1,762
Views
8
CrossRef citations to date
0
Altmetric
Articles

Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa

, &

References

  • Abdel-Aziz, M., Abass, A., Zalata, K., Al-Galel, T. A., Allam, U., and Karrouf, G. (2014). Effect of dexamethasone and Nigella sativa on inducible nitric oxide synthase in the lungs of a murine model of allergic asthma. Iran J. Allergy Asthma Immunol. 13:324–334.
  • Abdel-Hamid, N., Abdel-Ghany, M., Nazmy, M., and Amgad, S. (2013). Can methanolic extract of Nigella sativa seed affect glyco-regulatory enzymes in experimental hepatocellular carcinoma? Environ Health Prev. Med. 18:49–56.
  • Abuharfeil, N., Maraqa, A., and Von Kleist, S. (2000). Augmentation of natural killer cell activity in vitro against tumor cells by wild plants from Jordan. J. Ethnopharmacol. 71:55–63.
  • Abuharfeil, N., Salim, M., and Von Kleist, S. (2001). Augmentation of natural killer cell activity in vivo against tumour cells by some wild plants from Jordan. Phytother Res. 15:109–113.
  • AbuKhader, M. M. (2013). Thymoquinone in the clinical treatment of cancer: Fact or fiction? Pharmacogn. Rev. 7:117–120.
  • Agbaria, R., Gabarin, A., Dahan, A., and Ben-Shabat, S. (2015). Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed. Drug Des. Devel. Ther. 9:3119–3124.
  • Ahmad, S., and Beg, Z. H. (2013a). Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem. 138:1116–1124.
  • Ahmad, S., and Beg, Z. H. (2013b). Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia. Lipids Health Dis. 12:86.
  • Ahmad, S., and Beg, Z. H. (2014). Mitigating role of thymoquinone rich fractions from Nigella sativa oil and its constituents, thymoquinone and limonene on lipidemic-oxidative injury in rats. Springerplus 3:316.
  • Ahmad, S., and Beg, Z. H. (2016). Evaluation of therapeutic effect of omega-6 linoleic acid and thymoquinone enriched extracts from Nigella sativa oil in the mitigation of lipidemic oxidative stress in rats. Nutrition 32:649–655.
  • Ahmad, A., Husain, A., Mujeeb, M., et al. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 3:337–352.
  • Al-Ali, A., Alkhawajah, A. A., Randhawa, M. A., and Shaikh, N. A. (2008). Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J. Ayub. Med. Coll. Abbottabad. 20:25–27.
  • Al-Amri, A. M., and Bamosa, A. O. (2009). Phase I safety and clinical activity study of thymoquinone in patients with advanced refractory malignant disease. Shiraz E-Med. J. 10:107–111.
  • Al-Ghamdi, M. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol. 76:45–48.
  • Al-Naggar, T., Gomez-Serranillos, M., Carretero, M., and Villar, A. (2003). Neuropharmacological activity of Nigella sativa L. extracts. J. Ethnopharmacol. 88:63–68.
  • Alenzi, F., El-Bolkiny, Y. E.-S., and Salem, M. (2010). Protective effects of Nigella sativa oil and thymoquinone against toxicity induced by the anticancer drug cyclophosphamide. Br. J. Biomed. Sci. 67:20–28.
  • Ali, B., and Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytother. Res. 17:299–305.
  • Arafa, E.-S. A., Zhu, Q., Shah, Z. I., et al. (2011). Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Res. 706:28–35.
  • Archana, P., Rao, B. N., and Rao, B. S. (2011). Modulation of gamma ray-induced genotoxic effect by thymol, a monoterpene phenol derivative of cymene. Integr. Cancer Ther. 10:374–383.
  • Asfour, W., Almadi, S., and Haffar, L. (2013). Thymoquinone suppresses cellular proliferation, inhibits VEGF production and obstructs tumor progression and invasion in the rat model of DMH-induced colon carcinogenesis. Pharmacol. Pharmacy 4:7–17.
  • Ashour, A. E., Abd-Allah, A. R., Korashy, H. M., et al. (2014). Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol. Cell. Biochem. 389:85–98.
  • Attoub, S., Sperandio, O., Raza, H., et al. (2013). Thymoquinone as an anticancer agent: Evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol. 27:557–569.
  • Awad, E. (2005). In vitro decreases of the fibrinolytic potential of cultured human fibrosarcoma cell line, HT1080, by Nigella sativa oil. Phytomedicine 12:100–107.
  • Badary, O. A., and Gamal El-Din, A. M. (2001). Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect. Prev. 25:362–368.
  • Badary, O. A., Taha, R. A., Gamal El-Din, A. M., and Abdel-Wahab, M. H. (2003). Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol. 26:87–98.
  • Badary, O. A., Al-Shabanah, O. A., Nagi, M. N., Al-Bekairi, A. M., and Elmazar, M. (1998). Acute and subchronic toxicity of thymoquinone in mice. Drug Dev. Res. 44:56–61.
  • Badr, G., Alwasel, S., Ebaid, H., Mohany, M., and Alhazza, I. (2011a). Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring. Cell Immunol. 267:133–140.
  • Badr, G., Mohany, M., and Abu-Tarboush, F. (2011b). Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression. Lipids Health Dis. 10:236.
  • Banerjee, S., Kaseb, A. O., Wang, Z., et al. (2009). Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res. 69:5575–5583.
  • Banerjee, S., Azmi, A. S., Padhye, S., et al. (2010). Structure-activity studies on therapeutic potential of Thymoquinone analogs in pancreatic cancer. Pharm Res. 27:1146–1158.
  • Banerjee, S., Padhye, S., Azmi, A., et al. (2010). Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr. Cancer 62:938–946.
  • Barrett, B., Kiefer, D., and Rabago, D. (1999). Assessing the risks and benefits of herbal medicine: An overview of scientific evidence. Altern. Ther. Health Med. 5:40–49.
  • Breyer, S., Effenberger, K., and Schobert, R. (2009). Effects of thymoquinone-fatty acid conjugates on cancer cells. Chem. Med. Chem. 4:761–768.
  • Bun, S. S., Elias, R., Baghdikian, B., Ciccolini, J., Ollivier, E., and Balansard, G. (2008). α-hederin potentiates 5-FU antitumor activity in human colon adenocarcinoma cells. Phytother. Res. 22:1299–1302.
  • Butt, M. S., and Sultan, M. T. (2010). Nigella sativa: Reduces the risk of various maladies. Crit. Rev. Food Sci. Nutr. 50:654–665.
  • Chakrabarty, A., Emerson, M., and LeVine, S. (2003). Hemeoxygenase-1 in SJL mice with experimental allergic encephalomyelitis. Mult. Scler. 9:372–381.
  • Chehl, N., Chipitsyna, G., Gong, Q., Yeo, C. J., and Arafat, H. A. (2009). Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 11:373–381.
  • Chen, M.-C., Lee, N.-H., Hsu, H.-H., et al. (2015). Thymoquinone induces caspase-independent, autophagic cell death in CPT-11-resistant lovo colon cancer via mitochondrial dysfunction and activation of JNK and p38. J. Agric. Food Chem. 63:1540–1546.
  • Cheng, L., Xia, T.-S., Wang, Y.-F., et al. (2014). The anticancer effect and mechanism of α-hederin on breast cancer cells. Int. J. Oncol. 45:757–763.
  • Choudhary, S., Keshavarzian, A., Yong, S., Wade, M., Bocckino, S., Day, B., and Banan, A. (2001). Novel antioxidants zolimid and AEOL11201 ameliorate colitis in rats. Dig. Dis. Sci. 46:2222–2230.
  • Deb, D. D., Parimala, G., Devi, S. S., and Chakraborty, T. (2011). Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem. Biol. Interact. 193:97–106.
  • Dergarabetian, E., Ghattass, K., El-Sitt, S., et al. (2012). Thymoquinone induces apoptosis in malignant T-cells via generation of ROS. Front. Biosci. 5:706–719.
  • Donaldson, K. (1997). Introduction to the healing herbs. ORL Head and Neck Nurs. 16:9–16.
  • Duncker, S. C., Philippe, D., Martin-Paschoud, C., Moser, M., Mercenier, A., and Nutten, S. (2012). Nigella sativa (Black Cumin) seed extract alleviates symptoms of allergic diarrhea in mice, involving opioid receptors. PLoS One 7:e39841.
  • Effenberger, K., Breyer, S., and Schobert, R. (2010). Terpene conjugates of the Nigella sativa seed-oil constituent thymoquinone with enhanced efficacy in cancer cells. Chem. Biodivers. 7:129–139.
  • El-Baba, C., Mahadevan, V., Fahlbusch, F. B, Mohan, S. S., Rau, T. T., Gali-Muhtasib, H., and Schneider-Stock, R. (2014). Thymoquinone-induced conformational changes of PAK1 interrupt prosurvival MEK-ERK signaling in colorectal cancer. Mol. Cancer 13:201.
  • El-Dakhakhany, M. (1963). Studies on the chemical constitution of Egyptian N. sativa L. seeds. Planta Med. 11:465–470.
  • El-Dakhakhny, M., Madi, N., Lembert, N., and Ammon, H. (2002). Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats. J. Ethnopharmacol. 81:161–164.
  • El-Gouhary, I., Mohamed, A., Suleiman, S., and Benghuzzi, H. (2004). Comparison of the amelioration effects of two enzyme inducers on the inflammatory process of experimental allergic encephalitis (EAE) using immunohistochemical technique. Biomed. Sci. Instrum. 41:376–381.
  • Elkadi, A., and Kandil, O. (1986). Effect of Nigella sativa (the black seed) on immunity. Proceeding of the 4th International Conference on Islamic Medicine, Kuwait. Bull Islamic Med 4:344–348.
  • El-Kadi, A., Kandil, O., and Tabuni, A. (1987). Nigella sativa cell-mediated immunity. Arch AIDS Res. 1:232–233.
  • El-Najjar, N., Chatila, M., Moukadem, H., et al. (2010). Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15:183–195.
  • El-Najjar, N., Ketola, R. A., Nissilä, T., et al. (2011). Impact of protein binding on the analytical detectability and anticancer activity of thymoquinone. J. Chem. Biol. 4:97–107.
  • El-Mahdy, M. A., Zhu, Q., Wang, Q. E., Wani, G., and Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int. J. Cancer 117:409–417.
  • El Gazzar, M. (2007). Thymoquinone suppressses in vitro production of IL-5 and IL-13 by mast cells in response to lipopolysaccharide stimulation. Inflamm. Res. 56:345–351.
  • El Gazzar, M., El Mezayen, R., Nicolls, M. R., Marecki, J. C., and Dreskin, S. C. (2006). Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim. Biophys. Acta 1760:1088–1095.
  • El Gazzar, M. A., El Mezayen, R., Nicolls, M. R., and Dreskin, S. C. (2007). Thymoquinone attenuates proinflammatory responses in lipopolysaccharide-activated mast cells by modulating NF-kappaB nuclear transactivation. Biochim. Biophys. Acta 1770:556–564.
  • ElKhoely, A., Hafez, H. F., Ashmawy, A. M., Badary, O., Abdelaziz, A., Mostafa, A., and Shouman, S. A. (2015). Chemopreventive and therapeutic potentials of thymoquinone in HepG2 cells: Mechanistic perspectives. J. Nat. Med. 69:313–323.
  • Erboga, M., Kanter, M., Aktas, C., Sener, U., Erboga, Z. F., Donmez, Y. B., and Gurel, A. (2016). Thymoquinone ameliorates cadmium-induced nephrotoxicity, apoptosis, and oxidative stress in rats is based on its anti-apoptotic and anti-oxidant properties. Biol. Trace. Elem. Res. 170:165–172.
  • Gali-Muhtasib, H., Diab-Assaf, M., Boltze, C., et al. (2004a). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int. J. Oncol. 25:857–866.
  • Gali-Muhtasib, H. U., Kheir, W. G. A., Kheir, L. A., Darwiche, N., and Crooks, P. A. (2004b). Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 15:389–399.
  • Gali-Muhtasib, H., Kuester, D., Mawrin, C., et al. (2008a). Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res. 68:5609–5618.
  • Gali-Muhtasib, H., Ocker, M., Kuester, D., et al. (2008b). Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J. Cell. Mol. Med. 12:330–342.
  • Hadi, V., Kheirouri, S., Alizadeh, M., Khabbazi, A., and Hosseini, H. (2016). Effects of Nigella sativa oil extract on inflammatory cytokine response and oxidative stress status in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Avicenna J. Phytomed. 6:34–43.
  • Harpole, J. L., Tucci, M., and Benghuzzi, H. (2015). Pathophysiological effects of thymoquinone and epigallocatechin-3-gallate on SK-OV-3 ovarian cancer like cell line. Biomed. Sci. Instrum. 51:31–39.
  • Hirschberg, Y., Shackelford, A., Mascioli, E. A., Babayan, V. K., Bistrian, B. R., and Blackburn, G. L. (1990). The response to endotoxin in guinea pigs after intravenous black currant seed oil. Lipids 25:491–496.
  • Hoque, A., Lippman, S. M., Wu, T.-T., et al. (2005). Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: A potential target for prevention. Carcinogenesis 26:785–791.
  • Horvathova, E., Navarova, J., Galova, E., et al. (2014). Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem. 62:6632–6639.
  • Houghton, P. J., Zarka, R., de las Heras, B., and Hoult, J. (1995). Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta. Med. 61:33–36.
  • Huat, B. T. K., and Swamy, S. M. K. (2003). Intracellular glutathione depletion and reactive oxygen species generation are important in α-hederin-induced apoptosis of P388 cells. Mol. Cell Biochem. 245:127–139.
  • Hussain, A. R., Ahmed, M., Ahmed, S., et al. (2011). Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic. Biol. Med. 50:978–987.
  • Ichwan, S., Al-Ani, I. M., Bilal, H. G., Suriyah, W. H., Taher, M., and Ikeda, M. A. (2014). Apoptotic activities of thymoquinone, an active ingredient of black seed (Nigella sativa), in cervical cancer cell lines. Chin. J. Physiol. 57:249–255.
  • Iskender, B., Izgi, K., Hizar, E., Jauch, J., Arslanhan, A., Yuksek, E. H., and Canatan, H. (2016). Inhibition of epithelial-mesenchymal transition in bladder cancer cells via modulation of mTOR signalling. Tumor Biol. 37:8281–8291.
  • Ivankovic, S., Stojkovic, R., Jukic, M., Milos, M., Milos, M., and Jurin, M. (2006). The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp. Oncol. 28:220–224.
  • Kaseb, A. O., Chinnakannu, K., Chen, D., et al. (2007). Androgen receptor- and E2F-1-targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res. 67:7782–7788.
  • Ke, X., Zhao, Y., Lu, X., et al. (2015). TQ inhibits hepatocellular carcinoma growth in vitro and in vivo via repression of Notch signaling. Oncotarget 6:32610–32621.
  • Keyhanmanesh, R., Nazemiyeh, H., Mazouchian, H., Asl, M. M. B., Shoar, M. K, Alipour, M. R., and Boskabady, M. H. (2014). Nigella sativa pretreatment in guinea pigs exposed to cigarette smoke modulates in vitro tracheal responsiveness. Iran Red. Crescent. Med. J. 16:e10421.
  • Khader, M., Bresgen, N., and Eckl, P. (2009). In vitro toxicological properties of thymoquinone. Food Chem. Toxicol. 47:129–133.
  • Khader, M., Bresgen, N., and Eckl, P. (2010). Antimutagenic effects of ethanolic extracts from selected Palestinian medicinal plants. J. Ethnopharmacol. 127:319–324.
  • Khan, A., Chen, H., Tania, M., and Zhang, D. (2011). Anticancer activities of Nigella sativa (black cumin). Afr. J. Tradit. Complement Altern. Med. 8:226–232.
  • Khan, M. A., Tania, M., Wei, C., et al. (2015). Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6:19580–19591.
  • Koch, T. R., Yuan, L.-X., Stryker, S. J., Ratliff, P., Telford, G. L., and Opara, E. C. (2000). Total antioxidant capacity of colon in patients with chronic ulcerative colitis. Dig. Dis. Sci. 45:1814–1819.
  • Kruk, I., Michalska, T., Lichszteld, K., Kładna, A., and Aboul-Enein, H. Y. (2000). The effect of thymol and its derivatives on reactions generating reactive oxygen species. Chemosphere 41:1059–1064.
  • Kumara, S. S. M., and Huat, B. T. K. (2001). Extraction, isolation and characterisation of antitumor principle, α-hederin, from the seeds of Nigella sativa. Planta Med. 67:29–32.
  • Li, F., Rajendran, P., and Sethi, G. (2010). Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br. J. Pharmacol. 161:541–554.
  • Liang, W. Z., and Lu, C. H. (2012). Carvacrol-induced [Ca2+]i rise and apoptosis in human glioblastoma cells. Life Sci. 90:703–711.
  • Linjawi, S., Khalil, W., Hassanane, M. M., and Ahmed, E. S. (2015). Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats. Arch. Med. Sci. 11:220–229.
  • Mahgoub, A. A. (2003). Thymoquinone protects against experimental colitis in rats. Toxicol. Lett. 143:133–143.
  • Mahmood, M. S., Gilani, A., Khwaja, A., Rashid, A., and Ashfaq, M. (2003). The in vitro effect of aqueous extract of Nigella sativa seeds on nitric oxide production. Phytother. Res. 17:921–924.
  • Majdalawieh, A., and Ro, H. S. (2010). Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm. 2010:823821.
  • Majdalawieh, A., and Ro, H. S. (2010). PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl. Recept. Signal. 8:e004.
  • Majdalawieh, A. F., and Carr, R. I. (2010). In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Med. Food. 13:371–381.
  • Majdalawieh, A. F., Hmaidan, R., and Carr, R. I. (2010). Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J. Ethnopharmacol. 131:268–275.
  • Mansour, M., and Tornhamre, S. (2004). Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J. Enzyme Inhib. Med. Chem. 19:431–436.
  • Mansour, M., Ginawi, O., El-Hadiyah, T., El-Khatib, A., Al-Shabanah, O., and Al-Sawaf, H. (2001). Effects of the volatile oil constituents of Nigella sativa on carbon tetrachloride induced hepatotoxicity in mice: Evidence for antioxidant effects of thymoquinone. Res. Commun. Mol. Pathol. Pharmacol. 110:239–251.
  • Marsik, P., Kokoska, L., Landa, P., Nepovim, A., Soudek, P., and Vanek, T. (2005). In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1-and-2-catalyzed prostaglandin E2 biosyntheses. Planta Med. 71:739–742.
  • Mohamed, A., Afridi, D., Garani, O., and Tucci, M. (2004). Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis. Biomed. Sci. Instrum. 41:388–393.
  • Mu, H., Yang, S., Wang, Y., and Chen, Y. (2012). Role of NF-κB in the anti-tumor effect of thymoquinone on bladder cancer. Zhonghua Yi Xue Za Zhi 92:392–396.
  • Nagi, M. N., and Mansour, M. A. (2000). Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacol. Res. 41:283–289.
  • Nagi, M. N., and Almakki, H. A. (2009). Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: Possible role in protection against chemical carcinogenesis and toxicity. Phytother. Res. 23:1295–1298.
  • Nagi, M. N., Alam, K., Badary, O. A., Al-Shabanah, O. A., Al-Sawaf, H. A., and Al-Bekairi, A. M. (1999). Thymoquinone protects against carbon tetrachloride hetatotoxicity in mice via an antioxidant mechanism. IUBMB Life 47:153–159.
  • Ng, W. K., Yazan, L. S., and Ismail, M. (2011). Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein. Toxicol in vitro 25:1392–1398.
  • Nieto, N., Torres, M., Fernandez, M., Giron, M., Rios, A., Suarez, M., and Gil, A. (2000). Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Dig. Dis. Sci. 45:1820–1827.
  • Nikakhlagh, S., Rahim, F., Aryani, F. H. N., Syahpoush, A., Brougerdnya, M. G., and Saki, N. (2011). Herbal treatment of allergic rhinitis: The use of Nigella sativa. Am. J. Otolaryngol. 32:402–407.
  • Paramasivam, A., Raghunandhakumar, S., Priyadharsini, J. V., and Jayaraman, G. (2015). In vitro anti-neuroblastoma activity of thymoquinone against neuro-2a cells via cell-cycle arrest. Asian Pac. J. Cancer Prev. 16:8313–8319.
  • Parbin, S., Shilpi, A., Kar, S., et al. (2015). Insights into the molecular interactions of thymoquinone with histone deacetylase: Evaluation of the therapeutic intervention potential against breast cancer. Mol. Biosyst. 12:48–58.
  • Peng, L., Liu, A., Shen, Y., et al. (2013). Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol Rep. 29:571–578.
  • Rahmani, A. H., Alzohairy, M. A., Khan, M. A., and Aly, S. M. (2014). Therapeutic implications of black seed and its constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid. Based Complement Alternat. Med. 2014:1–13.
  • Rajamanickam, S., and Agarwal, R. (2008). Natural products and colon cancer: Current status and future prospects. Drug. Develop. Res. 69:460–471.
  • Rajput, S., Kumar, B. P., Dey, K. K, Pal, I., Parekh, A., and Mandal, M. (2013a). Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci. 93:783–790.
  • Rajput, S., Kumar, B. P., Sarkar, S., et al. (2013b). Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer. PLoS One 8:e61342.
  • Randhawa, M. A., and Alghamdi, M. S. (2011). Anticancer activity of Nigella sativa (black seed) - a review. Am. J. Chin. Med. 39:1075–1091.
  • Rastogi, L., Feroz, S., Pandey, B. N., Jagtap, A., and Mishra, K. P. (2010). Protection against radiation-induced oxidative damage by an ethanolic extract of Nigella sativa L. Int. J. Radiat. Biol. 86:719–731.
  • Richards, L., Jones, P., Hughes, J., Benghuzzi, H., and Tucci, M. (2005). The physiological effect of conventional treatment with epigallocatechin-3-gallate, thymoquinone, and tannic acid on the LNCaP cell line. Biomed. Sci. Instrum. 42:357–362.
  • Roepke, M., Diestel, A., Bajbouj, K., et al. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol. Ther. 6:160–169.
  • Rooney, S., and Ryan, M. (2005). Modes of action of alpha-hederin and thymoquinone, active constituents of Nigella sativa, against HEp-2 cancer cells. Anticancer Res. 25:4255–4259.
  • Rooney, S., and Ryan, M. (2005). Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer Res. 25:2199–2204.
  • Sakalar, C., Yuruk, M., Kaya, T., Aytekin, M., Kuk, S., and Canatan, H. (2013). Pronounced transcriptional regulation of apoptotic and TNF-NF-kappa-B signaling genes during the course of thymoquinone mediated apoptosis in HeLa cells. Mol. Cell Biochem. 383:243–251.
  • Şakalar, Ç., İzgi, K., İskender, B., et al. (2016). The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumor Biol. 37:4467–4477.
  • Salem, M. L. (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol. 5:1749–1770.
  • Salim, L. Z. A., Othman, R., Abdulla, M. A., et al. (2014). Thymoquinone inhibits murine leukemia WEHI-3 cells in vivo and in vitro. PLoS One 9:e115340.
  • Samarakoon, S. R., Thabrew, I., Galhena, P. B., De Silva, D., and Tennekoon, K. H. (2010). A comparison of the cytotoxic potential of standardized aqueous and ethanolic extracts of a polyherbal mixture comprised of Nigella sativa (seeds), Hemidesmus indicus (roots) and Smilax glabra (rhizome). Pharmacognosy Res. 2:335–342.
  • Satooka, H., and Kubo, I. (2012). Effects of thymol on B16-F10 melanoma cells. J. Agric Food Chem. 60:2746–2752.
  • Sayed, A. A. R. (2008). Thymoquinone protects renal tubular cells against tubular injury. Cell Biochem. Funct. 26:374–380.
  • Sayed, A. A. R., and Morcos, M. (2007). Thymoquinone decreases AGE-induced NF-κB activation in proximal tubular epithelial cells. Phytother. Res. 21:898–899.
  • Schneider-Stock, R., Fakhoury, I. H., Zaki, A. M., El-Baba, C. O., and Gali-Muhtasib, H. U. (2014). Thymoquinone: Fifty years of success in the battle against cancer models. Drug Discov. Today 19:18–30.
  • Sener, U., Uygur, R., Aktas, C., et al. (2016). Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Renal Failure 38:117–123.
  • Sethi, G., Ahn, K. S., and Aggarwal, B. B. (2008). Targeting nuclear factor-κB activation pathway by thymoquinone: Role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol. Cancer Res. 6:1059–1070.
  • Shabana, A., El-Menyar, A., Asim, M., Al-Azzeh, H., and Al Thani, H. (2013). Cardiovascular benefits of black cumin (Nigella sativa). Cardiovasc. Toxicol. 13:9–21.
  • Shabsoug, B., Khalil, R., and Abuharfeil, N. (2008). Enhancement of natural killer cell activity in vitro against human tumor cells by some plants from Jordan. J. Immunotoxicol. 5:279–285.
  • Shafi, G., Munshi, A., Hasan, T. N., Alshatwi, A. A., Jyothy, A., and Lei, D. K. (2009). Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa. Cancer Cell Int. 9:29.
  • Shoieb, A. M., Elgayyar, M., Dudrick, P. S., Bell, J. L., and Tithof, P. K. (2003). In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol. 22:107–114.
  • Singh, A. P., Chaturvedi, P., and Batra, S. K. (2007). Emerging roles of MUC4 in cancer: A novel target for diagnosis and therapy. Cancer Res. 67:433–436.
  • Stewart, B. W., and Wild, C. (ed.). (2014). World Cancer Report 2014. International Agency for Research on Cancer. World Health Organization 505. ISBN 978-92-832-0429-9
  • Sultan, M. T., Butt, M. S., Karim, R., Ahmad, N., Ahmad, R. S., and Ahmad, W. (2015). Nigella sativa fixed and essential oil improves antioxidant status through modulation of antioxidant enzymes and immunity. Pak J. Pharm. Sci. 28:589–595.
  • Swamy, S., and Tan, B. (2000). Cytotoxic and immunopotentiating effects of ethanolic extract of Nigella sativa L. seeds. J. Ethnopharmacol. 70:1–7.
  • Tan, M., Norwood, A., May, M., Tucci, M., and Benghuzzi, H. (2005). Effects of (−) epigallocatechin gallate and thymoquinone on proliferation of a PANC-1 cell line in culture. Biomed. Sci. Instrum. 42:363–371.
  • Tesarova, H., Svobodova, B., Kokoska, L., Marsik, P., Pribylova, M., Landa, P., and Vadlejch, J. (2011). Determination of oxygen radical absorbance capacity of black cumin (Nigella sativa) seed quinone compounds. Nat. Prod. Commun. 6:213–216.
  • Thabrew, M. I., Mitry, R. R., Morsy, M. A., and Hughes, R. D. (2005). Cytotoxic effects of a decoction of Nigella sativa, Hemidesmus indicus and Smilax glabra on human hepatoma HepG2 cells. Life Sci. 77:1319–1330.
  • Torres, M. P., Ponnusamy, M. P., Chakraborty, S., Smith, L. M., Das, S., Arafat, H. A., and Batra, S. K. (2010). Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: Implications for the development of novel cancer therapies. Mol. Cancer Ther. 9:1419–1431.
  • Vaillancourt, F., Silva, P., Shi, Q., Fahmi, H., Fernandes, J. C., and Benderdour, M. (2011). Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J. Cell Biochem. 112:107–117.
  • Velho-Pereira, R., Kumar, A., Pandey, B., Mishra, K., and Jagtap, A. G. (2012). Radioprotection by macerated extract of Nigella sativa in normal tissues of fibrosarcoma bearing mice. Indian J. Pharm. Sci. 74:403–414.
  • Villani, P., Orsiere, T., Sari-Minodier, I., Bouvenot, G., and Botta, A. (2000). In vitro study of the antimutagenic activity of alphahederin. Ann. Biol. Clin. 59:285–289.
  • Wang, Y. M. (2011). Inhibitory effects of thymoquinone on human pancreatic carcinoma orthotopically implanted in nude mice. Zhonghua Yi Xue Za Zhi 91:3111–3114.
  • Wilson, A. J., Saskowski, J., Barham, W., Khabele, D., and Yull, F. (2015). Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer. Mol. Cancer 14:192.
  • Womack, K., Anderson, M., Tucci, M., Hamadain, E., and Benghuzzi, H. (2005). Evaluation of bioflavonoids as potential chemotherapeutic agents. Biomed. Sci. Instrum. 42:464–469.
  • Woo, C. C., Kumar, A. P., Sethi, G., and Tan, K. H. B. (2012). Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem. Pharmacol. 83:443–451.
  • Woo, C. C., Loo, S. Y., Gee, V., Yap, C. W., Sethi, G., Kumar, A. P., and Tan, K. H. B. (2011). Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochem. Pharmacol. 82:464–475.
  • Worthen, D. R., Ghosheh, O. A., and Crooks, P. (1997). The in vitro anti-tumor activity of some crude and purified components of blackseed, Nigella sativa L. Anticancer Res. 18:1527–1532.
  • Wu, Z., Chen, Z., Shen, Y., Huang, L., and Jiang, P. (2011). Anti-metastasis effect of thymoquinone on human pancreatic cancer. Yao Xue Xue Bao 46:910–914.
  • Xuan, N. T., Shumilina, E., Qadri, S. M., Götz, F., and Lang, F. (2010). Effect of thymoquinone on mouse dendritic cells. Cell Physiol. Biochem. 25:307–314.
  • Yi, T., Cho, S.-G., Yi, Z., et al. (2008). Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther. 7:1789–1796.
  • You, J. S., and Jones, P. A. (2012). Cancer genetics and epigenetics: Two sides of the same coin? Cancer Cell. 22:9–20.
  • Yousefi, M., Barikbin, B., Kamalinejad, M., et al. (2013). Comparison of therapeutic effect of topical Nigella with Betamethasone and Eucerin in hand eczema. J. Eur. Acad. Dermatol. Venereol. 27:1498–1504.
  • Yu, S.-M., and Kim, S.-J. (2013). Thymoquinone-induced reactive oxygen species causes apoptosis of chondrocytes via PI3K/Akt and p38kinase pathway. Exp. Biol. Med. 238:811–820.
  • Yu, S. M., and Kim, S. J. (2012). Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231. Animal Cells Syst. 16:274–279.
  • Zhang, L., Bai, Y., and Yang, Y. (2016). Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB. Oncol. Lett. 12:2840–2845.
  • Zhu, W. Q., Wang, J., Guo, X. F., Liu, Z., and Dong, W. G. (2016). Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J. Gastroenterol. 22:4149–4159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.