2,671
Views
95
CrossRef citations to date
0
Altmetric
Reviews

Plant proteases for bioactive peptides release: A review

, &
Pages 2147-2163 | Received 06 Sep 2016, Accepted 15 Mar 2017, Published online: 11 Aug 2017

References

  • Abdel-Hamid, M., Otte, J., De Gobba, C., Osman, A., and Hamad, E. (2017). Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J. 66:91–98.
  • AHA statistical update. (2017). Heart Disease and Stroke Statistics—2017 Update. A report from the American Heart Association. Circulation. 135. DOI: 10.1161/CIR.0000000000000485
  • Ahn, C.-B., Lee, K.-H., and Je, J.-Y. (2010). Enzymatic production of bioactive protein hydrolysates from tuna liver: Effects of enzymes and molecular weight on bioactivity. Int. J. Food Sci. Tech. 45:562–568.
  • Alemán, A., Giménez, B., Pérez-Santin, E., Gómez-Guillén, M. C., and Montero, P. (2011). Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem. 125:334–341.
  • An, C.-I., Fukusaki, E.-I., and Kobayashi, A. (2002). Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta. 214:661–667.
  • Anagnostis, P., Athyros, V. G., Adamidou, F., Panagiotou, A., Kita, M., Karagiannis, A., and Mikhailidis, D. P. (2011). Glucagon-like peptide-1-based therapies and cardiovascular disease: Looking beyond glycaemic control. Diabetes Obes. Metab. 13:302–312.
  • Antao, C. M., and Malcata, F. X. (2005). Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol. Bioch. 43:637–650.
  • Arima, K., Uchikoba, T., Yonezawa, H., and Kaneda, M. (2013). Cucumisin. In: Handbook of proteolytic enzymes, pp. 3254–3257. Vol. 1–2., Rawlings, N.D. and Salvesen, G.S., Eds., 3rd ed. Elsevier Science BV, Amsterdam, the Netherlands.
  • Arruda, M. S., Silva, F. O., Egito, A. S., Silva, T. M. S., Lima-Filho, J. L., Porto, A. L. F., and Moreira, K. A. (2012). New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT-Food Sci. Technol. 49:73–79.
  • Asakura, T., Watanabe, H., Abe, K., and Arai, S. (1995). Rice aspartic proteinase, oryzasin, expressed during seed ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases. Eur. J. Biochem. 232:77–83.
  • Asoodeh, A., Memarpoor-Yazdi, M., and Chamani, J. (2012). Purification and characterisation of angiotensin I converting enzyme inhibitory peptides from lysozyme hydrolysates. Food Chem. 131:291–295.
  • Aspevik, T., Egede-Nissen, H., and Oterhals, A. (2016). A systematic approach to the comparison of cost efficiency of endopeptidases for the hydrolysis of Atlantic salmon (Salmo salar) by products. Food. Technol. Biotechnol. 54:421–431.
  • Babij, K., Pokora, M., Dabrowska, A., Szołtysik, M., Zambrowicz, A., and Chrzanowska, J. (2014). The evaluation of dipeptidyl peptidase (DPP)-IV, a-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (ficifolia). Int. J. Pept. Res. Ther. 20:483–491.
  • Bah, C. S. F., Carne, A., McConnell, M. A., Mros, S., and Bekhit, A. E. (2016). Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chem. 202:458–466.
  • Barbana, C., and Boye, J. I. (2011). Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: Determination of the kinetics of inhibition. Food Chem. 127:94–101.
  • Benjakul, S., Yarnpakdee, S., Senphan, T., Halldorsdottir, S. M. and Kristinsson, H. G. (2014). Fish protein hydrolysates: Production, bioactivities, and applications. In: Antioxidants and functional components in aquatic foods, pp. 237–2821. Kristinsson, H.G. and Raghavan, S., Eds., John Wiley & Sons, Ames, IA.
  • Bertucci, J. A., Liggieri, C. S., Colombo, M. L., Vairo-Cavalli, S. E., and Bruno, M. A. (2015). Application of peptidases from Maclura pomifera fruit for the production of active biopeptides from whey protein. LWT-Food Sci. Technol. 64:157–163.
  • Boots, J.-W. P. (2009). Protein hydrolysate enriched in peptides inhibiting DPP-IV and their use. US Patent No. 20090075904.
  • Bordbar, S., Anwar, F., Ebrahimpour, A., Saari, N., Hamid, A. A., and Manap, M. Y. A. (2013). The improvement of the endogenous antioxidant property of stone fish (Actinopyga lecanora) tissue using enzymatic proteolysis. BioMed Res. Int. 2013, 9 pp.
  • Cavazos, A., and Gonzalez de Mejia, E. (2013). Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf. 12:364–380.
  • Chakrabarti, S., Jahandideh, F., and Wu, J. (2014). Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. BioMed Res. Int. 2014, 12 pp.
  • Chalamaiah, M., Kumar, B. D., Hemalatha, R., and Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 135:3020–3038.
  • Chen, C., and Chi, Y. J. (2012). Antioxidant, ACE inhibitory activities and functional properties of egg white protein hydrolyzate. J. Food Biochem. 36:383–394.
  • Chen, X., Pfeil, J. E., and Gal, S. (2002). The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur. J. Biochem. 269:4675–4684.
  • Chen, Y.-C., Chang, H.-S., Wang, C.-T., and Cheng, F.-Y. (2009). Antioxidative activities of hydrolysates from duck egg white using enzymatic hydrolysis. Asian-Aust. J. Anim. Sci. 22:1587–1593.
  • Chitpinityol, S., and Crabbe, M. J. C. (1998). Chymosin and aspartic proteinases. Food Chem. 61:395–418.
  • Cho, D.-Y., Jo, K., Cho, S. Y., Kim, J. M., Lim, K., Suh, H. J., and Oh, S. (2014). Antioxidant effect and functional properties of hydrolysates derived from egg-white protein. Korean J. Food Sci. Anim. Resour. 34:362–371.
  • Choi, K. H., Laursen, R. A., and Allen, K. N. (1999). The 2.1 Å structure of a cysteine protease with proline specificity from ginger rhizome, Zingiber officinale. Biochemistry. 38:11624–11633.
  • Corrons, M. A., Bertucci, J. I., Liggieri, C. S., López, L. M. I., and Bruno, M. A. (2012). Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. LWT-Food Sci. Technol. 47:103–109.
  • Corrons, M. A., Liggieri, C. S., Trejo, S. A., and Bruno, M. A. (2017). ACE-inhibitory peptides from bovine caseins released with peptidases from Maclura pomifera latex. Food Res Int. 93:8–15.
  • Cooper, J. B. (2002). Aspartic proteinases in disease: A structural perspective. Curr. Drug Targets. 3:155–173.
  • Dabrowska, A., Szoltysik, M., Babij, K., Pokora, M., Zambrowicz, A. and Chrzanowska, J. (2013). Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein. Acta Biochim. Pol. 60:117–122.
  • Di Bernardini, R., Mullen, A. M., Bolton, D., Kerry, J., O'Neill, E., and Hayes, M. (2012). Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Sci. 90:226–235.
  • Di Pierro, G., O'Keeffe, M. B., Poyarkov, A., Lomolino, G., and FitzGerald, R. J. (2014). Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chem. 156:305–311.
  • Domingos, A., Cardoso, P. C., Xue, Z. T., Clemente, A., Brodelius, P. E., and Pais, M. S. (2000). Purification, cloning and autoproteolytic processing of an aspartic proteinase from Centaurea calcitrapa. Eur. J, Biochem. 267:6824–6831.
  • Domsalla, A., and Melzig, M. F. (2008). Occurrence and properties of proteases in plant latices. Planta Med. 74:699–711.
  • Dziuba, J., Niklewicz, M., Iwaniak, A., Darewicz, M., and Minkiewicz, P. (2004). Bioinformatic-aided prediction for release possibilities of bioactive peptide from plant proteins. Acta Aliment. 33:227–235.
  • Elevarasan, K., Kumar, V. N., and Shamasundar, B. A. (2014). Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (Catla catla) as influenced by the nature of enzyme. J. Food Process. Pres. 38:1207–1214.
  • Elavarasan, K., Shamasundar, B. A., Badii, F., and Howell, N. (2016). Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chem. 206:210–216.
  • Erdmann, K., Cheung, B. W. Y., and Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19:643–654.
  • Faro, C., and Gal, S. (2005). Aspartic proteinase content of the arabidopsis genome. Curr. Protein Pept. Sci. 6:493–500.
  • Fan, J.-B., Zheng, L.-H., Wang, F., Guo, H.-Y., Jiang, L., and Ren, F.-Z. (2010). Enzymatic hydrolysis of silk sericin by proteases and antioxidant activities of the hydrolysates. J. Food Biochem. 34:382–398.
  • Feijoo-Siota, L., and Villa, T. G. (2011). Native and biotechnologically engineered plant proteases with industrial applications. Food Bioprocess Technol. 4:1066–1088.
  • Fitzgerald, C., Mora-Soler, L., Gallagher, E., O'Connor, P., Prieto, J., Soler-Vila, A., and Hayes, M. (2012). Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J. Agric. Food Chem. 60:7421–7427.
  • Frazao, C., Bento, I., Costa, J., Soares, C. M., Verissimo, P., Faro, C., Pires, E., Cooper, J., and Carrondo, M. A. (1999). Crystal structure of cardosin A, a glycosylated and Arg-Gly-Asp- containing aspartic proteinase from the flowers of Cynara cardunculus L. J. Biol. Chem. 274:27694–27701.
  • Fujita, H., and Yoshikawa, M. (1999). LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology. 44:123–127.
  • Gajanan, P. G., Elavarasan, K., and Shamasundar, B. A. (2016). Bioactive and functional properties of protein hydrolysates from fish frame processing waste using plant proteases. Environ Sci Pollut Res. 23:24901–24911.
  • Gangopadhyay, N., Wynne, K., O'Connor, P., Gallagher, E., Brunton, N. P., Rai, D. K., and Hayes, M. (2016). In silico and in vitro analyses of the angiotensin-I converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum vulgare) protein concentrates. Food Chem. 203:367–374.
  • Gao, D., Chang, T., Li, H., and Cao, Y. (2010). Angiotensin I-converting enzyme inhibitor derived from cottonseed protein hydrolysate. Afr. J. Biotechnol. 9:8977–8982.
  • Ge, X., Dietrich, C., Matsuno, M., Li, G., Berg, H., and Xia, Y. (2005). An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO rep. 6:282–288.
  • Ghanbari, R., Ebrahimpour, A., Abdul-Hamid, A., Ismail, A., and Saari, N. (2012). Actinopyga lecanora hydrolysates as natural antibacterial agents. Int. J. Mol. Sci. 13:16796–16811.
  • Gu, R.-Z., Liu, W.-Y., Lin, F., Jin, Z.-T., Chen, L., Yi, W.-X., Lu, J., and Cai, M.-Y. (2012). Antioxidant and angiotensin I-converting enzyme inhibitory properties of oligopeptides derived from black-bone silky fowl (Gallus gallus domesticus Brisson) muscle. Food Res. Int. 49:326–333.
  • Guasch, L., Sala, E., Ojeda, M. J., Valls, C., Blade, C., Mulero, M., Blay, M., Ardénovol, A., Garcia-Vallvé, S., and Pujadas, G. (2012). Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (Part II): In silico prediction in antidiabetic extracts. Plos One., 7:e44972.
  • Guevara, M. G., Almeida, C., Mendieta, J. R., Faro, C. J., Verissimo, P., Pires, E. V., and Daleo, G. R. (2005). Molecular cloning of a potato leaf cDNA encoding an aspartic protease (StAsp) and its expression after P. infestans infection. Plant Physiol. Bioch. 43:882–889.
  • Guo, X., Zhang, J., Ma, Y., and Tian, S. (2013). Optimization of limited hydrolysis of proteins in rice residue and characterization of the functional properties of the products. J. Food Process. Pres. 37:245–253.
  • Ha, M., El-Din, A., Bekhit, A., Carne, A., and Hopkins, D. L. (2012). Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chem. 134:95–105.
  • Haque, E., Chand, R., and Kapila, S. (2009). Biofunctional properties of bioactive peptides of milk origin. Food Rev. Int. 25:28–43.
  • Hayes, M., Fernandez, A., Fitzgeral, C., Grienke, U., and Tasdemir, D. (2015). Identification of two acetylcholinesterase (AChE) inhibitory peptides from the red seaweed Palmaria palmate. NutraMara Conference paper, Dublin, Ireland.
  • Hayes, M., Mora, L., Hussey, K., and Aluko, R.E. (2016). Boarfish protein recovery using the pH-shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in spontaneously hypertensive rats. Innov Food Sci Emerg Technol. 37:253–260.
  • Hosomi, R., Fukunaga, K., Arai, H., Kanda, S., Nishiyama, T., and Yoshida, M. (2012). Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets. J. Med. Food 15:299–306.
  • Howard, A., and Udenigwe, C. C. (2013). Mechanisms and prospects of food protein hydrolysates and peptide-induced hypolipidaemia. Food Funct. 4:40–51.
  • Hsu, K., Li-Chan, E., and Jao, C. (2011). Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem. 126:617–622.
  • Huang, S.-L., Jao, C.-L., Ho, K.-P., and Hsu, K.-C. (2012). Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 35:114–121.
  • Illanes, A. (2008). Enzyme production. In: Enzyme biocatalysis, pp. 57–106. Illanes, A., Ed., Springer, The Netherlands.
  • Ichimura, T., Yamanaka, A., Otsuka, T., Yamashita, E., and Maruyama, S. (2009). Antihypertensive effect of enzymatic hydrolysate of collagen and Gly-Pro in spontaneously hypertensive rats. Biosci. Biotech. Bioch. 73:2317–2319.
  • Ishikawa, Y., Hira, T., Inoue, D., Harada, Y., Hashimoto, H., Fujii, M., Kadowaki, M., and Hara, H. (2015). Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food Funct. 6:2525–2534.
  • Iwaniak, A., and Dziuba, J. (2009a). Analysis of domains in selected plant and animal food proteins- precursors of biologically active peptides: In silico approach. Food Sci. Technol. Int. 15:179–191.
  • Iwaniak, A., and Dziuba, J. (2009b). Animal and plant proteins as precursors of peptides with ACE inhibitory activity: An in silico strategy of protein evaluation. Food Technol. Biotechnol. 47:441–449.
  • Iwaniak, A., Minkiewicz, P., and Darewicz, M. (2014). Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr. Rev. Food Sc. Food Saf. 13:114–134.
  • Jakala, P., Jauhiainen, T., Korpela, R., and Vapaatalo, H. (2009). Milk protein-derived bioactive tripeptides Ile-Pro-Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J. Funct. Foods 1:266–273.
  • Jakubowicz, D., and Froy, O. (2013). Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J. Nutr. Biochem. 24:1–5.
  • Je, J.-Y., Qian, Z.-J., Byun, H.-G., and Kim, S.-K. (2007). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 42:840–846.
  • Jimenez-Saiz, R., Benede, S., Miralles, B., Lopez-Exposito, I., Molina, E., and Lopez-Fandino, R. (2014). Immunological behavior of in vitrodigested egg-white lysozyme. Mol. Nutr. Food Res. 58:614–624.
  • Juillerat-Jeanneret, L. (2014). Dipeptidyl peptidase IV and its inhibitors: therapeutics for type 2 diabetes and what else?. J. Med. Chem. 57:2197–212.
  • Kanbargi, K. D., Sonawane, S. K., and Arya, S. S. (2016). Functional and antioxidant activity of Ziziphus jujube seed protein hydrolysates. Food Measure. 10:226–235.
  • Kang, K.-H., Qian, Z.-J., Ryu, B., Karadeniz, F., Kim, D., and Kim, S.-K. (2012). Antioxidant peptides from protein hydrolysate of microalgae Navicula incerta and their protective effects in Hepg2/CYP2E1 cells induced by ethanol. Phytother. Res. 26:1555–1563.
  • Kervinen, J., Tobin, G. J., Costa, J., Waugh, D. S., Wlodawer, A., and Zdanov, A. (1999). Crystal structure of plant aspartic proteinase prophytepsin: Inactivation and vacuolar targeting. EMBO J. 18:3947–3955.
  • Kim, E.-K., Hwang, J.-W., Kim, Y.-S., Ahn, C.-B., Kweon, H. J., Bahk, Y. Y., Moon, S.-H., Jeon, B.-T., Jeon, Y.-J., and Park, P.-J. (2013a). A novel bioactive peptide derived from enzymatic hydrolysis Ruditapes philippinarum: Purification and investigation of its free-radical quenching potential. Process Biochem. 48:325–330.
  • Kim, E.-K., Oh, H.-J., Kim, Y.-S., Hwang, J.-W., Ahn, C.-B., Lee, J. S., Jeon, Y.-J., Moon, S.-H., Sung, S. H., Jeon, B.-T., and Par, P.-J. (2013b). Purification of a novel peptide derived from Mytilus coruscus and in vitro/in vivo evaluation of its bioactive properties. Fish Shellfish Immunol. 34:1078–1084.
  • Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., and Shahidi, F. (2012). Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chem. 135:1118–1126.
  • Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., and Shahidi, F. (2013). Inhibition of angiotensin converting enzyme, human LDL cholesterol and DNA oxidation by hydrolysates from blacktip shark gelatin. LWT-Food Sci. Technol. 51:177–182.
  • Kong, X. Z., Guo, M. M., Hua, Y. F., Cao, D., and Zhang, C. M. (2008). Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol. 99:8873–8879.
  • Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R., and Egger, L. (2014). Impact of milk processing on the generation of peptides during digestion. Int. Dairy J. 35:130–138.
  • Korhonen, H., and Pihlanto, A. (2006). Bioactive peptides: Production and functionality. Int. Dairy J. 16:945–960.
  • Kumar, R., Singh, K. A., Tomar, R., and Jagannadham, M. V. (2011). Biochemical and spectroscopic characterization of a novel metalloprotease, cotinifolin from an antiviral plant shrub: Euphorbia cotinifolia. Plant Phys. Bioch. 49:721–728.
  • Lacroix, I. M. E., and Li-Chan, E. C. Y. (2012a). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J. Funct. Foods. 4:403–422.
  • Lacroix, I. M. E., and Li-Chan, E. C. Y. (2012b). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J. 25:97–102.
  • Lacroix, I. M. E., and Li-Chan, E. C. Y. (2014). Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides. 54:39–48.
  • Lacroix, I. M. E., Meng, G., Cheung, I. W. Y., and Li-Chan, E. C. Y. (2016). Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? J. Funct. Foods. 21:87–96.
  • Lacroix, I. M. E., and Li-Chan, E. C. Y. (2016). Food-derived dipeptidyl-peptidase IV inhibitors as a potential approach for glycemic regulation – current knowledge and future research considerations. Trends Food Sci. Tech. 54:1–16.
  • Lafarga, T., Aluko, R. E., Rai, D. K., O'Connor, P., and Hayes, M. (2016a). Identification of bioactive peptides from a papain hydrolysate of bovine serum albumin and assessment of an antihypertensive effect in spontaneously hypertensive rats. Food Res. Int. 81:91–99.
  • Lafarga, T., Gallagher, E., Aluko, R. E., Auty, M. A. E., and Hayes, M. (2016b). Addition of an enzymatic hydrolysate of bovine globulins to bread and determination of hypotensive effects in spontaneously hypertensive rats. J. Agric. Food Chem. 64:1741–1750.
  • Le Maux, S., Nongonierma, A. B., Barre, C., and FitzGerald, R. J. (2016). Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chem. 199:246–251.
  • Lee, J.-S., Yoo, M. A., Koo, S. H., Baek, H. H., and Lee, H. G. (2008). Antioxidant and ACE inhibitory activities of soybean hydrolysates: Effect of enzyme and degree of hydrolysis. Food Sci. Biotechnol. 17:873–877.
  • Lee, H. J., Lee, H. S., Choin, J. W., Ra, K. S., Kim, J. M., and Suh, H. J. (2011). Novel tripeptides with α-glucosidase inhibitory activity isolated from silk cocoon hydrolysate. J. Agric. Food Chem. 59:11522–11525.
  • Lee, S. Y., and Hur, S. J. (2017). Antihypertensive peptides from animal products, marine organisms, and plants. Food Chem. 228:506–517.
  • Li-Chan, E. C. Y., Hunag, S.-L., Jao, C.-L., Ho, K.-P., and Hsu, K.-C. (2012). Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem. 60:973–978.
  • Li, Q., Yi, L., Marek, P., and Iverson, B. L. (2013). Commercial proteases: Present and future. FEBS Lett. 587:1155–1163.
  • Liu, L., Wang, Y., Peng, C., and Wang, J. (2013). Optimization of the preparation of fish protein anti-obesity hydrolysates using response surface methodology. Int. J. Mol. Sci. 14:3124–3139.
  • Liu, Z., Dong, S., Xu, J., Zeng, M., Song, H., and Zhao, Y. (2008). Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control. 19:231–235.
  • Lufrano, D., Faro, R., Castanheira, P., Parisi, G., Veríssimo, P., Vairo-Cavalli, S., Simões, I., and Faro, C. (2012). Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). Phytochemistry. 81:7–18.
  • Luo, H.-Y., Wang, B., Li, Z.-R., Chi, C.-F., Zhanga, Q.-H., and He, G.-Y. (2013). Preparation and evaluation of antioxidant peptide from papain hydrolysate of Sphyrna lewini muscle protein. LWT-Food Sci. Technol. 51:281–288.
  • Luo, Y., Pan, K., and Zhong, Q. (2014). Physical, chemical and biochemical properties of casein hydrolyzed by three proteases: Partial characterizations. Food Chem. 155:146–154.
  • Macedo, I. Q., Marques, P., and Delgadillo, I. (1999). Purification and characterization of a novel plant metalloproteinase. Biotechnol. Tech. 13:677–680.
  • Majumder, K., and Wu, J. (2010). A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res. Int. 43:1371–1378.
  • Mäkinen, S., Streng, T., Larsen, L. B., Laine, A., and Pihlanto, A. (2016). Angiotensin I-converting enzyme inhibitory and antihypertensive properties of potato and rapeseed protein-derived peptides. J Funct Foods. 25:160–173.
  • Mansfeld, J. (2007). Metalloproteases. In: Industrial enzymes, pp. 221–242. Polaina, J. and MacCabe, A.P. Eds., Springer, The Netherlands.
  • Margatan, W., Ruud, K., Wang, Q., Markowski, T., and Ismail, B. (2013). Angiotensin converting enzyme inhibitory activity of soy protein subjected to selective hydrolysis and thermal processing. J. Agric. Food Chem. 61:3460–3467.
  • Marino, G., and Funk, C. (2012). Matrix metalloproteinases in plants: a brief overview. Phys. Plant. 145:196–202.
  • Marino, G., Huesgen, P. F., Eckhard, U., Overall, C. M., Schroder, W. P., and Funk, C. (2014). Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Biochem. J. 457:335–346.
  • Martinez-Maqueda, D., Miralles, B., Recio, I., and Hernandez-Ledesma, B. (2012). Antihypertensive peptides from food proteins: A review. Food Funct. 3:350–361.
  • Mazorra-Manzano, M. A., Perea-Gutiérrez, T. C., Lugo-Sánchez, M. E., Ramirez-Suarez, J. C., Torres-Llanez, M. J., González-Córdova, A. F., and Vallejo-Cordoba, B. (2013). Comparison of the milk-clotting properties of three plant extracts. Food Chem. 141:1902–1907.
  • Mazorra-Manzano, M. A., Tanaka, T., Dee, D. R., and Yada, R. Y. (2010). Structure-function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry. 71:515–523.
  • McCarthy, A. L., O'Callaghan, Y. C. and O'Brien, N. M. (2013). Protein hydrolysates from agricultural crops-bioactivity and potential for functional food development. Agriculture. 3:112–130.
  • McDonagh, D. and FitzGerald, R. J. (1998). Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. Int. Dairy J. 8:39–45.
  • Medeiros, V., Rainha, N., Paiva, L., Lima, E. and Baptista, J. (2014). Bovine milk formula based on partial hydrolysis of caseins by bromelain enzyme: Better digestibility and angiotensin-converting enzyme-inhibitory properties. Int. J. Food Prop. 17:806–817.
  • Medina-Godoy, S., Ambriz-Perez, D. L., Fuentes-Gutierrez, C. I., German-Baez, L. J., Reyes-Moreno, C., Gutierrez-Dorado, R., and Valdez-Ortiz, A. (2012). Angiotensin-converting enzyme inhibitory and antioxidative activities and functional characterization of protein hydrolysates of hard-to-cook chickpeas. J. Sci. Food Agric. 92:1974–1981.
  • Memarpoor-Yazdi, M. A., Ahmad, A., and Chamani, J. (2012a). Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme. Int. J. Pept. Res. Ther. 18:353–360.
  • Memarpoor-Yazdi, M., Asoodeh, A., and Chamania, J. (2012b). A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J. Funct. Foods. 4:278–286.
  • Miguel, M., and Aleixandre, A. (2006). Antihypertensive peptides derived from egg proteins. J. Nutr. 136:1457–1460.
  • Ahmed, I. A. M., Morishima, I., Babiker, E. E., and Mori, N. (2009). Dubiumin, a chymotrypsin-like serine protease from the seeds of Solanum dubium Fresen. Phytochemistry. 70:483–491.
  • Mochida, T., Hira, T., and Hara, H. (2010). The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology. 151:3095–3104.
  • Morimatsu, F., Ito, M., Budijanto, S., Watanabe, I., Furukawa, Y., and Kimura, S. (1996). Plasma cholesterol-suppressing effect of papain-hydrolyzed pork meat in rats fed hypercholesterolemic diet. J. Nutr. Sci. Vitaminol. 42:145–153.
  • Nafi, A., Foo, H. L., Jamilah, B., and Ghazali, H. M. (2013). Properties of proteolytic enzyme from ginger (Zingiber officinale Roscoe). Int. Food Res. J. 20:363–368.
  • Nagaoka, S., Nakamura, A., Shibata, H., and Kanamaru, Y. (2010). Soystatin (VAWWMY), a novel bile acid-binding peptide, decreased micellar solubility and inhibited cholesterol absorption in rats. Biosci. Biotech. Bioch. 74:1738–1741.
  • Najafian, L., Jafarzade, M., Said, M., and Babji, A. S. (2013). Biochemical properties and antioxidant activity of myofibrillar protein hydrolysates obtained from patin (Pangasius sutchi). Int. J. Food Sci. Tech. 48:2014–2022.
  • Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., and Takano, T. (1995). Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J. Dairy Sci. 78:777–783.
  • NCD-RiskC. (2016). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 387:1513–1530.
  • Nongonierma, A. B., and FitzGerald, R. J. (2014). Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem. 145:845–852.
  • Nongonierma, A. B., Maux, S. L., Dubrulle, C., Barre, C., and FitzGerald, R. J. (2015). Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. J. Cereal Sci. 65:112–118.
  • Oseguera-Toledo, M. E., González de Mejía, E., and Amaya-Llano, S. L. (2015). Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 76:839–851.
  • Pacheco-Aguilar, R., Mazorra-Manzano, M. A., and Ramırez-Suarez, J. C. (2008). Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem. 109:782–789.
  • Papillo, V. A., Vitaglione, P., Graziani, G., Gokmen, V., and Fogliano, V. (2014). Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. J. Agric. Food Chem. 62:4119–4126.
  • Pak, V. V., Koo, M., Kwon, D. Y. and Yun, L. (2012). Design of a highly potent inhibitory peptide acting as a competitive inhibitor of HMG-CoA reductase. Amino Acids. 43:2015–2025.
  • Pihlanto-Leppala, A. (2001). Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Tech. 11:347–356.
  • Pissarra, J., Pereira, C., Duarte, P., Costa, D. S., Teixeira, J., Figueiredo, R., and Pereira, S. (2007). From flower to seed germination in Cynara cardunculus: A role for aspartic proteinases. Int. J. Plant Dev. Biol. 1:274–281.
  • Pokora, M., Zambrowicz, A., Dabrowska, A., Eckert, E., Setner, B., Szołtysik, M., Szewczuk, Z., Zabłocka, A., Polanowski, A., Trziszka, T., and Chrzanowska, J. (2014). An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides. Food Chem. 151:500–505.
  • Qian, Z. J., Jung, W. K., and Kim, S. K. (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technol. 99:1690–1698.
  • Qian, Z. Y., Jollès, P., Migliore-Samour, D., Schoentgen, F., and Fiat, A. M. (1995). Sheep k-casein peptides inhibit platelet aggregation. BBA-Gen. Subjects. 1244:411–417.
  • Ramakrishna, V., Rajasekhar, S., and Reddy, L. S. (2010). Identification and purification of metalloprotease from dry grass pea (Lathyrus sativus L.) seeds. Appl. Biochem. Biotech. 160:63–71.
  • Ramos, O. H. P., and Selistre-de-Araujo, H. S. (2001). Identification of metalloprotease gene families in sugarcane. Genet. Mol. Biol. 24:285–290.
  • Rawlings, N. D., Waller, M., Barrett, A. J., and Bateman, A. (2014). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42:D503–D509.
  • Riedel, M. J., Lee, C. W., and Kieffer, T. J. (2009). Engineered glucagon-like peptide-1-producing hepatocytes lower plasma glucose levels in mice. Am. J. Physiol.-Endoc. M. 296:E936–E944.
  • Rodríguez-Figueroa, J. C., González-Córdova, A. F., Astiazaran-García, H., Hernández-Mendoza, A., and Vallejo-Cordoba, B. (2013). Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains. J. Dairy Sci. 96:4094–4099.
  • Rui, X., Boye, J. I., Simpson, B. K., and Prasher, S. O. (2012). Angiotensin I-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates: Effects of different thermal and enzymatic digestion treatments. Food Res. Int. 49:739–746.
  • Sabbione, A. C., Ibañez, S. M., Martínez, E. N., Añón, M. C., and Scilingo, A. A. (2016). Antithrombotic and Antioxidant Activity of Amaranth Hydrolysate Obtained by Activation of an Endogenous Protease. Plant Foods Hum Nutr. 71:174–182.
  • Salampessy, J., Phillips, M., Seneweera, S., and Kailasapathy, K. (2010). Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food Chem. 120:556–560.
  • Samarakoon, K. W., O-Nam, K., Ko, J.-Y., Lee, J.-H., Kang, M.-C., Kim, D., Lee, J. B., Lee, J.-S., and Jeon, Y.-J. (2013). Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J. Appl. Phycol. 25:1595–1606.
  • Santos, S. D., Martins, V. G., Salas-Mellado, M., and Prentice, C. (2011). Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food Bioprocess Technol. 4:1399–1406.
  • Sarmento, A. C., Lopes, H., Oliveira, C. S., Vitorino, R., Samyn, B., Sergeant, K., Debyser, G., Beeumen, J. V., Domingues, P., Amado, F., Pires, E., Rosário, M., Domingues, M., and Barros, M. T. (2009). Multiplicity of aspartic proteinases from Cynara cardunculus L. Planta. 230:429–439.
  • Schaller, A. (2004). A cut above the rest: The regulatory function of plant proteases. Planta. 220:183–197.
  • Settanni, L., and Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 27:691–697.
  • Shah, M. A., Mir, S. A., and Paray, M. A. (2014). Plant proteases as milk-clotting enzymes in cheesemaking: A review. Dairy Sci. Technol. 94:5–16.
  • Sharma, A., Kumari, M., and Jagannadham, M. V. (2009). Benghalensin, a highly stable serine protease from the latex of medicinal plant Ficus benghalensis. J. Agric. Food Chem. 57:11120–11126.
  • Shimizu, M., Sawashita, N., Morimatsu, F., Ichikawa, J., Taguchi, Y., Ijiri, Y., and Yamamoto, J. (2009). Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thromb. Res. 123:753–757.
  • Silva, S. V., Pihlanto, A., and Malcata, F. X. (2006). Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. J. Dairy Sci. 89:3336–3344.
  • Singh, K. A., Kumar, R., Rao, G. R. K., and Jagannadham, M. V. (2010). Crinumin, a chymotrypsin-like but glycosylated serine protease from Crinum asiaticum: purification and physicochemical characterisation. Food Chem. 119:1352–1358.
  • Sinkovits, A. F., Bryksa, B. C., Tanaka, T., and Yada, R. Y. (2007). Understanding the structure-function role of specific catalytic residues in a model food related enzyme: Pepsin. Enzyme Microb. Tech. 40:1175–1180.
  • Stevenson, D. E. (2012). New antioxidant mechanisms and functional foods (Part 1). Agro. Food Ind. Hi-tech. 23:32–33.
  • Sufian, K. N., Hira, T., Nakamori, T., Furuta, H., Asano, K., and Hara, H. (2011). Soybean β-conglycinin bromelain hydrolysate stimulates cholecystokinin secretion by enteroendocrine STC-1 cells to suppress the appetite of rats under meal-feeding conditions. Biosci. Biotechnol. Biochem. 75:848–853.
  • Sun, X., Liu, X., Guo, S., Huang, B., Li, W., Wang, X., Lin, J. and Tang, K. (2007). Cloning and analysis of a novel conserved membrane zinc-metalloprotease family from Solanum surattense. Russ. J. Plant Physiol. 54:63–73.
  • Sun, Y., Pan, D., Guo, Y., and Li, J. (2012). Purification of chicken breast protein hydrolysate and analysis of its antioxidant activity. Food Chem. Toxicol. 50:3397–3404.
  • Tan, J. B. L., and Lim, Y. Y. (2015). Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 172:814–822.
  • Tang, W., Qian, H., Zhang, H., Wang, L., Guillot, A., and Svendsen, A. (2013). Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. Eur. Food Res. Technol. 237:591–600.
  • Tavares, T. G., Amorim, M., Gomes, D., Pintado, M. E., Pereira, C. D., and Malcata, F. X. (2012a). Manufacture of bioactive peptide-rich concentrates from whey: Characterization of pilot process. J. Food Eng. 110:547–552.
  • Tavares, T. G., Contreras, M. M., Amorim, M., Martin-Alvarez, P. J., Pintado, M. E., Recio, I., and Malcata, F. X. (2011a). Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. Int. Dairy J. 21:926–933.
  • Tavares, T., Contreras, M. M., Amorim, M., Pintado, M., Recio, I., and Malcata, F. X. (2011b). Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides. 32:1013–1019.
  • Tavares, T., Montiero, K. M., Possenti, A., Pintado, M. E., Carvalho, J. E., and Malcata, F. X. (2011c). Antiulcerogenic activity of peptide concentrates obtained from hydrolysis of whey proteins by proteases from Cynara cardunculus. Int Dairy J. 21:934–939.
  • Tavares, T. G., and Malcata, F. X. (2012). The Portuguese paradox: Why do some inhabitants of Portugal appear to live so long when their diet is based on whey cheese? Food Chem. 131:727–729.
  • Tavares, T., Sevilla, M. A., Montero, M. J., Carron, R., and Malcata, F. X. (2012b). Acute effect of whey peptides upon blood pressure of hypertensive rats, and relationship with their angiotensin-converting enzyme inhibitory activity. Mol. Nutr. Food Res. 56:316–324.
  • Tavares, T., Spindola, H., Longato, G., Pintado, M. E., Carvalho, J. E., and Malcata, F. X. (2013). Antinociceptive and anti-inflammatory effects of novel dietary protein hydrolysate produced from whey by proteases of Cynara cardunculus. Int Dairy J. 32:156–162.
  • Tanzadehpanah, H., Asoodeh, A., and Chamani, J. (2012). An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res. Int. 49:105–111.
  • Teh, S.-S., Bekhit, A.E.-D. A., Carne, A., and Birch, J. (2016). Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain. Food Chem. 203:199–206.
  • Terauchi, K., Asakura, T., Ueda, H., Tamura, T., Tamura, K., Matsumoto, I., Misaka, T., Hara-Nishimura, I., and Abe, K. (2006). Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. J. Plant Physiol. 163:856–862.
  • Terp, N., Thomsen, K. K., Svendsen, I., Davy, A., and Simpson, D. J. (2000). Purification and characterization of hordolisin, a subtilisin-like serine endoprotease from barley. J. Plant Physiol. 156:468–476.
  • Thewissen, B. G., Pauly, A., Celus, I., Brijs, K., and Delcour, J. A. (2011). Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolysates. Food Chem. 127:1653–1658.
  • Tulipano, G., Sibilia, V., Caroli, A. M., and Cocchi, D. (2011). Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides. 32:835–838.
  • Udenigwe, C. C., and Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 71:R11–R24.
  • Udenigwe, C. C., and Howard, A. (2013). Meat proteome as source of functional biopeptides. Food Res. Int. 54:1021–1032.
  • Udenigwe, C. C., Lin, Y.-S., Hou, W.-C., and Aluko, R. E. (2009). Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J. Funct. Foods. 1:199–207.
  • Udenigwe, C. C., and Rouvinen-Watt, K. (2015). The role of food peptides in lipid metabolism during dyslipidemia and associated health conditions. Int. J. Mol. Sci. 16:9303–9313.
  • Vairo-Cavalli, S., Lufrano, D., Colombo, M. L., and Priolo, N. (2013). Properties and applications of phytepsins from thistle flowers. Phytochemistry. 92:16–32.
  • Van der Hoorn, R. A. L., and Jones, J. D. G. (2004). The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7:400–407.
  • Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz-Gois, A., González de Mejía, E., and Barba de laRosa, A. P. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem. 136:758–764.
  • Wang, B., Li, Z.-R., Chi, C.-F., Zhang, Q.-H., and Luo, H.-Y. (2012). Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle. Peptides. 36:240–250.
  • WHO. World Health Organization. (2013). A global brief on hypertension. Silent killer, global public health crisis. WHO/DCO/WHD/2013.2. http://ishworld.com/data/uploads/global_brief_hypertension.pdfAccessed 3th May 2017
  • Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004). An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23:980–988.
  • Xiong, Y. (2010). Antioxidant peptides. In: Bioactive proteins and peptides as functional foods and nutraceuticals, pp. 33–42. Mine, Y., Li-Chan, E. and Jiang, B. Eds., Blackwell Publishing Ltd. and Institute of Food Technologists, Ames, IA.
  • Yadav, R. P., Patel, A. K., and Jagannadham, M. V. (2012). Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: Purification and biochemical characterisation. Food Chem. 132:1296–1304.
  • Yoshikawa, M., Fujita, H., Matoba, N., Takenaka, Y., Yamamoto, T., Yamauchi, R., Tsuruki, H., and Takahata, K. (2000). Bioactive peptides derived from food proteins preventing lifestyle-related diseases. BioFactors. 12:143–146.
  • You, L. J., Zhao, M. M., Cui, C., Zhao, H. F., and Yang, B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov. Food Sci. Emerg. Technol. 10:235–240.
  • You, L., Regenstein, J. M., and Liu, R. H. (2010). Optimization of hydrolysis conditions for the production of antioxidant peptides from fish gelatin using response surface methodology. J. Food Sci. 75:C582–C587.
  • Zarei, M., Ebrahimpour, A., Abdul-Hamid, A., Anwar, F., and Saari, N. (2012). Production of defatted palm kernel cake protein hydrolysate as a valuable source of natural antioxidants. Int. J. Mol. Sci. 13:8097–8111.
  • Zarei, M., Ghanbari, R., Tajabadi, N., Abdul-Hamid, A., Bakar, F. A., and Saari, N. (2016). Generation, fractionation, and characterization of iron-chelating protein hydrolysate from palm kernel cake proteins. J. Food Sci. 81:C341–C347.
  • Zeng, M., Cui, W., Zhao, Y., Liu, Z., Dong, S., and Gou, Y. (2008). Antiviral active peptide from oyster. Chin. J. Oceanol. Limnol. 26:307–312.
  • Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., and Yao, H. (2010). Isolation and identification of antioxidative peptide from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chem. 119:226–234.
  • Zhong, S., Ma, C., Lin, Y.C., and Luo, Y. (2011). Antioxidant properties of peptide fractions from silver carp (Hypophthalmichthys molitrix) processing by-product protein hydrolysates evaluated by electron spin resonance spectrometry. Food Chem. 126:1636–1642.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.