11,395
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Oak wine barrel as an active vessel: A critical review of past and current knowledge

ORCID Icon & ORCID Icon

References

  • Ai, W., Duval, H., Pierre, F., and Perré, P. (2017). A novel device to measure gaseous permeability over a wide range of pressures: Characterisation of slip flow for Norway spruce, European beech, and wood-based materials. Holzforschung 71:147–162.
  • Alañón, M. E., Pérez-Coello, M. S., Díaz-Maroto, I. J., Martín-Alvarez, P. J., Vila-Lameiro, P., and Díaz-Maroto, M. C. (2011). Influence of geographical location, site and silvicultural parameters, on volatile composition of Quercus pyrenaica Willd. wood used in wine aging. For. Ecol. Manage. 262:124–130.
  • Amerine, M. A., and Joslyn, M. A. (1970). Table Wines: The Technology of Their Production (2d Ed. Sub). University of California Press, Berkeley.
  • Arfelli, G., Sartini, E., Corzani, C., Fabiani, A., and Natali, N. (2007). Impact of wooden barrel storage on the volatile composition and sensorial profile of red wine. Food Sci. Technol. Int. 13:293–299.
  • ASTM (2010). D3985 - 05(2010)e1. Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International, West Conshohocken, PA.
  • ASTM. (2015). D1434 - 82(2015)e1 Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting. ASTM International, West Conshohocken, PA.
  • Bao, F., Lu, J., and Avramidis, S. (1999). On the permeability of main wood species in China. Holzforschung 53:350–354.
  • Cadahía, E., De Simón, B. F., Vallejo, R., Sanz, M., and Broto, M. (2007). Volatile compound evolution in Spanish oak wood (Quercus petraea and Quercus pyrenaica) during natural seasoning. Am. J. Enology Viticulture 58:163–172.
  • Caldeira, I., Anjos, O., Portal, V., Belchior, A. P., and Canas, S. (2010). Sensory and chemical modifications of wine-brandy aged with chestnut and oak wood fragments in comparison to wooden barrels. Anal. Chim. Acta 660:43–52.
  • Canas, S., Belchior, A. P., Falcao, A., Gonçalves, J. A., Spranger, M. I., and Bruno-de-Sousa, R. (2007). Effect of heat treatment on the thermal and chemical modifications of Oak and Chestnut wood used in brandy ageing. Ciência E Técnica Vitivinícola 22:5–14.
  • Canas, S., Belchior, A. P., Mateus, A. M., Spranger, M. I., and Bruno-de-Sousa, R. (2002). Kinetics of Impregnation/evaporation and release of phenolic compounds from wood to brandy in experimental model. Ciência E Técnica Vitivinícola 17:1–14.
  • Canas, S., Grazina, N., Belchior, A. P., Spranger, M. I., de Sousa, R. B., and Sousa, R. B. De. (2000). Modelisation of heat treatment of Portuguese oak wood (Quercus pyrenaica L.). analysis of the behaviour of low molecular weight phenolic compounds. Ciência E Técnica Vitivinícola 15:75–94.
  • Canas, S., Silva, V., and Belchior, A. P. (2008). Wood related chemical markers of aged wine brandies. Ciência E Técnica Vitivinícola 23:45–52.
  • Carlquist, S. (2015). Comparative Wood Anatomy Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Timell, T. E., Ed., 2nd ed. Springer-Verlag Berlin Heidelberg GmbH, Springer-Verlag Berlin Heidelberg 2001 Originally published by Springer-Verlag Berlin Heidelberg New York in 2001 Softcover reprint of the hardcover 2nd edition 2001 The year of this second edition is not correct, must be 2011. https://www.worldcat.org/title/comparative-wood-anatomy-systematic-ecological-and-evolutionary-aspects-of-dicotyledon-wood/oclc/751525556&referer=brief_results
  • Cazenave de la Roche, A. (2004). La tonelería en el contexto marítimo de la época del renacimiento: estudio de un cargamento de toneles hallado en el pecio de Villefranche s/mer (1516). In Actas de la XIVa Conferencia Nacional de Arqueología Argentina. (pp. 1–17). Rosario, Argentina.
  • Chatonnet, P., and Dubourdieu, D. (1998). Comparative study of the characteristics of American white oak (Quercus alba) and European oak (Quercus petraea and Q. robur) for production of barrels used in barrel aging of wines. Am. J. Enology Viticulture 49:79–85.
  • Choong, E. T., Tesoro, F., and Manwiller, F. (1974). Permeability of twenty-two small diameter hardwoods growing on southern pine sites. Wood Fiber Sci. 6:91–101.
  • Choong, E T. (1965). Diffusion coefficients of softwoods by Steady-state and theoretical methods. For. Prod. J. 15:21–27.
  • Comstock, G. L. (1967). Longitudinal permeability of wood to gases and nonswelling liquids. For. Prod. J. 17:41–46.
  • Comstock, G. L. (1970). Directional permeability of softwoods. Wood Fiber 1:283–289.
  • De Coninck, G., Jordão, A. M., Ricardo-Da-Silva, J. M., and Laureano, O. (2006). Evolution of phenolic composition and sensory properties in red wine aged in contact with Portuguese and French oak wood chips. J. Int. Des Sci. de La Vigne et Du Vin 40:25–34.
  • De Rosso, M., Panighel, A., Dalla Vedova, A., Stella, L., and Flamini, R. (2009). Changes in chemical composition of a red wine aged in acacia, cherry, chestnut, mulberry, and oak wood barrels. J. Agric. Food Chem. 57:1915–1920.
  • del Alamo-Sanza, M., Cárcel, L. M., and Nevares, I. (2017). Characterization of the oxygen transmission rate of oak wood species used in cooperage. J. Agric. Food Chem. 65:648–655.
  • del Alamo-Sanza, M., and Nevares, I. (2014). Recent advances in the evaluation of the oxygen transfer rate in oak barrels. J. Agric. Food Chem. 62:8892–8899.
  • del Alamo-Sanza, M., and Nevares, I. (2015a). Oxygen transfer rate in oak barrels. Annual evaluation for dynamic oxygen intake and entry. Wines Vines 12:58–64.
  • del Alamo-Sanza, M., and Nevares, I. (2015b). Wine maturation: A dynamic evaluation of the oxygen transfer rate in oak barrels. Wine Viticulture J. 30:26.
  • del Alamo-Sanza, M., and Nevares, I. (2015c). Understanding barrel´s oxygen transfer rate. Dynamic rate approach. Retrieved from https://vimeo.com/203094141
  • del Alamo-Sanza, M., Nevares, I., Mayr, T., Baro, J. A., Martínez-Martínez, V., and Ehgartner, J. (2016). Analysis of the role of wood anatomy on oxygen diffusivity in barrel staves using luminescent imaging. Sens. Actuators B: Chem. 237:1035–1043.
  • del Alamo, M., and Nevares, I. (2012). PCT/ES2012/070084 Device for measuring the permeability and diffusivity of gases in porous materials and method for measuring said parameters using the device. (W.-W. I. P. Organization, Ed.). PCT/ES2012/070084 International.
  • del Álamo, M., Nevares, I., Gallego, L., Fernández de Simón, B., and Cadahía, E. (2010). Micro-oxygenation strategy depends on origin and size of oak chips or staves during accelerated red wine aging. Anal. Chim. Acta 660:92–101.
  • Denny, M. W. (1993). Air and Water: The Biology and Physics of Life’s Media. Princeton University Press, Princeton, N.J., USA.
  • Fernandez de Simon, B., Cadahia, E., Conde, E., and Garcia-Vallejo, M. C. (1998). Ellagitannins in woods of Spanish oaks. J. Des Sci. et Techniques de La Tonnellerie 4:91–97.
  • Fernández de Simón, B., Cadahía, E., del Álamo, M., and Nevares, I. (2010). Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 660:211–220.
  • Fernández de Simón, B., Cadahía, E., and Jalocha, J. (2003). Volatile compounds in a Spanish red wine aged in barrels made of Spanish, French, and American oak wood. J. Agric. Food Chem. 51:7671–7678.
  • Fernández de Simón, B., Cadahía, E., Muiño, I., del Álamo, M., and Nevares, I. (2010). Volatile composition of toasted oak chips and staves and of red wine aged with them. Am. J. Enology Viticulture 61:157–165.
  • Fernaàndez de Simoàn, B., Cadahiàa, E., Sanz, M., Poveda, P., Perez-Magarinño, S., Ortega-Heras, M., and Gonzaàlez-Huerta, C. (2008). Volatile compounds and sensorial characterization of wines from four Spanish denominations of origin, aged in Spanish rebollo (Quercus pyrenaica Willd.) oak wood barrels. J. Agric. Food Chem. 56:9046–9055.
  • Fernandez de Simon, B., Esteruelas, E., Munñoz, A. M., Cadahia, E., and Sanz, M. (2009). Volatile compounds in acacia, chestnut, cherry, ash, and oak woods, with a view to their use in cooperage. J. Agric. Food Chem. 57:3217–3227.
  • Fernández de Simón, B., Martínez, J., Sanz, M., Cadahía, E., Esteruelas, E., and Muñoz, A. M. (2014a). Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. Food Chem. 147:346–56.
  • Fernández de Simón, B., Sanz, M., Cadahía, E., Martínez, J., Esteruelas, E., and Muñoz, A. M. M. (2014b). Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood. Food Chem. 143:66–76.
  • Fernández de Simón, B., Sanz, M., Cadahía, E., Poveda, P., and Broto, M. (2006). Chemical characterization of oak heartwood from Spanish forests of quercus pyrenaica (Wild.). ellagitannins, low molecular weight phenolic, and volatile compounds. J. Agric. Food Chem. 54:8314–8321.
  • Feuillat, F. (1996). Contribution à l’étude des phénomènes d’échanges bois/vin/atmosphère à l’aide d’un “fût” modèle. Relations avec l’anatomie du bois de chêne(*Quercus robur* L., *Quercus petraea* Liebl.). Lab. de Recherches en Sciences Forestières de l’ENGREF. Ecole Nationale du Génie Rural des Eaux et des Forêts, Nancy, France.
  • Feuillat, F., and Keller, R. (1997). Variability of oak wood (Quercus robur L., Quercus petraea Liebl.) anatomy relating to cask properties. Am. J. Enology Viticulture 48:502–508.
  • Feuillat, F., Perrin, J. R., Keller, R., Aubert, D., Gelhaye, P., Houssement, C., … Pierre, M. (1994). Simulation Expérimentale de “L”interface Tonneau’: Mesure des Cinétiques D’imprégnation du Liquide dans Le Bois Et d’évaporation de Surface. J. Int. Des Sci. De La Vigne Et Du Vin 28:227–245.
  • Frolov-Bagreev, A. M., and Agabal’iants, G. G. (1951). Chemistry of Wine (transl. from “Khimiia vina”), p.391. Pishchepromizdat, Moscow.
  • Gallego, L., Del Alamo, M., Nevares, I., Fernández, J. A., Fernández de Simón, B., and Cadahía, E. (2012). Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (Quercus pyrenaica Willd.). Food Sci. Technol. Int. 18:151–165.
  • Gambuti, A., Capuano, R., Lisanti, M. T., Strollo, D., and Moio, L. (2010). Effect of aging in new oak, one-year-used oak, chestnut barrels and bottle on color, phenolics and gustative profile of three monovarietal red wines. Eur. Food Res. Technol. 231:455–465.
  • García-Estévez, I., Alcalde-Eon, C., Rivas-Gonzalo, J. C., Escribano-Bailón, M. T., Fernández, A., Nevares, I., and Álamo-Sanza, M. del. (2016). An Approach to Study the Interactions between Ellagitannins and Oxygen during Barrel Aging. In GROUPE POLYPHENOLS (Ed.), XXVIIIth International Conference on Polyphenols. Vienna: University of Technology, Vienna.
  • Glass, Samuel V., and Zelinka, S. L. (2010). Moisture relations and physical properties of wood. In Wood Handbook: Wood as an Engineering Material. Centennial, p. 508. Forest Products Laboratory Ed., United States Department of Agriculture (USDA), Madison, Washington.
  • Goncalves, F. J., and Jordao, A. M. (2009). Changes in antioxidant activity and the proanthocyanidin fraction of red wine aged in contact with Portuguese (Quercus Pyrenaica Willd.) and American (Quercus Alba L.) oak wood chips. Ital. J. Food Sci. 21:51–64.
  • Gorvud, M. R., and Arganbrigh, D. G. (1980). Comparison of methods for preparation of moisture content gradient sections. Wood Fiber 12:7–11.
  • Hansmann, C., Gindl, W., and Wimmer, R. (2002). Permeability of wood - a review. Wood Res. 47:1–16.
  • ISO. (2007). 15105-1. Plastics – Film and Sheeting – Determination of Gas-Transmission Rate – Part 1: Differential-Pressure Methods. International Organization for Standardization, Geneva, Switzerland.
  • Jinman, W., Chengyue, D., and Yixing, L. (1991). Wood permeability. J. For. Res. 2:91–97.
  • Jinman, W., Rui, F., and Guangxue, G. (1994). Study on the effect of wood moisture content on permeability in the hygroscopic range. J. Northeast For. Univ. 5:82–87.
  • Jordão, A. M., Ricardo-da-Silva, J. M., and Laureano, O. (2005). Extraction of some ellagic tannins and ellagic acid from oak wood chips (*Quercus pyrenaica* L.) in model wine solutions: Effect of time, pH, temperature and alcoholic content. S. Afr. J. Enology Viticulture 26:83–89.
  • Jordão, A. M., Ricardo-da-Silva, J. M., and Laureano, O. (2007). Ellagitannins from Portuguese oak wood (Quercus pyrenaica Willd.) used in cooperage: influence of geographical origin, coarseness of the grain and toasting level. Holzforschung 61:155–160.
  • Jordão, A. M., Ricardo-da-Silva, J. M., Laureano, O., Adams, A., Demyttenaere, J., Verhe, R., and De Kimpe, N. (2006). Volatile composition analysis by solid-phase microextraction applied to oak wood used in cooperage (*Quercus pyrenaica* and *Quercus petraea*): effect of botanical species and toasting process. J. Wood Sci. 52:514–521.
  • Kelly, M., and Wollan, D. (2003). Micro-oxygenation of wine in barrels. Aust. N. Z. Grapegrower Winemaker 473a:29–32.
  • Kilby, K. (1971). The Cooper and His Trade. J. Baker, London.
  • Kininmonth, J. A. (1971). Permeability and fine structure of certain hardwoods and effects on drying. Holzforschung 25:127–133.
  • Kollmann, F. F. P., and Côte, W. A.. (1968). Principles of Wood Science and Technology. Springer-Verlag, Berlin, Heidelberg, New York.
  • Langdon, L. M. (1918). The ray system of quercus alba on JSTOR. Bot. Gaz. 65:313–323.
  • Lindsay, F. W., and Chalk, L. (1954). The influence of rays on the shrinkage of wood. Forestry 27:16–24.
  • Martínez-Gil, A. M., Gutiérrez-Gamboa, G., Moreno-Simunovic, Y., Nevares, I., and del Alamo-Sanza, M. (2017). Volatile compounds in the Quercus humbolditti (Colombian oak) and in the wines aged with them, respect to traditional oak woods used in cooperage. 10th In Vino Analytica Scientia Symposium. Salamanca: University of Salamanca.
  • Moutounet, M., Mazauric, J. P., Saint-Pierre, B., and Hanocq, J. F. (1998). Gaseous exchange in wines stored in barrels. J. Des Sci. et Tech. de La Tonnellerie 4:131–145.
  • Moutounet, M., Mazauric, J. P., Saint-Pierre, B., Micaleff, J. P., and Sarris, J. (1994). Causes et conséquences de microdèformations des barriques au cours de l’élevage des vins. Rev. Des Oenologues 74:34–39.
  • Nevares, I., Crespo, R., González, C., and del Alamo-Sanza, M. (2014). Imaging of oxygen permeation in the oak wood of wine barrels using optical sensors and a colour camera. Aust. J. Grape Wine Res. 20:353–360.
  • Nevares, I., and del Alamo-Sanza, M. (2014). Oxygène et barriques. Actualisation des connaissances quantité et voies de pènètration de lóxygène dans la barrique. Rev. Des Oenologues et Des Tech. Vitivinicoles et Oenologicques 41:41–44.
  • Nevares, I., and del Alamo-Sanza, M. (2015). Oak stave oxygen permeation: A new tool to make barrels with different wine oxygenation potentials. J. Agric. Food Chem. 63:1268–1275.
  • Nevares, I., and del Alamo-Sanza, M. (2016). Wine aging technologies. In Recent Advances in Wine Stabilization and Conservation Technologies. 1st ed., pp. 209–245. Jordaño, A. M. and Cosme, F. Eds., Nova Science Publishers, Inc, New York.
  • Nevares, I., and del Alamo-Sanza, M. (2017). New materials for the ageing of wines and beverages. Evaluation and comparison. In Food Packaging and Preservation (First). Grumezescu, A. and Holban, A. Eds., Elsevier. .
  • Nevares, I., del Alamo, M., Cárcel, L. M., Crespo, R., Martin, C., and Gallego, L. (2008). Measure the dissolved oxygen consumed by red wines in aging tanks. Food Bioprocess Technol. 2:328–336.
  • Nevares, I., Mayr, T., Baro, J. A., Ehgartner, J., Crespo, R., and Alamo-Sanza, M. (2016). Ratiometric oxygen imaging to predict oxygen diffusivity in oak wood during red wine barrel aging. Food Bioprocess Technol. 9:1049–1059.
  • Perré, P., and Keey, R. B. (2015). Drying of wood. principles and practices. In Handbook of Industrial Drying. Fourth, pp. 797–846. Mujumdar, Arun S., Ed., CRC Press, Taylor and Francis Group.
  • Peterson, R. G. (1976). Formation of reduced pressure in barrels during wine aging. Am. J. Enology Viticulture 27:80–81.
  • Prak, A. L. (1970). Unsteady-State gas permeability of wood. Wood Sci. Technol. 4:50–69.
  • Prillinger, F. (1965). Uso dell’acido solforoso e dell’acido ascorbico per impedire l’ossidayione dei vini. Riv. Viticult. Enol. 18:99–108.
  • Qiu, Y. (2015). Phénomènes De Transfert D’oxygène À Travers La Barrique. Université de Bordeaux, Bordeaux.
  • Ribereau-Gayon, J. (1933). Contribution À L’étude Des Oxydations Et Réductions Dans Les Vins. Université de Bordeaux, Bordeaux.
  • Ribereau-Gayon, J., Peynaud, E., Ribereau-Gayon, P., Sudraud, P., and Chapter. (1976). Sciences et techniques du vin vol III: Vieillissement des vins: conservation en fûts de bois (Vol. 3).
  • Rodriàguez-Bencomo, J. J., Ortega-Heras, M., Peàrez-Magarinño, S., and Gonzaàlez-Huerta, C. (2009). Volatile compounds of red wines macerated with Spanish, American, and French Oak chips. J. Agric. Food Chem. 57:6383–6391.
  • Ruiz de Adana, M., López, L. M., and Sala, J. M. (2005). A Fickian model for calculating wine losses from oak casks depending on conditions in ageing facilities. Appl. Therm. Eng. 25:709–718.
  • Ruiz de Adana, S. M. (2002). Aplicación de la Dinámica de Fluidos Computacional al Control de las mermas de vino en naves de Crianza Climatizadas. Ingeniería Mecánica. Universidad de La Rioja, La Rioja.
  • Santos, J. A., Carvalho, J. P. F., and Santos, J. (2012). Oak wood. In Oak: Ecology, Types and Management. pp. 119–150. Chuteira, C. A. and Grão, A. B., Eds., Nova Science Publishers, Inc, New York.
  • Sanz, M., Cadahía, E., Esteruelas, E., Muñoz, Á. M., Fernández De Simón, B., Hernández, T., and Estrella, I. (2010). Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage. J. Agric. Food Chem. 58:9631–9640.
  • Sanz, M., Fernández de Simón, B., Cadahía, E., Esteruelas, E., Muñoz, Á. M., Hernández, M. T., and Estrella, I. (2012). Polyphenolic profile as a useful tool to identify the wood used in wine aging. Anal. Chim.Acta 732:33–45.
  • Sanz, M., Fernández de Simón, B., Esteruelas, E., Muñoz, Á. M., Cadahía, E., Hernández, M. T., … Martinez, J. (2012). Polyphenols in red wine aged in acacia (Robinia pseudoacacia) and oak (Quercus petraea) wood barrels. Anal. Chim. Acta, 732:83–90.
  • Schahinger, G., and Rankine, B. C. (2005). Cooperage for Winemakers: A Manual on the Construction, Maintenance and Use of Oak Barrels. Winetitles, Adelaide.
  • Sebastian, L. P., Siau, J. F., and Skaar, C. (1973). Unsteady-state axial flow of gas in wood. Wood Sci. 6:167–174.
  • Semenenko, N. T., Frolova, Z. N., Kroitor, N. I., and Krolenko, V. F. (1979). Permeability of oxygen through oak stave. Sadovodstvo, Vinogradarstvo I Vinodelie Moldavii 34:38–40.
  • Siau, J. F. (1971). Flow in Wood. Syracuse University Press, Syracuse, N.Y.
  • Siau, J. F. (1984). Transport Processes in Wood. Springer Series in Wood Science. Springer-Verlag, Berlin, New York.
  • Siau, J. F., Virginia Polytechnic, I., State University. Dept. of Wood, S., and Forest, P. (1995). Wood–Influence of Moisture on Physical Properties. Dept. of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Singleton, V. L. (1974). Some aspects of the wooden container as a factor in wine maturation. In Chemistry of Winemaking, Adv. Chem. Ser. pp. 254–277. Washington.
  • Singleton, V. L. (1982). Oxidation of wine. In 2nd International symposium on viticulture, vinification and the treatment and handling of wine. Vol. 2, p. 18.1–18.14. The Institute of the Masters of Wine, Oxford, England.
  • Singleton, V. L. (1995). Maturation of wines and spirits - comparisons, facts, and hypotheses. Am. J. Enology Viticulture 46:98–115.
  • Singleton, V. L. (2000). Barrels for wine, usage and significant variables. J. Des Sci. et Tech. de La Tonnellerie 6:15–25.
  • Skaar, C. (1988). Wood-water relations. In Wood Science, Timell, T. E., Ed., Springer-Verlag Berlin Heidelberg GmbH.
  • Soares, B., Garcia, R., Freitas, A. M. C., and Cabrita, M. J. (2012). Phenolic compounds released from oak, cherry, chestnut and robinia chips into a synthetic wine: Influence of toasting level. Cienc. E Tec. Vitivinicola 27:17–26.
  • Sorz, J., and Hietz, P. (2006). Gas diffusion through wood: Implications for oxygen supply. Trees - Structure Funct. 20:34–41.
  • Tao, Y., García, J. F., and Sun, D.-W. (2013). Advances in wine ageing technologies for enhancing wine quality and accelerating wine ageing process. Crit. Rev. Food Sci. Nutr. 54:817–835.
  • Taransaud, J. (1982). La Tonnellerie. Thèse de Doctorat d´Université -. University Paris Sorbonne. Paris. Link: https://www.worldcat.org/title/tonnellerie/oclc/39472481&referer=brief_results
  • Tesoro, F., Choong, E., and Kimbler, O. (1974). Relative permeability and the gross pore structure of wood. Wood Fiber Sci. 6:226–236.
  • Tiquet-Lavandier, N., and Mirabel, M. (2014). Functions and benefits of oak barrels for fermentation/élevage. Pract. Winery Vineyard (January):36–38.
  • Tsoumis, G. (1968). Wood as Raw Material Source, Structure, Chemical Composition, Growth, Degradation, and Identification. Pergamon Press, Oxford, New York;New York: Pergamon Press.
  • Vivas, N. (1995). The notion of grain in cooperage. J. Des Sci. et Tech. de La Tonnellerie 1:17–32.
  • Vivas, N. (2000). Apports récents à la connaissance du chêne de tonnellerie et à l’élevage des vins rouges en barriques. Bull. de l’OIV 73:79–108.
  • Vivas, N. (2005). Manual De Toneleriàa: Destinado A Usuarios De Toneles. Ediciones Mundi-Prensa, Madrid.
  • Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., and Nonier, M. F. (2003). Mise en évidence du passage de l’oxygène au travers des douelles constituant les barriques par l’utilisation d’un dispositif original de mesure de la porosité du bois. Premiers résultats. Sci. Des Aliments 23:655–678.
  • Vivas, N., and Glories, Y. (1993). Les phénomènes D’oxydoréduction Lies A L’élevage En barrique des vins rouges: Aspects technologiques. Rev. Française D’oenologie 33:33–38.
  • Vivas, N., and Glories, Y. (1996). Role of oak wood ellagitannins in the oxidation process of red wines during aging. Am. J. Enology Viticulture 47:103–107.
  • Vivas, N., and Glories, Y. (1997). Modélisation et calcul du bilan des apports d’oxygène au cours de l’élevage des vins rouges. II. Les apports liés au passage d’oxygène au travers de la barrique. Progrès Agricole et Viticole 114:315–316.
  • Vivas, N., Glories, Y., Bourgeois, G., Vitry, C., and Vitry (1996). The heartwood ellagitannins of different oak, Quercus sp., and chestnut Castanea sativa Mill. species. Quantity analysis of red wines aging in barrels. J. Des Sci. et Tech. de La Tonnellerie 2:51–75.
  • Vivas, N., and Saint-Cricq de Gaulejac, N. (1998). Influence de la durée d’utilisation des barriques sur leurs apports aux vins. In Actes du colloque Sciences et Techniques de la Tonnellerie. pp. 65–74. Vigne et Vin Publications Internationales – Bordeaux (France). Link: https://www.worldcat.org/title/ive-colloque-des-sciences-ettechniques-de-la-tonnellerie-20-mars-1998-bordeaux-cite-mondiale/oclc/690373346&referer=brief_results
  • Vivas, N., and Saint-Cricq de Gaulejac, N. (1999). The useful lifespan of new barrels and risk related to the use of old barrels. Aust. N. Z. Wine Ind. J. 14:37–45.
  • Wagner, J. (1910). Cooperage a Treatise on Modern Shop Practice and Methods from the Tree to the Finished Article. J.B. Wagner, Yonkers N.Y.
  • Zamora Marín, F. (2003). Elaboración y Crianza Del Vino Tinto: Aspectos Científicos y Prácticos (1a). Antonio Madrid Vicente, Madrid.