pateras, I. M. C. (2007). Bread spoilage and staling. In: Technology of Breadmaking. In Cauvain, S. P. and Young, L. S., Eds. , pp. 275–298, Springer Science, New York, doi:10.1007/0-387-38565-7_10
  • Pathare, P. B., Opara, U. L. and Al-Said, F. A. J. J. (2013). Color measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 6:36–60.
  • Penninckx, M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2:295–305.
  • Pires, E. J., Teixeira, J. A., Branyik, T. and Vicente, A. A. (2014). Yeast: The soul of beer's aroma—A review of flavor-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 98:1937–1949.
  • Plessas, S., Pherson, L., Bekatorou, A., Nigam, P. and Koutinas, A. A. (2005). Bread making using kefir grains as Baker's yeast. Food Chem. 93:585–589.
  • Poutanen, K., Flander, L. and Katina, K. (2009). Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 26:693–699.
  • Pozrl, T., Kopjar, M., Kurent, I., Hribar, J., Janes, A. and Simcic, M. (2009). Phytate degradation during breadmaking: The Influence of flour type and breadmaking procedures. Czech J. Food Sci. 27:29–38.
  • Procopio, S., Qian, F. and Becker, T. (2011). Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur. Food Res. Technol. 233:721–729.
  • Pronk, J. T., Steensma, H. Y. and van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633.
  • Purlis, E. (2010). Browning development in bakery products—A review. J. Food Eng. 99:239–249.
  • Pyler, G. (2008a). Yeast, molds and bacteria, In: Baking Science & Technology: Fundamentals & Ingredients. Sosland Pub., Kansas City.
  • Pyler, G. (2008b). Flavor: Physiology of odor and taste, In: Baking Science & Technology: Fundamentals & Ingredients. Sosland Pub., Kansas City.
  • Randez-Gil, F., Sanz, P. and Prieto, J. A. (1999). Engineering Baker's yeast: Room for improvement. TIBTECH 7799:2163–2168.
  • Reale, A., Mannina, L., Tremonte, P., Sobolev, A., Succi, M., Sorrentino, E. and Coppola, R. (2004). Phytate degradation by lactic acid bacteria and yeast during the whole meal dough fermentation: A 31P NMR Study. J. Agric. Food Chem. 52:6300–66305.
  • Reed, G. and Nagodawithana, T. W. (1991). Yeast Technology, 2nd ed. AVI book. Van Nostrand Reinhold, New York.
  • Regev-Rudzki, N., Karniely, S., Ben-Haim, N. N. and Pines, O. (2005). Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol. Biol. Cell 16:1–13.
  • Rincón, A. M. and Benítez, T. (2001). Improved organoleptic and nutritive properties of bakery products supplemented with amino acid overproducing Saccharomyces cerevisiae yeasts. J. Agric. Food Chem. 49:1861–1866.
  • Rizzello, C. G., Cassone, A., Di Cagno, R. and Gobbetti, M. (2008). Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and γ-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J. Agric. Food Chem. 56:6936–6943.
  • Röcken, W. and Vorsey, P. A. (1995). Sourdough fermentation in bread making. J. Appl. Bacteriol. 79:38–48.
  • Rollini, M., Casiraghi, E., Pagani, M. A. and Manzoni, M. (2007). Technological performances of commercial yeast strains (Saccharomyces cerevisiae) in different complex dough formulations. Eur. Food Res. Technol. 226:19–24.
  • Rothe, M. (1988). Handbook of Aroma Research, 1st ed. Kluwer Academic Publisher, Norwell.
  • Rucker, R. B., Suttie, J. W. and McCormick, D. B. (2006). Handbook of Vitamins, 3rd ed. New York: CRC Press.
  • Russell, P. L. and Chorleywood. (1983). A kinetic study of bread staling by differential scanning calorimetry—The effect of painting loaves with ethanol. Starch 35:277–281.
  • Saerens, S. M. G., Verbelen, P. J., Vanbeneden, N., Thevelein, J. M., and Delvaux, F. R. (2008). Monitoring the influence of high-gravity brewing and fermentation temperature on flavor formation by analysis of gene expression levels in brewing yeast. Appl. Microbiol. Biotechnol. 80:1039–1051.
  • Sahlström, S., Park, W. and Shelton, D. R. (2004). Factors influencing yeast fermentation and the effect of LMW sugars and yeast fermentation on hearth bread quality. Cereal Chem. 81:328–335.
  • Schieberle, P. and Grosch, W. (1991). Potent odorants of the wheat bread crumb differences to the crust and effect of a longer dough fermentation. Zeitschrift Fur Leb. Und-forsch. a-Food Res. Technol. Leb. und -Forsch. 192:130–135.
  • Sigler, K. and Hofer, M. (1991). Mechanisms of acid extrusion in yeast. Biochim. Biophys. Acta 1071:375–391.
  • Sroan, B. S., Bean, S. R. and MacRitchie, F. (2009). Mechanism of gas cell stabilization in bread making. I. The primary gluten–starch matrix. J. Cereal Sci. 49:32–40.
  • Stabnikova, O., Ivanov, V., Larionova, I., Stabnikov, V., Bryszewska, M. A. and Lewis, J. (2008). Ukrainian dietary bakery product with selenium-enriched yeast. LWT–Food Sci. Technol. 41:890–895.
  • Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70:331–345.
  • Suárez-Lepe, J. A. and Morata, A. (2012). New trends in yeast selection for winemaking. Trends Food Sci. Technol. 23:39–50.
  • Suomalainen, H. and Lehtonen, M. (1978). The production of aroma compounds by yeast. J. Inst. Brew. 85:149–156.
  • Taylor, P., Maga, J. A and Pomeranz, Y. (2009). Bread staling. Crit. Rev. Food Technol. 5:443–486.
  • Thurston, P. A., Quain, D. E. and Tubb, R. S. (1982). Lipid metabolism and the regulation of volatile ester synthesis in Saccharomyces cerevisiae. J. Inst. Brew. 88:90–94.
  • Trevelyan, W. E. and Harrison, J. S. (1952). Studies on yeast metabolism 1. Fractionation and microdetermination of cell carbohydrates. Biochem. J. 50:298–303.
  • Tu, M., Sandberg, A., Carlsson, N. and Andlid, T. (2000). Inositol hexaphosphate hydrolysis by Baker's Yeast. Capacity, kinetics, and degradation products. J. Agric. Food Chem. 48:100–104.
  • Turk, M., Carlsson, N. G. and Sandberg, A. S. (1999). Reduction in the levels of phytate during wholemeal bread making; Effect of yeast and wheat phytases. J. Cereal Sci. 23:257–264.
  • van Dijken, J. P. and Scheffers, W. A. (1986). Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol. Rev. 32:199–224.
  • Vararu, F., Moreno-Garcia, J., Zamfir, C. I., Cotea, V. V. and Moreno, J. (2016). Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains. Food Chem. 197:373–381.
  • Verheyen, C., Albrecht, A., Herrmann, J., Strobl, M., Jekle, M. and Becker, T. (2015). The contribution of glutathione to the destabilizing effect of yeast on wheat dough. Food Chem. 173:243–249.
  • Verheyen, C., Jekle, M. and Becker, T. (2014). Effects of Saccharomyces cerevisiae on the structural kinetics of wheat dough during fermentation. LWT–Food Sci. Technol. 58:194–202.
  • Verstrepen, K. J., Iserentant, D., Malcorps, P., Derdelinckx, G., Van Dijck, P., Winderickx, J., Pretorius, I. S., Thevelein, J. M. and Delvaux, F. R. (2004). Glucose and sucrose: Hazardous fast-food for industrial yeast? Trends Biotechnol. 22:531–537.
  • Wennermark, B. (Håkansson) and Jägerstad, M. (1992). Breadmaking and storage of various wheat fractions affect vitamin E. J. Food Sci. 57:1205–1209.
  • Whiting, B. G. C. (1976). Organic acid metabolism of yeast during fermentation of alkoholic beverages—A review. J. Inst. Brew. 82:84–92.
  • Wolfrom, M. L., Kolb, D. K. and Langer, W. J. (1946). Chemical interactions of amino compounds and sugars. VII pH dependency. J. Am. Chem. Soc. 68:2022–2025.
  • Wolfrom, M. L. and Rooney, C. S. (1953). Chemical interactions of amino compounds and sugars. VIII. Influence of water. J. Am. Chem. Soc. 75:5435–5436.
  • Wolfrom, M. L., Schuetz, R. D. and Cavalieri, L. F. (1948). Chemical interactions of amino compounds and sugars. III. The conversion of D-glucose to 5-(Hydroxymethyl)-2-furaldehyde. J. Am. Chem. Soc. 70:514–517.
  • Zanoni, B., Peri, C. and Bruno, D. (1995). Modelling of browning kinetics of bread crust during baking. Leb. wisschaft und Technol. 609:604–609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.