1,533
Views
57
CrossRef citations to date
0
Altmetric
Articles

Recent advancements in lateral flow immunoassays: A journey for toxin detection in food

, &

References

  • Ahn, J. S., Choi, S., Jang, S. H., Chang, H. J., Kim, J. H., Nahm, K. B., Oh, S. W. and Choi, E. Y. (2003). Development of a point-of-care assay system for high-sensitivity C-reactive protein in whole blood. Clin Chim. Acta 332:51–59.
  • Ahn, S. and Durst, R. A. (2008). Detection of cholera toxin in seafood using a ganglioside-liposome immunoassay. Anal. Bioanal. Chem. 391:473–478.
  • Aldus, C.F., Van Amerongen, A., Ariens, R. M. C., Peck, M. W., Wichers, J. H. and Wyatt, G. M. (2003). Principles of Some Novel Rapid Dipstick Methods for Detection and Characterization of Verotoxigenic Escherichia Coli. J. Appl. Microbiol. 95:380–389.
  • Algar, W. R., Anthony, J. T. and Ulrich, J. K. (2010). Beyond Labels : A Review of the Application of Quantum Dots as Integrated Components of Assays, Bioprobes, and Biosensors Utilizing Optical Transduction. Anal. Chim. Acta 673:1–25.
  • Anfossi, L., Baggiani, C., Giovannoli, C., Biagioli, F., D'Arco, G. and Giraudi, G. (2013a). Optimization of a lateral flow immunoassay for the ultrasensitive detection of Aflatoxin M1 in milk. Anal. Chim. Acta 772:75–80.
  • Anfossi, L., Baggiani, C., Giovannoli, C., D'Arco, G. and Giraudi, G. (2013b). Lateral-flow immunoassays for mycotoxins and phycotoxins: A review. Anal. Bioanal. Chem. 405:467–480.
  • Anfossi, L., Calderara, M., Baggiani, C., Giovannoli, C., Arletti, E. and Giraudi, G. (2010). Development and Application of a Quantitative Lateral Flow Immunoassay for Fumonisins in Maize. Anal. Chim. Acta 682:104–109.
  • Anfossi, L., D'Arco, G., Calderara, M., Baggiani, C., Giovannoli, C. and Giraudi, G. (2011a). Development of a quantitative lateral flow immunoassay for the detection of AFLs in maize. Food Addit. Contam. 28:226–234.
  • Anfossi, L., Di Nardo, F., Giovannoli, C., Passini, C. and Baggiani, C. (2013c). Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anal. Bioanal. Chem. 405:9859–9867.
  • Anfossi, L., Gilda, D., Claudio, B., Cristina, G. and Gianfranco, G. (2011b). A lateral flow immunoassay for measuring ochratoxin A: Development of a single system for maize, wheat and durum wheat. Food Control. 22:1965–1970.
  • Anfossi, L., Giovannoli, C., Giraudi, G., Biagioli, F., Passini, C. and Baggiani, C. (2012). A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. J. Agri. Food Chem. 60:11491–11497.
  • Arcidiacono, S., Pivarnik, P., Mello, C. M. and Senecal, A. (2008). Cy5 Labeled Antimicrobial Peptides for Enhanced Detection of Escherichia Coli O157:H7. Biosens. Bioelectron. 23:1721–27.
  • Attrée, O., Guglielmo-Viret, V., Gros, V. and Thullier, P. (2007). Development and comparison of two immunoassay formats for rapid detection of botulinum neurotoxin type A. J. Immunol. Methods. 325:78–87.
  • Bamrungsap, S., Apiwat, C., Chantima, W., Dharakul, T. and Wiriyachaiporn, N. (2014). Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim. Acta 181:223–230.
  • Barth, H., Aktories, K., Popoff, M. R. and Stiles, B. G. (2004). Binary Bacterial Toxins : Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins. Microbiol. Mol. Biol. Rev. 68:373–402.
  • Beloglazova, N.V., Speranskaya, E.S., Saeger, S.D., Hens, Z., Abe, S. and Goryacheva, I.Y. (2012). Quantum dot-based rapid tests for zearalenone detection. Anal. Bioanal. Chem. 403:3013–3024.
  • Berlina, A. N., Taranova, N. A., Zherdev, A.V., Vengerov, Y. Y. and Dzantiev, B. B. (2013). Quantum dot-based lateral flow immunoassay for detection of chloramphenicol in milk. Anal. Bioanal. Chem. 405:4997–5000.
  • Blažková, M., Mičková-Holubová, B., Rauch, P. and Fukal, L. (2009). Immunochromatographic Colloidal Carbon-Based Assay for Detection of Methiocarb in Surface Water. Biosens. Bioelectron. 25:753–758.
  • Blažková, M., Rauch, P. and Fukal, L. (2010). Strip-Based Immunoassay for Rapid Detection of Thiabendazole. Biosens. Bioelectron. 25:2122–2128.
  • Bok, S., Korampally, V., Darr, C. M., Folk, W. R., Polo-Parada, L., Gangopadhyay, K. and Gangopadhyay, S. (2013). Femtogram-Level Detection of Clostridium Botulinum Neurotoxin Type A by Sandwich Immunoassay Using Nanoporous Substrate and Ultra-Bright Fluorescent Suprananoparticles. Biosens. Bioelectron. 41:409–16.
  • Brehm-Stecher, B., Young, C., Jaykus, L. A. and Tortorello, M. L. (2009). Sample preparation: The forgotten beginning. J. Food Prot. 72:1774–1789.
  • Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, P. (1998). Semiconductor Nanocrystals as Fluorescent Biological Labels. Science (New York, NY). 281:2013–2016.
  • Bruno, J. G. (2014). Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold. Pathogens. 3:341–355.
  • Brunt, J., Webb, M. D., Peck, M. W. (2010). Rapid affinity immunochromatography column-based tests for sensitive detection of clostridium BTos and Escherichia coli O157. Appl. Environ. Microbiol. 76:4143–50.
  • Byrne, B., Stack, E., Gilmartin, N. and O'Kennedy, R. (2009). Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins. Sensors. 9:4407–4445.
  • Campàs, M., Garibo, D. and Prieto-Simón, B. (2012). Novel nanobiotechnological concepts in electrochemical biosensors for the analysis of toxins. Analyst. 137:1055–1067.
  • Chan, W.C.W. and Nie, S. (1998). Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science. 281:2016–2018.
  • Chen, Y., Chen, Q., Han, M., Zhou, J., Gong, L., Niu, Y., Zhang, Y., He, L. and Zhang, L. (2016). Development and Optimization of a Multiplex Lateral Flow Immunoassay for the Simultaneous Determination of Three Mycotoxins in Corn, Rice and Peanut. Food Chem. 213:478–484.
  • Chiao, D. J., Shyu, R. H., Hu, C. S., Chiang, H. Y. and Tang, S. S. (2004). Colloidal Gold-Based Immunochromatographic Assay for Detection of Botulinum Neurotoxin Type B. J. Chromat. B. 809:37–41.
  • Chiao, D. J., Wey, J. J., Shyu, R. H. and Tang, S. S. (2008). Monoclonal Antibody-Based Lateral Flow Assay for Detection of Botulinum Neurotoxin Type A. Hybridoma. 27:31–35.
  • Ching, K. H., He, X., Stanker, L. H., Lin, A. V., McGarvey, J. A. and Hnasko, R. (2015). Detection of Shiga Toxins by Lateral Flow Assay. Toxins. 7:1163–1173.
  • Ching, K. H., Lin, A., McGarvey, J. A., Stanker, L. H. and Hnasko, R. (2012). Rapid and Selective Detection of Botulinum Neurotoxin Serotype-A and B with a Single Immunochromatographic Test Strip. J. Immunol. Methods. 380:23–29.
  • Dong, Y., Xu, Y., Yong, W., Chu, X. and Wang, D. (2014). Aptamer and Its Potential Applications for Food Safety. Crit. Rev. Food Sci. Nutr. 54:1548–1561.
  • Duan, H., Chen, X., Xu, W., Fu, J., Xiong, Y. and Wang, A. (2015). Quantum-DoT Submicrobead-Based Immunochromatographic Assay for Quantitative and Sensitive Detection of Zearalenone. Talanta. 132:126–131.
  • Duan, N., Wu, S., Yu, Y., Ma, X., Xia, Y., Chen, X., Huang, Y. and Wang, Z. (2013). A Dual-Color Flow Cytometry Protocol for the Simultaneous Detection of Vibrio Parahaemolyticus and Salmonella Typhimurium Using Aptamer Conjugated Quantum Dots as Labels. Anal. Chim. Acta 804:151–158.
  • Dwivedi, H. P., Smiley, R. D. and Jaykus, L. A. (2013). Selection of DNA Aptamers for Capture and Detection of Salmonella Typhimurium Using a Whole-Cell SELEX Approach in Conjunction with Cell Sorting. Appl. Microbiol. Biotechnol. 97:3677–86.
  • Dzantiev, B. B., Byzova,N. A., Urusov,A. E. and Zherdev, A. V. (2014). Immunochromatographic methods in food analysis. Trends Anal. Chem.. 55:81–93.
  • Ellington, A. D. and Szostak, J. W. (1990). In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature. 346:818–822.
  • Food and Drug Law Institute. (2008). Tolerances for poisonous ingredients in food, Sec. 406. In: FDCA Statutory Supplement Including FDA Amendments Act of 2007 and Related Sections of Additional Statutes, p. 31. Food and Drug Law Institute, Washington, DC.
  • Foubert, A., Beloglazova, V. L., Gordienko, A., Tessier, D. M., Drijvers, E., Hens, Z. and Saeger, S. D. (2016). Development of a Rainbow Lateral Flow Immunoassay for the Simultaneous Detection of Four Mycotoxins. J. Agri. Food Chem. doi:10.1021/acs.jafc.6b04157.
  • Gabaldon, J. A., Cascales, J. M., Morias, S., Maquieira, A. and Puchades, R. (2003). Determination of Atrazine and Carbaryl Pesticide Residues in Vegetable Samples Using a Multianalyte Dipstick Immunoassay Format. Food Addit. Contamin. 20:707–15.
  • Gessler, F., Pagel-Wieder, S., Avondet, M. A. and Böhnel, H. (2007). Evaluation of Lateral Flow Assays for the Detection of Botulinum Neurotoxin Type A and Their Application in Laboratory Diagnosis of Botulism. Diag. Microbiol. Infect. Dis. 57:243–49.
  • Gholamzad, M., Khatami, M. R., Ghassemi, S., Malekshahi, Z. V. and Shooshtari, M. B. (2015). Detection of Staphylococcus Enterotoxin B (SEB) Using an Immunochromatographic Test Strip. Jundishapur J. of Microbiol. 8:e26793.
  • Gonzalez, J. M., Foley, M. W., Bieber, N. M., Bourdelle, P. A. and Niedbala, R. S. (2011). Development of an Ultrasensitive Immunochromatography Test to Detect Nicotine Metabolites in Oral Fluids. Anal. Bioanal. Chem. 400:3655–64.
  • Gopinath, S. C. B. (2007). Methods Developed for SELEX. Anal. Bioanal. Chem. 387:171–82.
  • Graniti, A. (1992). Multi-Author Review Phytotoxins and Their Involvement in Plant Diseases. Experientia. 47:751–755.
  • Granum, P. E., Tomas, J. M. and Alouf, J. E. (1995). A Survey of Bacterial Toxins Involved in Food Poisoning: A Suggestion for Bacterial Food Poisoning Toxin Nomenclature. Int. J. Food Microbiol. 28:129–144.
  • Gui, W. J., Wang, S. T., Guo, Y. R., Zhu, G. N. (2008). Development of a one-step strip for the detection of triazophos residues in environmental samples. Anal. Biochem. 377:202–208.
  • Guo, Y. C., Ngom, B., Le, T., Jin, X., Wang, L. P., Shi, D. S., Wang, X. L. and Bi, D. G. (2010). Utilizing three monoclonal antibodies in the development of an immunochromatographic assay for simultaneous detection of sulfamethazine, sulfadiazine, and sulfaquinoxaline residues in egg and chicken muscle. Anal. Chem. 82:7550–7555.
  • Guo, Y. R., Liu, S. Y., Gui, W. J., Zhu, G. N. (2009). Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal. Biochem. 389:32–39.
  • Han, S. R. and Lee, S. W. (2014). In Vitro Selection of RNA Aptamer Specific to Staphylococcus Aureus. Annals Microbiol. 64:883–885.
  • Holubová-Mičková, B., Blažková, M., Fukal, L. and Rauch, P. (2010). Development of Colloidal Carbon-Based Immunochromatographic Strip for Rapid Detection of Carbaryl in Fruit Juices. Eur. Food Res. Technol. 231:467–73.
  • Horton, J. K., Swinburne, S. and O'Sullivan, M. J. (1991). A Novel, Rapid, Single-Step Immunochromatographic Procedure for the Detection of Mouse Immunoglobulin. J. Immunol. Methods. 140:131–134.
  • Huang, X., Aguilar, Z. P., Li, H., Lai, W., Wei, H., Xu, H. and Xiong, Y. (2013). Fluorescent Ru(phen)3 2+-Doped Silica Nanoparticles-Based ICTS Sensor for Quantitative Detection of Enrofloxacin Residues in Chicken Meat. Anal. Chem. 85:5120–5128.
  • Huang, Z. B., Xu, Y., Li, L. S., Li, Y. P., Zhang, H. and He, Q. H. (2012). Development of an Immunochromatographic Strip Test for the Rapid Simultaneous Detection of Deoxynivalenol and Zearalenone in Wheat and Maize. Food Control. 28:7–12.
  • Jawaid, W., Meneely, J. P., Campbell, K., Melville, K., Holmes, S. J., Rice, J. and Elliott, C. T. (2015). Development and Validation of a Lateral Flow Immunoassay for the Rapid Screening of Okadaic Acid and All Dinophysis Toxins from Shellfish Extracts. J. Agri. Food Chem. 63:8574–83.
  • Ji, Y., Ren, M., Li, Y., Huang, Z., Shu, M., Yang, H., Xiong, Y. and Xu, Y. (2015). Detection of Aflatoxin B1 with Immunochromatographic Test Strips: Enhanced Signal Sensitivity Using Gold Nanoflowers. Talanta. 142:206–212.
  • Jones, K. D. (1999). Troubleshooting protein binding in nitrocellulose membranes. IVD Technol. 5:32–41.
  • Kärkkäinen, R. M., Drasbek, M. R., McDowall, I., Smith, C. J., Young, N. W. and Bonwick, G. A. (2011). Aptamers for Safety and Quality Assurance in the Food Industry: Detection of Pathogens. Int. J. Food Sci. Technol. 46:445–454.
  • Kataoka, H. (2003). New trends in sample preparation for clinical and pharmaceutical analysis. Trends Anal. Chem. 22:232–244.
  • Khlebtsov, N. G. and Dykman, L. A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spect. Radiative Transf. 111:1–35.
  • Khreich, N., Lamourette, P., Boutal, H., Devilliers, K., Créminon, C. and Volland, H. (2008). Detection of Staphylococcus Enterotoxin B Using Fluorescent Immunoliposomes as Label for Immunochromatographic Testing. Anal. Biochem. 377:182–188.
  • Kim, J. H., Cho, J. H., Cha, G. S., Lee, C. W., Kim, H. B. and Paek, S. H. (2000). Conductimetric Membrane Strip Immunosensor with Polyaniline-Bound Gold Colloids as Signal Generator. Biosens. Bioelectron. 14: 907–15.
  • Kim, S. and Park, J. K. (2004). Development of a Test Strip Reader for a Lateral Flow Membrane-Based Immunochromatographic Assay. Biotechnol. Bioproc. Eng. 9:127–131.
  • Kim, Y. A., Lee, E. H., Kim, K. O., Lee, Y. T., Hammock, B. D. and Lee, H. S. (2011). Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal. Chim. Acta 693:106–113.
  • Kim, Y. M., Oh, S. W., Jeong, S. Y., Pyo, D. J. and Choi, E. Y. (2003). Development of an ultrarapid one-step fluorescence immunochromatographic assay system for the quantification of microcystins. Environ. Sci. Technol. 37:1899–1904.
  • Klewitz, T., Gessler, F., Beer, H., Pflanz, K. and Scheper, T. (2006). Immunochromatographic Assay for Determination of Botulinum Neurotoxin Type D. Sens. Actuators B. 113:582–589.
  • Klug, S. J., Famulok, M. (1994). All you wanted to know about SELEX. Mol. Biol. Rep. 20:97–107.
  • Kolosova, A. Y., De Saeger, S., Sibanda, L., Verheijen, R., Van Peteghem, C. (2007). Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of ZEL and DOX. Anal. Bioanal. Chem. 389:2103–2107.
  • Kolosova, A. Y., Sibanda, L., Dumoulin, F., Lewis, J., Duveiller, E., Van Peteghem, C. and De Saeger, S. (2008). Lateral-Flow Colloidal Gold-Based Immunoassay for the Rapid Detection of Deoxynivalenol with Two Indicator Ranges. Anal. Chim. Acta 616:235–244.
  • Kong, D., Liu, L., Song, S., Suryoprabowo, S., Li, A., Kuang, H., Wang, L. and Xu, C. (2016). A gold Nanoparticle-Based Semi-Quantitative and Quantitative Ultrasensitive Paper Sensor for the Detection of Twenty Mycotoxins. Nanoscale. 8:5245–53.
  • Krska, R., Welzig, E., Berthiller, F., Molinelli, A. and Mizaikoff, B. (2005). Advances in the analysis of mycotoxins and its quality assurance. Food addit. and contamin. 22:345–353.
  • Krska, R. and Molinelli, A. (2009). Rapid Test Strips for Analysis of Mycotoxins in Food and Feed. Anal. Bioanal. Chem. 393:67–71.
  • Kuang, H., Xing, C., Hao, C., Liu, L., Wang, L. and Xu, C. (2013). Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor. Sensors. 13:4214–24.
  • Kulagina, N. V., Lassman, M. E., Ligler, F. S. and Taitt, C. R. (2005). Antimicrobial Peptides for Detection of Bacteria in Biosensor Assays. Anal. Chem. 77:6504–8.
  • Lattanzio, V. M., Nivarlet, N., Lippolis, V., Della Gatta, S., Huet, A. C., Delahaut, P., Granier, B. and Visconti, A. (2012). Multiplex Dipstick Immunoassay for Semi-Quantitative Determination of Fusarium Mycotoxins in Cereals. Anal. Chim. Acta 718:99–108.
  • Lawton, L. A., Chambers, H., Edwards, C., Nwaopara, A. A. and Healy, M. (2010). Rapid detection of microcystins in cells and water. Toxicon. 55:973–978.
  • Lee, S., Kim, G. and Moon, J. (2013). Performance Improvement of the One-Dot Lateral Flow Immunoassay for Aflatoxin B1 by Using a Smartphone-Based Reading System. Sensors. 13:5109–16.
  • Leszkowicz, A., P. and Manderville, R. (2007). Review on Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 51:61–69.
  • Li, J. and Macdonald, J. (2016). Biosensors and Bioelectronics Multiplexed Lateral Flow Biosensors : Technological Advances for Radically Improving Point-of-Care Diagnoses. Biosens. Bioelectron. 83:177–192.
  • Li, P., Zhang, Z., Zhang, Q., Zhang, N., Zhang, W., Ding, X. and Li, R. (2012). Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis. 33:2253–2265.
  • Li, X., Li, P., Zhang, Q., Li, R., Zhang, W., Zhang, Z., Ding, X. and Tang, X. (2013). Multi-Component Immunochromatographic Assay for Simultaneous Detection of Aflatoxin B1, Ochratoxin A and Zearalenone in Agro-Food. Biosens. Bioelectron. 49:426–432.
  • Liao, J. Y. and Li, H. (2010). Lateral Flow Immunodipstick for Visual Detection of Aflatoxin B1 in Food Using Immuno-Nanoparticles Composed of a Silver Core and a Gold Shell. Microchim. Acta 171:289–295.
  • Linares, E. M., Kubota, L. T., Michaelis, J. and Thalhammer, S. (2012). Enhancement of the Detection Limit for Lateral Flow Immunoassays: Evaluation and Comparison of Bioconjugates. J. Immunol. Methods. 375:264–270.
  • Liu, B. H., Tsao, Z. J., Wang, J. J. and Yu, F. Y. (2008). Development of a Monoclonal Antibody against Ochratoxin A and Its Application in Enzyme-Linked Immunosorbent Assay and Gold Nanoparticle Immunochromatographic Strip. Anal. Chem. 80:7029–35.
  • Liu, L., Xing, C., Yan, H., Kuang, H. and Xu, C. (2014). Development of an ELISA and Immunochromatographic Strip for Highly Sensitive Detection of Microcystin-LR. Sensors. 14:14672–14685.
  • Lou, S. C., Patel, C., Ching, S., Gordon, J. (1993). One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein(a) in plasma. Clin. Chem. 39:619–624.
  • Lu, S. Y., Lin, C., Li, Y. S., Zhou, Y., Meng, X. M., Yu, S. Y., Li, Z. H., Li, L., Ren, H. L. and Liu, Z. S. (2012). A Screening Lateral Flow Immunochromatographic Assay for on-Site Detection of okadaic Acid in Shellfish Products. Anal. Biochem. 422:59–65.
  • Lu, S. Y., Lin, C., Li, Y. S., Zhou, Y., Meng, X. M., Yu, S. Y., Li, Z. H., Li, L., Ren, H. L., Liu, Z. S. (2012). A screening lateral flow immunochromatographic assay for on-site detection of ODA in shellfish products. Anal. Biochem. 422:59–65.
  • Majdinasab, M., Sheikh-Zeinoddin, M., Soleimanian-Zad, S., Li, P., Zhang, Q., Li, X., Tang, X. and Li, J. (2015b). A Reliable and Sensitive Time-Resolved Fluorescent Immunochromatographic Assay (TRFICA) for Ochratoxin A in Agro-Products. Food Control. 47:126–134.
  • Majdinasab, M., Sheikh-Zeinoddin, M., Soleimanian-Zad, S., Li, P., Zhang, Q., Li, X. and Tang, X. (2015a). Ultrasensitive and Quantitative Gold Nanoparticle-Based Immunochromatographic Assay for Detection of Ochratoxin A in Agro-Products. J. Chromatogr. B. 974:147–154.
  • Mannoor, M. S., Zhang, S., Link, A. J. and McAlpine, M. C. (2010). Electrical Detection of Pathogenic Bacteria via Immobilized Antimicrobial Peptides. Proc. Nat. Acad. Sci. 107:19207–19212.
  • Mayer, G. (2009). The Chemical Biology of Aptamers. Angewandte Chemie Int. Ed. 48:2672–89.
  • McKeague, M., Giamberardino, A. and DeRosa, M. C. (2011). Advances in Aptamer-Based Biosensors for Food Safety. In. Environ. Biosens. 17–42. Prof. Vernon Somerset (Ed.), InTech, DOI: 10.5772/22350. Available from: https://www.intechopen.com/books/environmentalbiosensors/advances-in-aptamer-based-biosensors-for-food-safety.
  • Mehta, J., Van Dorst, B., Rouah-Martin, E., Robbens, J., Bekaert, K., Somers, K., Devriese, L., Scippo, M. L., Blust, R. and Somers, V. (2011). The Use of Phages and Aptamers as Alternatives to Antibodies in Medical and Food Diagnostics. Biomed. Eng. Trends Res. Technol. 445–468. Dr. Sylwia Olsztynska (Ed.), InTech, DOI: 10.5772/13584. Available from: https://www.intechopen.com/books/biomedical-engineering-trends-research-and-technologies/the-use-of-phages-and-aptamers-as-alternatives-to-antibodies-inmedical-and-food-diagnostics.
  • Millipore Corporation. (2002). Rapid Lateral Flow Test Strips: Considerations for Product Development. Lit. No. TB500EN00. Millipore Corporation, Bedford, MA.
  • Muyldermans, S. (2013). Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 82:775–97.
  • Nardo, D. F., Anfossi, L., Giovannoli, C., Passini, C., Goftman, V. V., Goryacheva, I. Y. and Baggiani, C. (2016). A fluorescent immunochromatographic strip test using Quantum Dots for fumonisins detection. Talanta. 150:463–468.
  • Ngom, B., Guo, Y., Wang, X. and Bi, D. (2010). Development and Application of Lateral Flow Test Strip Technology for Detection of Infectious Agents and Chemical Contaminants: A Review. Anal. Bioanal. Chem. 397:1113–1135.
  • Ngundi, M. M., Shriver-Lake, L. C., Moore, M. H., Ligler, F. S. and Taitt, C. R. (2006). Multiplexed detection of mycotoxins in foods with a regenerable array. J. Food Prot. 69:3047–3051.
  • Niedbala, R. S., Feindt, H., Kardos, K., Vail, T., Burton, J., Bielska, B., Li, S., Milunic, D., Bourdelle, P. and Vallejo, R. (2001). Detection of Analytes by Immunoassay Using up-Converting Phosphor Technology. Anal. Biochem. 293:22–30.
  • Omidfar, K., Khorsand, F., Darziani Azizi, M. (2013). New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens. Bioelectron. 43:336–347.
  • Osikowicz, G., Beggs, M., Brookhart, P., Caplan, D., Ching, S., Eck, P., Gordon, J., Richerson, R., Sampedro, S., Stimpson, D. (1990). One-step chromatographic immunoassay for qualitative determination of choriogonadotropin in urine. Clin. Chem. 36:1586–1586.
  • Paek, S. H., Lee, S. H., Cho, J. H. and Kim, Y. S. (2000). Development of Rapid One-Step Immunochromatographic Assay. Methods. 22:53–60.
  • Parolo, C., de la Escosura-Muñiz, A. and Merkoçi, A. (2013). Enhanced Lateral Flow Immunoassay Using Gold Nanoparticles Loaded with Enzymes. Biosens. Bioelectron. 40:412–416.
  • Peng, D., Hu, S., Hua, Y., Xiao, Y., Li, Z., Wang, X. and Bi, D. (2007). Comparison of a New Gold-Immunochromatographic Assay for the Detection of Antibodies against Avian Influenza Virus with Hemagglutination Inhibition and Agar Gel Immunodiffusion Assays. Vet. Immunol. Immunopathol. 117:17–25.
  • Peng, F., Wang, Z., Zhang, S., Wu, R., Hu, S., Li, Z., Wang, X. and Bi, D. (2008). Development of an Immunochromatographic Strip for Rapid Detection of H9 Subtype Avian Influenza Viruses. Clin. Vaccine Immunol. 15:569–574.
  • Pittet, A. (1995). Keeping the Mycotoxins out: Experience Gathered by an International Food Company.” Nat. Toxins. 3:281–287.
  • Pleckaityte, M., Mistiniene, E., Lasickiene, R., Zvirblis, G. and Zvirbliene, A. (2011). Generation of Recombinant Single-Chain Antibodies Neutralizing the Cytolytic Activity of Vaginolysin, the Main Virulence Factor of Gardnerella Vaginalis. BMC Biotechnol. 11:100.
  • Posthuma-Trumpie, G. A., Korf, J. and van Amerongen, A. (2009). Lateral Flow (Immuno)assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey.” Anal. Bioanal. Chem. 393:569–582.
  • Posthuma-Trumpie, G. A., Wichers, J. H., Koets, M., Berendsen, L. B. and van Amerongen, A. (2012). Amorphous Carbon Nanoparticles: A Versatile Label for Rapid Diagnostic Immunoassays. Anal. Bioanal. Chem. 402:593–600.
  • Qian, S. and Bau, H. H. (2003). A Mathematical Model of Lateral Flow Bioreactions Applied to Sandwich Assays. Anal. Biochem. 322:89–98.
  • Qian, S. and Bau, H.H. (2004). Analysis of Lateral Flow Biodetectors: Competitive Format. Anal. Biochem. 326:211–224.
  • Radom, F., Jurek, P. M., Mazurek, M. P., Otlewski, J. and Jeleń, F. (2013). Aptamers: Molecules of Great Potential.” Biotechnol. Advan. 31:1260–74.
  • Rasooly, R., Do, P. and Hernlem, B. (2016). Sensitive, Rapid, Quantitative and in Vitro Method for the Detection of Biologically Active Staphylococcal Enterotoxin Type E. Toxins. 8:150–171.
  • Ren, M., Xu, H., Huang, X., Kuang, M., Xiong, Y., Xu, H., Xu, Y., Chen, H. and Wang, A. (2014). Immunochromatographic Assay for Ultrasensitive Detection of Aflatoxin B₁ in Maize by Highly Luminescent Quantum Dot Beads. ACS Appl. Mater. Interfaces. 6:14215–22.
  • Ren, W., Huang, Z., Xu, Y., Li, Y., Ji, Y. and Su, B. (2015). Urchin-like Gold Nanoparticle-Based Immunochromatographic Strip Test for Rapid Detection of Fumonisin B1 in Grains.” Anal. Bioanal. Chem. 407:7341–7348.
  • Reybroeck, W., Ooghe, S., Saul, S. J. and Salter, R. S. (2014). Validation of a Lateral Flow Test (MRLAFMQ) for the Detection of Aflatoxin M 1 at 50 ng L−1 in Raw Commingled Milk. Food Addit. Contamin. A. 31:2080–2089.
  • Rhouati, A., Yang, C., Hayat, A. and Marty, J. L. (2013). Aptamers: A Promising Tool for Ochratoxin A Detection in Food Analysis. Toxins. 5:1988–2008.
  • Rong-Hwa, S., Shiao-Shek, T., Der-Jiang, C. and Yao-Wen, H. (2010). Gold Nanoparticle-Based Lateral Flow Assay for Detection of Staphylococcal Enterotoxin B. Food Chem. 118:462–466.
  • Sajida, M., Kawdea, A. N. and Daud, M. (2015). Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 19:689–705.
  • Seydack, M. (2005). Nanoparticle Labels in Immunosensing Using Optical Detection Methods. Biosens. Bioelectron. 20:2454–69.
  • Shames, L. (2010). United States Government Accountability Office (GAO), Food Safety: FDA Should Strengthen Its Oversight of Food Ingredients Determined to be Generally Recognized as Safe (GRAS). Rev. Lit. Arts Amer.
  • Sharma, H. and Mutharasan, R. (2013). Half Antibody Fragments Improve Biosensor Sensitivity without Loss of Selectivity. Anal. Chem. 85:2472–77.
  • Sharma, R., Ragavan, K. V., Thakur, M. S. and Raghavarao, K. S. M. S. (2015). Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron. 74:612–627.
  • Shim, W. B. and Eremin, S. A. (2009). One-Step Simultaneous immunochromatographic strip test for multianalysis of Ochratoxin A and Zearalenone. J. Microbiol. Biotechnol. 19:83–92.
  • Shim, W. B., Mun, H., Joung, H. A., Ofori, J. A., Chung, D. H. and Kim, M. G. (2014). Chemiluminescence Competitive Aptamer Assay for the Detection of Aflatoxin B1 in Corn Samples. Food Control. 36:30–35.
  • Shukla, S., Leem, H. and Kim, M. (2011). Development of a Liposome-Based Immunochromatographic Strip Assay for the Detection of Salmonella. Anal. Bioanal. Chem. 401:2581–90.
  • Slocik, J. M., Kim, S. N., Auvil, T., Goldman, E. R., Liu, J. and Naik, R. R. (2010). Single Domain Antibody Templated Nanoparticle Resistors for Sensing. Biosens. Bioelectron. 25:1908–13.
  • Song, S., Liu, N., Zhao, Z., Njumbe Ediage, E., Wu, S., Sun, C., De Saeger, S. and Wu, A. (2014). Multiplex Lateral Flow Immunoassay for Mycotoxin Determination. Anal. Chem. 86:4995–5001.
  • Sperling, R. A. and Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A. 368:1333–83.
  • Stanker, L. H., Merrill, P., Scotcher, M. C. and Cheng, L. W. (2008). Development and partial characterization of high-affinity monoclonal antibodies for Botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J. Immunol. Methods. 336:1–8.
  • Suh, S. H. and Jaykus, L. A. (2013). Nucleic Acid Aptamers for Capture and Detection of Listeria Spp. J. Biotechnol. 167:454–461.
  • Tang, D., Sauceda, J. C., Lin, Z., Ott, S., Basova, E., Goryacheva, I., Biselli, S., Lin, J., Niessner, R. and Knopp, D. (2009). Magnetic Nanogold Microspheres-Based Lateral-Flow Immunodipstick for Rapid Detection of Aflatoxin B2 in Food. Biosens. Bioelectron. 25:514–518.
  • Taranova, N. A., Berlina, A. N., Zherdev, A. V. and Dzantiev, B. B. (2015). Traffic Light Immunochromatographic Test Based on Multicolor Quantum Dots for the Simultaneous Detection of Several Antibiotics in Milk. Biosens. Bioelectron. 63:255–261.
  • Tarr, P. I., Gordon, C. A. and Chandler, W. L. (2005). Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 365:1073–1086.
  • Tighe, P. J., Ryder, R. R., Todd, I. and Fairclough, L. C. (2015). ELISA in the Multiplex Era: Potentials and Pitfalls. Proteomics Clin. Appl. 9:406–422.
  • Tippkötter, N., Stückmann, H., Kroll, S., Winkelmann, G., Noack, U., Scheper, T., Ulber, R. (2009). A semi-quantitative dipstick assay for microcystin. Anal. Bioanal. Chem. 394:863–869.
  • Tu, D., Zheng, W., Liu, Y., Zhu, H. and Chen, X. (2014). Luminescent Biodetection Based on Lanthanide-Doped Inorganic Nanoprobes. Coord. Chem. Rev. 273:13–29.
  • Tuerk, C. and Gold, L. (1990). Systematic Evolution of Ligands by Exponential Enrichment - Rna Ligands To Bacteriophage-T4 DNA-Polymerase. Science. 249:505–510.
  • Urusov, A. E., Zherdev, A. V. and Dzantiev, B. B. (2014). Use of Gold Nanoparticle-Labeled Secondary Antibodies to Improve the Sensitivity of an Immunochromatographic Assay for Aflatoxin B1. Microchim. Acta 181:1939–1946.
  • Vale, P., Gomes, S. S., Lameiras, J., Rodrigues, S. M., Botelho, M. J. and Laycock, M. V. (2009). Assessment of a new lateral flow immunochromatographic (LFIC) assay for the ODA group of toxins using naturally contaminated bivalve shellfish from the Portuguese coast. Food Addit. Contam. 26:214–220.
  • Van Amerongen, A., Wichers, J. H., Berendsen, L. B. J. M., Timmermans, A. J. M., Keizer, G. D., Van Doorn, A. W. J., Bantjes, A. and Van Gelder, W. M. J. (1993). Colloidal Carbon Particles as a New Label for Rapid Immunochemical Test Methods: Quantitative Computer Image Analysis of Results. J. Biotechnol. 30:185–195.
  • van de Rijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedbala, R. S. and Tanke, H. J. (2001). Up-Converting Phosphor Reporters for Nucleic Acid Microarrays. Nat. Biotechnol. 19:273–276.
  • Venkataramana, M., Navya, K., Chandranayaka, S., Priyanka, S. R., Murali, H. S. and Batra, H. V. (2014). Development and Validation of an Immunochromatographic Assay for Rapid Detection of Fumonisin B1 from Cereal Samples. J. Food Sci. Technol. 51:1920–1928.
  • Vunrcrzant, C. and Pllustoesser, D. F. (1987). Compeodium of Methods for Microbiological Examination of Food, 3rd ed. American Public Health Association, New York, NY.
  • Wang, F., Banerjee, D., Liu, Y., Chen, X. and Liu, X. (2010a). Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy. Analyst. 135:1839–54.
  • Wang, H., Liu, Y., Li, M., Huang, H., Xu, H. M., Hong, R. J. and Shen, H. (2010b). Multifunctional TiO2 Nanowires-Modified Nanoparticles Bilayer Film for 3D Dye-Sensitized Solar Cells. Optoelectronics Advanced Materials Rapid Communications 4:1166–69.
  • Wang, J., Katani, R., Li, L., Hegde, N., Roberts, E.L., Kapur, V. and DebRoy, C. (2016). Rapid Detection of Escherichia Coli O157 and Shiga Toxins by Lateral Flow Immunoassays. Toxins. 8:92.
  • Wang, J., Wang, Z. H., Liu, J., Li, H., Li, Q. X., Li, J. and Xu, T. (2013a). Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples. Food Chem. 136:1478–1483.
  • Wang, L., Chen, W., Ma, W., Liu, L., Ma, W., Zhao, Y., Zhu, Y., Xu, L., Kuang, H. and Xu, C. (2011a). Fluorescent Strip Sensor for Rapid Determination of Toxins. Chem. Commun. 47:1574–76.
  • Wang, L., Ma, W., Chen, W., Liu, L., Ma, W., Zhu, Y., Xu, L., Kuang, H. and Xu, C. (2011b). An Aptamer-Based Chromatographic Strip Assay for Sensitive Toxin Semi-Quantitative Detection. Biosens. Bioelectron. 26:3059–62.
  • Wang, X., Li, K., Shi, D., Xiong, N., Jin, X., Yi, J. and Bi, D. (2007). Development of an Immunochromatographic Lateral-Flow Test Strip for Rapid Detection of Sulfonamides in Eggs and Chicken Muscles. J. Agri. Food Chem. 55:2072–78.
  • Wang, Y., Tang, L. J. and Jiang, J. H. (2013b). Surface-Enhanced Raman Spectroscopy-Based, Homogeneous, Multiplexed Immunoassay with Antibody-Fragments-Decorated Gold Nanoparticles. Anal. Chem. 85:9213–20.
  • Wang, Y. K., Yan, Y. X., Ji, W. H., Wang, H. A., Li, S. Q., Zou, Q. and Sun, J. H. (2013c). Rapid Simultaneous Quantification of Zearalenone and Fumonisin B1 in Corn and Wheat by Lateral Flow Dual Immunoassay. J. Agri. Food Chem. 61:5031–5036.
  • Wang, Z., Zhi, D. J., Zhao, Y., Zhang, H., Wang, X., Ru, Y. and Li, H. (2014). Lateral Flow Test Strip Based on Colloidal Selenium Immunoassay for Rapid Detection of Melamine in Milk, Milk Powder, and Animal Feed. Int. J. Nanomed. 9:1699–1707.
  • Warsinke, A. (2009). Point-of-Care Testing of Proteins. Anal. Bioanal. Chem. 393:1393–1405.
  • Wong, R. and Tse, H. (2008). Lateral Flow Immunoassay (Google eBook). Humana Press, Springer, NY, USA.
  • Xing, C., Liu, L., Song, S., Feng, M., Kuang, H. and Xu, C. (2015). Ultrasensitive Immunochromatographic Assay for the Simultaneous Detection of Five Chemicals in Drinking Water. Biosens. Bioelectron. 66:445–453.
  • Xu, Q., Xu, H., Gu, H., Li, J., Wang, Y. and Wei, M. (2009). Development of Lateral Flow Immunoassay System Based on Superparamagnetic Nanobeads as Labels for Rapid Quantitative Detection of Cardiac Troponin I. Mater. Sci. Eng. C. 29:702–707.
  • Xu, Y., Huang, Z. B., He, Q. H., Deng, S. Z., Li, L. S. and Li, Y. P. (2010). Development of an Immunochromatographic Strip Test for the Rapid Detection of Deoxynivalenol in Wheat and Maize. Food Chem. 119:834–839.
  • Yadav, R., Dwivedi, S., Kumar, S. and Chaudhury, A. (2010). Trends and Perspectives of Biosensors for Food and Environmental Virology. Food Environ. Virol. 2:53–63.
  • Yamasaki, E., Sakamoto, R., Matsumoto, T., Morimatsu, F., Kurazono, T., Hiroi, T., Nair, G. B., Kurazono, H. (2013). Development of an immunochromatographic test strip for detection of cholera toxin. BioMed. Res. Int. 2013:679038-1–679038-7.
  • Yang, W., Li, X. B., Liu, G. W., Zhang, B. B., Zhang, Y., Kong, T., Tang, J. J., Li, D. N. and Wang, Z. (2011). A Colloidal Gold Probe-Based Silver Enhancement Immunochromatographic Assay for the Rapid Detection of Abrin-A. Biosens. Bioelectron. 26:3710–13.
  • Yonekita, T., Ohtsuki, R., Hojo, E., Morishita, N., Matsumoto, T., Aizawa, T. and Morimatsu, F. (2013). Development of a Novel Multiplex Lateral Flow Assay Using an Antimicrobial Peptide for the Detection of Shiga Toxin-Producing Escherichia Coli. J. Microbiol. Methods. 93:251–256.
  • Yu, Q., Li, H., Li, C., Zhang, S., Shen, J. and Wang, Z. (2015). Gold Nanoparticles-Based Lateral Flow Immunoassay with Silver Staining for Simultaneous Detection of Fumonisin B1 and Deoxynivalenol. Food Control. 54:347–352.
  • Zhang, K., Wu, J., Li, Y., Wu, Y., Huang, T., Tang, D. (2014). Hollow nanogold microsphere-signalized lateral flow immunodipstick for the sensitive determination of the neurotoxin Brevetoxin B. Microchim. Acta 181:1447–1454.
  • Zhang, X., Wu, C., Wen, K., Jiang, H., Shen, J., Zhang, S. and Wang, Z. (2015). Comparison of Fluorescent Microspheres and Colloidal Gold as Labels in Lateral Flow Immunochromatographic Assays for the Detection of T-2 Toxin. Molecules. 21:27.
  • Zhang, Z., Lin, M., Zhang, S. and Vardhanabhuti, B. (2013). Detection of Aflatoxin M1 in Milk by Dynamic Light Scattering Coupled with Superparamagnetic Beads and Gold Nanoprobes. J. Agri. Food Chem. 61:4520–25.
  • Zhao, Y., Liu, X., Wang, X., Sun, C., Wang, X., Zhang, P., Qiu, J., Yang, R. and Zhou, L. (2016). Development and Evaluation of an up-Converting Phosphor Technology-Based Lateral Flow Assay for Rapid and Quantitative Detection of Aflatoxin B1 in Crops. Talanta. 161:297–303.
  • Zhao, Y., Zhang, G., Liu, Q., Teng, M., Yang, J. and Wang, J. (2008). Development of a Lateral Flow Colloidal Gold Immunoassay Strip for the Rapid Detection of Enrofloxacin Residues Development of a Lateral Flow Colloidal Gold Immunoassay Strip for the Rapid Detection of. J. Agri. Food Chem. 56:12138–12142.
  • Zhou, L., Wang, J., Li, D. and Li, Y. (2014). An Electrochemical Aptasensor Based on Gold Nanoparticles Dotted Graphene Modified Glassy Carbon Electrode for Label-Free Detection of Bisphenol A in Milk Samples. Food Chem. 162:34–40.
  • Zhou, Y., Pan, F. G., Li, Y. S., Zhang, Y. Y., Zhang, J. H., Lu, S. Y., Ren, H. L., Liu, Z. S. (2009). Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples. Biosens. Bioelectron. 24:2744–2747.
  • Zuo, P., Li, X., Dominguez, D. C. and Ye, B. C. (2013). A PDMS/paper/glass Hybrid Microfluidic Biochip Integrated with Aptamer-Functionalized Graphene Oxide Nano-Biosens. for One-Step Multiplexed Pathogen Detection. Lab On Chip. 13:3921–3928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.