2,001
Views
93
CrossRef citations to date
0
Altmetric
Review

Bacteriocins as food preservatives: Challenges and emerging horizons

, , , , &

References

  • Abee, T. (1995). Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol. Lett. 129(1):1–9.
  • Acuna, L., Picariello, G., Sesma, F., Morero, R. D. and Bellomio, A. (2012). A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio. 2:12–9. doi: 10.1016/j.fob.2012.01.002
  • Al-Holy, M. A., Al-Nabulsi, A., Osaili, T. M., Ayyash, M. M. and Shaker, R. R. (2012). Inactivation of Listeria innocua in brined white cheese by a combination of nisin and heat. Food Control 23(1):48–53.
  • Allison, G. E., Fremaux, C. and Klaenhammer, T. R. (1994). Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J. Bacteriol. 176(8):2235–2241.
  • Altena, K., Guder, A., Cramer, C. and Bierbaum, G. (2000). Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl. Environ. Microbiol. 66(6):2565–71.
  • Anderssen, E. L., Diep, D. B., Nes, I. F., Eijsink, V. G. H. and Nissen-Meyer, J. (1998). Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl. Environ. Microbiol. 64(6):2269–2272.
  • Andrés-Bello, A., De Jesús, C., García-Segovia, P., Pagán-Moreno, M. J. and Martínez-Monzó, J. (2015). Vacuum impregnation as a tool to introduce biopreservatives in gilthead sea bream fillets (Sparus aurata). LWT - Food Sci. Technol. 60(2):758–765. doi: 10.1016/j.lwt.2014.09.063
  • Appendini, P. and Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Inno. Food Sci. Emer. Technol. 3(2):113–126.
  • Arakawa, K., Kawai, Y., Iioka, H., Tanioka, M., Nishimura, J., Kitazawa, H., Tsurumi, K. and Saito, T. (2009). Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. J. Dairy Sci. 92(6):2365–72. doi: 10.3168/jds.2008-1240
  • Atanasova, N. S., Pietilä, M. K. and Oksanen, H. M. (2013). Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. Microbiol. Open 2(5):811–25. https://doi.org/10.1002/mbo3.115
  • Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A. and de Souza Oliveira, R. P. (2013). Novel biotechnological applications of bacteriocins: A review. Food Control 32(1):134–142. doi: 10.1016/j.foodcont.2012.11.025
  • Bali, V., Panesar, P. S. and Bera, M. B. (2016). Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications. Crit. Rev. Biotechnol. 36(2):204–14. doi: 10.3109/07388551.2014.947916
  • Balla, E., Dicks, L. M., Du Toit, M., Van Der Merwe, M. J. and Holzapfel, W. H. (2000). Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl. Environ. Microbiol. 66(4):1298–304.
  • Bari, M. L., Ukuku, D. O., Kawasaki, T., Inatsu, Y., Isshiki, K. and Kawamoto, S. (2005). Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J. Food Prot 68(7):1381–7.
  • Belkum, M. J., Worobo, R. W. and Stiles, M. E. (1997). Double‐glycine‐type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol. Microbiol. 23(6):1293–1301.
  • Berry, E. D., Liewen, M. B., Mandigo, R. W. and Hutkins, R. W. (1990). Inhibition of Listeria monocytogenes by bacteriocin-producing Pediococcus during the manufacture of fermented semidry sausage. J. Food Prot. 53(3):194–197.
  • Bhunia, A. K., Johnson, M. C. and Ray, B. (1987). Direct detection of an antimicrobial peptide ofPediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. 2(5):319–322.
  • Black, E. P., Setlow, P., Hocking, A. D., Stewart, C. M., Kelly, A. L. and Hoover, D. G. (2007). Response of spores to high‐pressure processing. Compre. Rev. Food Sci. Food Safety 6(4):103–119.
  • Black, E. P., Wei, J., Atluri, S., Cortezzo, D. E., Koziol‐Dube, K., Hoover, D. G. and Setlow, P. (2007). Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. J. Appl. Microbiol. 102(1):65–76.
  • Blom, H., Katla, T., Hagen, B. F. and Axelsson, L. (1997). A model assay to demonstrate how intrinsic factors affect diffusion of bacteriocins. Int. J. Food Microbiol. 38(2):103–109.
  • Bouguettoucha, A., Balannec, B. and Amrane, A. (2011). Unstructured models for Lactic acid fermentation—a review. Food Technol. Biotechnol. 49(1):3–12.
  • Boussouel, N., Mathieu, F., Revol-Junelles, A.-M. and Millière, J.-B. (2000). Effects of combinations of lactoperoxidase system and nisin on the behaviour of Listeria monocytogenes ATCC 15313 in skim milk. Int. J. Food Microbiol. 61(2):169–175.
  • Bouttefroy, A. and Millière, J.-B. (2000). Nisin–curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int. J. Food Microbiol. 62(1):65–75.
  • Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G. and Sahl, H. G. (1998). Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30(2):317–27.
  • Bruno, M. E., Kaiser, A. and Montville, T. J. (1992). Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 58(7):2255–2259.
  • Brurberg, M. B., Nes, I. F. and Eijsink, V. G. H. (1997). Pheromone‐induced production of antimicrobial peptides in Lactobacillus. Mol. Microbiol. 26(2):347–360.
  • Buchman, G. W., Banerjee, S. and Hansen, J. N. (1988). Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 263(31):16260–16266.
  • Budu-Amoako, E., Ablett, R. F., Harris, J. and Delves-Broughton, J. (1999). Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in cold-pack lobster meat. J. Food Protection® 62(1):46–50.
  • Bukhtiyarova, M., Yang, R. and Ray, B. (1994). Analysis of the pediocin AcH gene cluster from plasmid pSMB74 and its expression in a pediocin-negative Pediococcus acidilactici strain. Appl. Environ. Microbiol. 60(9):3405–3408.
  • Buncic, S., Fitzgerald, C. M., Bell, R. G. and Hudson, J. A. (1995). Individual and combined listericidal effects of sodium lactate, potassium sorbate, nisin and curing salts at refrigeration temperature. J. Food Saf. 15(3):247–264.
  • Burgos, M. J. G., Abriouel, H., Lucas, R. and Gálvez, A. (2012). Increasing the microbial inactivation of Staphylococcus aureus in sauces by a combination of enterocin AS-48 and 2-nitropropanol, and mild heat treatments. Food Control 25(2):740–744.
  • Calderón-Miranda, M. L., Barbosa-Cánovas, G. V. and Swanson, B. G. (1999a). Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. Int. J. Food Microbiol. 51(1):19–30.
  • Calderón-Miranda, M. L., Barbosa-Cánovas, G. V. and Swanson, B. G. (1999b). Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. Int. J. Food Microbiol. 51(1):7–17.
  • Callewaert, R. and De Vuyst, L. (2000). Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation. Appl. Environ. Microbiol. 66(2):606–613.
  • Capellas, M., Mor-Mur, M., Gervilla, R., Yuste, J. and Guamis, B. (2000). Effect of high pressure combined with mild heat or nisin on inoculated bacteria and mesophiles of goat’s milk fresh cheese. Food Microbiol. 17(6):633–641.
  • Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubès, R., Postle, K., … Cavard, D. (2007). Colicin biology. Microbiol. Molecu. Biol. Rev. MMBR 71(1):158–229. https://doi.org/10.1128/MMBR.00036-06
  • Carolissen-Mackay, V., Arendse, G. and Hastings, J. W. (1997). Purification of bacteriocins of lactic acid bacteria: problems and pointers. Int. J. Food Microbiol. 34(1):1–16. doi: https://doi.org/10.1016/S0168-1605(96)01167-1
  • Chalón, M. C., Acuña, L., Morero, R. D., Minahk, C. J. and Bellomio, A. (2012a). Membrane-active bacteriocins to control Salmonella in foods. Are they the definite hurdle? Food Res. Int. 45(2):735–744. doi: 10.1016/j.foodres.2011.08.024
  • Chen, C. M., Sebranek, J. G., Dickson, J. S. and Mendonca, A. F. (2004a). Combining pediocin (ALTA 2341) with postpackaging thermal pasteurization for control of Listeria monocytogenes on frankfurters. J. Food Prot. 67(9):1855–65.
  • Chen, C. M., Sebranek, J. G., Dickson, J. S. and Mendonca, A. F. (2004b). Combining pediocin with postpackaging irradiation for control of Listeria monocytogenes on frankfurters. J. Food Prot. 67(9):1866–75.
  • Chen, H. and Hoover, D. G. (2003). Bacteriocins and their food applications. Compre. Rev. Food Sci. Food Safety 2(3):82–100.
  • Chen, P., Novak, J., Kirk, M., Barnes, S., Qi, F. and Caufield, P. W. (1998). Structure-activity study of the lantibiotic mutacin II from Streptococcus mutans T8 by a gene replacement strategy. Appl. Environ. Microbiol. 64(7):2335–40.
  • Cintas, L. M., Casaus, P., Herranz, C., Håvarstein, L. S., Holo, H., Hernández, P. E. and Nes, I. F. (2000). Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, thesec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182(23):6806–6814.
  • Cintas, L. M., Herranz, C., HernÁndez, P. E., Casaus, M. P., Nes, I. F. and HernÁndez, P. E. (2001). Review: Bacteriocins of Lactic acid bacteria. Food Sci. Technol. Internat. 7(4):281–305. doi: 10.1106/r8de-p6hu-clxp-5ryt
  • Cleveland, J., Montville, T. J., Nes, I. F. and Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71(1):1–20.
  • Cobo Molinos, A., Abriouel, H., Lopez, R. L., Valdivia, E., Omar, N. B. and Galvez, A. (2008). Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food. Chem. Toxicol. 46(8):2912–21. doi: 10.1016/j.fct.2008.05.035
  • Coma, V., Sebti, I., Pardon, P., Deschamps, A. and Pichavant, F. H. (2001). Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J. Food Protection® 64(4):470–475.
  • Concha-Meyer, A., Schöbitz, R., Brito, C. and Fuentes, R. (2011). Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control 22(3):485–489.
  • Cotter, P. D., Hill, C. and Ross, R. P. (2005a). Bacterial lantibiotics: Strategies to improve therapeutic potential. Curr. Protein Pept. Sci. 6(1):61–75.
  • Cotter, P. D., Hill, C. and Ross, R. P. (2005b). Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 3(10):777–788.
  • Cotter, P. D., Ross, R. P. and Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol. 11(2):95–105.
  • Cox, C. R., Coburn, P. S. and Gilmore, M. S. (2005). Enterococcal cytolysin: A novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6(1):77–84. ISSN 1389-2037/1875-5550, doi:10.2174/1389203053027557
  • Crameri, A., Raillard, S. A., Bermudez, E. and Stemmer, W. P. (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391(6664):288–91. doi: 10.1038/34663
  • Cutter, C. N. and Siragusa, G. R. (1994). Decontamination of beef carcass tissue with nisin using a pilot scale model carcass washer. Food Microbiol. 11(6):481–489.
  • Daba, H., Lacroix, C., Huang, J. and Simard, R. E. (1993). Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl. Microbiol. Biotechnol. 39(2):166–173.
  • Dayem, M. A., Fleury, Y., Devilliers, G., Chaboisseau, E., Girard, R., Nicolas, P. and Delfour, A. (1996). The putative immunity protein of the Gram‐positive bacteria Leuconostoc mesenteroides is preferentially located in the cytoplasm compartment. FEMS Microbiol. Lett. 138(2‐3):251–259.
  • De Martinis, E. C. P. and Franco, B. D. G. M. (1998). Inhibition of Listeria monocytogenes in a pork product by a Lactobacillus sake strain. Int. J. Food Microbiol. 42(1):119–126.
  • De Ruyter, P. G., Kuipers, O. P. and De Vos, W. M. (1996). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62(10):3662–3667.
  • Diep, D. B., Håvarstein, L. S. and Nes, I. F. (1996). Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol. 178(15):4472–4483.
  • Diep, D. B., Håvarstein, L. S., Nissen-Meyer, J. and Nes, I. F. (1994). The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60(1):160–166.
  • Diep, D. B. and Nes, I. F. (1995). A bacteriocin‐like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol. 18(4):631–639.
  • Dodd, H. M., Horn, N. and Gasson, M. J. (1990). Analysis of the genetic determinant for production of the peptide antibiotic nisin. Microbiology 136(3):555–556.
  • Dominguez, A. P. M., Bizani, D., Cladera-Olivera, F. and Brandelli, A. (2007). Cerein 8A production in soybean protein using response surface methodology. Biochem. Eng. J. 35(2):238–243.
  • Drider, D., Fimland, G., Hechard, Y., McMullen, L. M. and Prevost, H. (2006). The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70(2):564–82. doi: 10.1128/MMBR.00016-05
  • Dykes, G. A. (1995). Bacteriocins: ecological and evolutionary significance. Tren. Ecol. Evol. 10(5):186–189.
  • Dykes, G. A. and Hastings, J. W. (1998). Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett. Appl. Microbiol. 26(1):5–8.
  • Engelke, G., Gutowski-Eckel, Z., Hammelmann, M. and Entian, K. D. (1992). Biosynthesis of the lantibiotic nisin: Genomic organization and membrane localization of the NisB protein. Appl. Environ. Microbiol. 58(11):3730–3743.
  • Engelke, G., Gutowski-Eckel, Z., Kiesau, P., Siegers, K., Hammelmann, M. and Entian, K. D. (1994). Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl. Environ. Microbiol. 60(3):814–825.
  • Ennahar, S., Aoude-Werner, D., Sorokine, O., Van Dorsselaer, A., Bringel, F., Hubert, J. C. and Hasselmann, C. (1996). Production of pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl. Environ. Microbiol. 62(12):4381–7.
  • Ennahar, S., Sashihara, T., Sonomoto, K. and Ishizaki, A. (2000). Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiol. Rev. 24(1):85–106.
  • Ennahar, S., Sonomoto, K. and Ishizaki, A. (1999). Class IIa bacteriocins from lactic acid bacteria: Antibacterial activity and food preservation. J. Biosci. Bioeng. 87(6):705–716.
  • Fang, T. J. and Lin, L.-W. (1994). Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination system. J. Food Protection® 57(6):479–485.
  • Farber, J. M. and Peterkin, P. I. (1991). Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55(3):476–511.
  • Fernandez, M., Sanchez-Hidalgo, M., Garcia-Quintans, N., Martinez-Bueno, M., Valdivia, E., Lopez, P. and Maqueda, M. (2008). Processing of as-48ABC RNA in AS-48 enterocin production by Enterococcus faecalis. J. Bacteriol. 190(1):240–50. doi: 10.1128/JB.01528-07
  • Field, D., Begley, M., O’Connor, P. M., Daly, K. M., Hugenholtz, F., Cotter, P. D., Hill, C. and Ross, R. P. (2012). Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens.
  • Field, D., Connor, P. M., Cotter, P. D., Hill, C. and Ross, R. P. (2008). The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol. Microbiol. 69(1):218–30. doi: 10.1111/j.1365-2958.2008.06279.x
  • Fimland, G., Johnsen, L., Axelsson, L., Brurberg, M. B., Nes, I. F., Eijsink, V. G. and Nissen-Meyer, J. (2000). A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J. Bacteriol. 182(9):2643–2648.
  • Foegeding, P. M., Thomas, A. B., Pilkington, D. H. and Klaenhammer, T. R. (1992). Enhanced control of Listeria monocytogenes by in situ-produced pediocin during dry fermented sausage production. Appl. Environ. Microbiol. 58(3):884–90.
  • Galvez, A., Abriouel, H., Lopez, R. L. and Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120(1–2):51–70. doi: 10.1016/j.ijfoodmicro.2007.06.001
  • Galvez, A., Lopez, R. L., Abriouel, H., Valdivia, E. and Omar, N. B. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28(2):125–52. doi: 10.1080/07388550802107202
  • Galvez, A., Valdivia, E., Abriouel, H., Camafeita, E., Mendez, E., Martinez-Bueno, M. and Maqueda, M. (1998). Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch. Microbiol. 171(1):59–65.
  • Galvez, A., Valdivia, E., Martinez, M. and Maqueda, M. (1989). Effect of peptide AS-48 on Enterococcus faecalis subsp. liquefaciens S-47. Antimicrob. Agents. Chemother. 33(5):641–5.
  • Gao, Y., Jia, S., Gao, Q. and Tan, Z. (2010). A novel bacteriocin with a broad inhibitory spectrum produced by Lactobacillus sake C2, isolated from traditional Chinese fermented cabbage. Food Control 21(1):76–81.
  • Gao, Y., Li, D. and Liu, X. (2013). Evaluation of the factors affecting the activity of sakacin C2 against E. coli in milk. Food Control 30(2):453–458. doi: 10.1016/j.foodcont.2012.07.013
  • Ghequire, M. G. K., and De Mot, R. (2014). Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol. Rev. 38(4):523–568. doi:10.1111/1574-6976.12079.
  • Gonzalez, B., Glaasker, E., Kunji, E., Driessen, A., Suarez, J. E. and Konings, W. N. (1996). Bactericidal mode of action of plantaricin C. Appl. Environ. Microbiol. 62(8):2701–9.
  • Grosulescu, C., Juneja, V. K. and Ravishankar, S. (2011). Effects and interactions of sodium lactate, sodium diacetate, and pediocin on the thermal inactivation of starved Listeria monocytogenes on bologna. Food Microbiol. 28(3):440–6. doi: 10.1016/j.fm.2010.10.013
  • Guder, A., Wiedemann, I. and Sahl, H. (2000). Posttranslationally modified bacteriocins—the lantibiotics. Pept. Sci. 55(1):62–73.
  • Gutierrez, J., Criado, R., Citti, R., Martin, M., Herranz, C., Nes, I. F., Cintas, L. M. and Hernandez, P. E. (2005). Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. Int. J. Food Microbiol. 103(3):239–50. doi:10.1016/j.ijfoodmicro.2004.11.035
  • Hächler, H., Marti, G., Giannini, P., Lehner, A., Jost, M., Beck, J., Weiss, F., Bally, B., Jermini, M., Stephan, R. and Baumgartner, A. (2013). Outbreak of listerosis due to imported cooked ham, Switzerland 2011. Euro Surveill. 18(18):20469. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20469
  • Hanlin, M. B., Kalchayanand, N., Ray, P. and Ray, B. (1993). Bacteriocins of lactic acid bacteria in combination have greater antibacterial activity. J. Food Protection® 56(3):252–255.
  • Hastings, J. W., Sailer, M., Johnson, K., Roy, K. L., Vederas, J. C. and Stiles, M. E. (1991). Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173(23):7491–500.
  • Hata, T., Tanaka, R. and Ohmomo, S. (2010). Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. Int. J. Food Microbiol. 137(1):94–9. doi: 10.1016/j.ijfoodmicro.2009.10.021
  • Héchard, Y. and Sahl, H.-G. (2002). Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84(5):545–557.
  • Heng, N. C., Burtenshaw, G. A., Jack, R. W. and Tagg, J. R. (2004). Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes. Plasmid 52(3):225–9. doi: 10.1016/j.plasmid.2004.08.002
  • Heng, N. C. K., Swe, P. M., Ting, Y.-T., Dufour, M., Baird, H. J., Ragland, N. L., Burtenshaw, G. A., Jack, R. W. and Tagg, J. R. (2006). The large antimicrobial proteins (bacteriocins) of streptococci. Interna. Congress Series 1289(0):351–354. doi: 10.1016/j.ics.2005.11.020
  • Heng, N. C. K., Wescombe, P. A., Burton, J. P., Jack, R. W. and Tagg, J. R. (2007). The diversity of bacteriocins in gram-positive bacteria. In: Bacteriocins: Ecology and Evolution, pp. 45–92 Riley, M. A. and Chavan, M. A. Eds., Springer-Verlag, Berlin, Germany.
  • Hicks, D. T., Pivarnik, L. F., McDermott, R., Richard, N., Hoover, D. G. and Kniel, K. E. (2009). Consumer awareness and willingness to pay for high‐pressure processing of ready‐to‐eat food. J. Food Sci. Educ. 8(2):32–38.
  • Holo, H., Nilssen, Ø. and Nes, I. F. (1991). Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173(12):3879–3887.
  • Hoover, D. G. and Steenson, L. R. (Eds.) (2003). Bacteriocins of lactic acid bacteria. Academic Press, New York.
  • Hsieh, Y.-H., Yan, M., Liu, J.-G. and Hwang, J. C. (2011). The synergistic effect of nisin and garlic shoot juice against Listeria spp. in soymilk. J. Taiwan Inst. Chem. Eng. 42(4):576–579.
  • Huang, J., Lacroix, C., Daba, H., Simard, R. E. (1994). Growth of in milk and its control by pediocin 5 produced by UL5. Int. Dairy J. 4(5):429–443. ISSN 0958-6946, https://doi.org/10.1016/0958-6946(94)90057-4. (http://www.sciencedirect.com/science/article/pii/0958694694900574).
  • Hurst, A. and Kruse, H. (1972). Effect of secondary metabolites on the organisms producing them: Effect of nisin on Streptococcus lactis and enterotoxin B on Staphylococcus aureus. Antimicrob. Agents. Chemother. 1(3):277–279.
  • Iseppi, R., de Niederhäusern, S., Anacarso, I., Messi, P., Sabia, C., Pilati, F., Toselli, M., Esposti, M. D. and Bondi, M. (2011). Anti-listerial activity of coatings entrapping living bacteria. Soft Matter 7(18):8542–8548.
  • Islam, M. R., Nagao, J-i., Zendo, T. and Sonomoto, K. (2012). Antimicrobial mechanism of lantibiotics. Biochem. Soc. Trans. 40(6):1528–1533.
  • Jack, R. W., Tagg, J. R. and Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59(2):171–200.
  • James, R., Lazdunski, C. and Pattus, F. (2013). Bacteriocins, microcins and lantibiotics. Vol. 65: Springer Science & Business Media, Springer-verlag Berlin Heidelberg.
  • Joerger, M. C. and Klaenhammer, T. R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167(2):439–46.
  • Kalchayanand, N., Hanlin, M. B. and Ray, B. (1992). Sublethal injury makes Gram-negative and resistant Gram-positive bacteria sensitive to the bacteriocins, pediocin AcH and nisin. Lett. Appl. Microbiol. 15(6):239–243. https://doi.org/10.1111/j.1472-765X.1992.tb00773.x
  • Kalchayanand, N., Sikes, T., Dunne, C. P. and Ray, B. (1994). Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Appl. Environ. Microbiol. 60(11):4174–4177.
  • Kalchayanand, N., Sikes, A., Dunne, C. P. and Ray, B. (1998). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J. Food Protection® 61(4):425–431.
  • Kaletta, C. and Entian, K.-D. (1989). Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J. Bacteriol. 171(3):1597–1601.
  • Karakas-Sen, A. and Narbad, A. (2012). Heterologous expression and purification of NisA, the precursor peptide of lantibiotic nisin from Lactococcus lactis. Acta. Biol. Hung. 63(2):301–10. doi: 10.1556/ABiol.63.2012.2.11
  • Kashani-Haddad, H., Nikzad, H., Mobaseri, S. and Hoseini, E. S. (2012). Synergism effect of nisin peptide in reducing chemical preservatives in food industry. Life Sci. J. 9(1):496–501.
  • Khajehali, E., Shekarforoush, S. S., Nazer, A. H. K. and Hoseinzadeh, S. (2012). Effects of nisin and modified atmosphere packaging (map) on the quality of emulsion‐type sausage. J. Food Qual. 35(2):119–126.
  • Kim, W. J., Min, K. Y., Kim, K.-T., Lee, N.-K., Chung, M.-S., Cho, S. W. and Paik, H.-D. (2012). Antimicrobial effect of the extracts of a ginseng by-product produced by subcritical water extraction, nisin, and their combination against Listeria monocytogenes in milk products. Milchwissenschaft 67(4):370–373.
  • Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12(1–3):39–85. doi: https://doi.org/10.1016/0168-6445(93)90057-G
  • Klein, C. and Entian, K. D. (1994). Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl. Environ. Microbiol. 60(8):2793–2801.
  • Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G. G. A., Luesink, E. J. and de Vos, W. M. (1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270(45):27299–27304.
  • Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M. and de Vos, W. M. (1998). Quorum sensing-controlled gene expression in lactic acid bacteria. J. Biotechnol. 64(1):15–21.
  • Kumar, C. G. and Anand, S. K. (1998). Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol. 42(1–2):9–27. doi: https://doi.org/10.1016/S0168-1605(98)00060-9
  • Lau, P. C. K., Parsons, M. and Uchimura, T. (1992). Molecular evolution of E colicin plasmids with emphasis on the endonuclease types. In: Bacteriocins, Microcins and Lantibiotics. NATO ASI Series (Series H: Cell Biology), James R., Lazdunski C., and Pattus F. Eds., Vol. 65. Springer, Berlin, Heidelberg.
  • Lee, N.-K., PARK, Y.-L., Park, Y.-H., Kim, J.-M., Nam, H.-M., Jung, S.-C. and Paik, H.-D. (2010). Purification and characterization of pediocin SA131 produced by Pediococcus pentosaceus SA131 against bovine mastitis pathogens. Milchwissenschaft 65(1):19–21.
  • Leer, R. J., van der Vossen, J. M. B. M., van Giezen, M., Johannes, M. V. N. and Pouwels, P. H. (1995). Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141(7):1629–1635.
  • Leisner, J. J., Greer, G. G. and Stiles, M. E. (1996). Control of beef spoilage by a sulfide-producing Lactobacillus sake strain with bacteriocinogenic Leuconostoc gelidum UAL187 during anaerobic storage at 2°C. Appl. Environ. Microbiol. 62(7):2610–2614.
  • Leroy, F. and De Vuyst, L. (2003). A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC 494. Appl. Environ. Microbiol. 69(2):1093–1099.
  • Leroy, F. and De Vuyst, L. (2005). Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int. J. Food Microbiol. 100(1–3):141–152.
  • Leroy, F., Degeest, B. and De Vuyst, L. (2002). A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. Int. J. Food Microbiol. 73(2–3):251–259.
  • Liu, G., Wang, H., Griffiths, M. W. and Li, P. (2011). Heterologous extracellular production of enterocin P in Lactococcus lactis by a food-grade expression system. Eur. Food Res. Technol. 233(1):123–129.
  • Liu, L., O’Conner, P., Cotter, P. D., Hill, C. and Ross, R. P. (2008). Controlling Listeria monocytogenes in Cottage cheese through heterologous production of enterocin A by Lactococcus lactis. J. Appl. Microbiol. 104(4):1059–1066.
  • Liu, S. N., Han, Y. and Zhou, Z. J. (2011). Fusion expression of pedA gene to obtain biologically active pediocin PA-1 in Escherichia coli. J. Zhejiang Univ. Sci. B 12(1):65–71. doi: 10.1631/jzus.B1000152
  • Liu, W. and Hansen, J. N. (1992). Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J. Biol. Chem. 267(35):25078–85.
  • Lohans, C. T. and Vederas, J. C. (2012). Development of class IIa bacteriocins as Therapeutic agents. Int. J. Microbiol. 2012:386410. doi: 10.1155/2012/386410
  • Makino, S. -I., Kawamoto, K., Takeshi, K., Okada, Y., Yamasaki, M., Yamamoto, S. and Igimi, S. (2005). An outbreak of food-borne listeriosis due to cheese in Japan, during 2001. Int. J. Food Microbiol. 104(2):189–196. ISSN 0168-1605, https://doi.org/10.1016/j.ijfoodmicro.2005.02.009. (http://www.sciencedirect.com/science/article/pii/S0168160505002497)
  • Maliničová, L., Piknová, M., Pristaš, P. and Javorský, P. (2010). Peptidoglycan hydrolases as novel tool for antienterococcal therapy. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. The Formatex Microbiology Book Series. 1:463–472. Mendez-Vilas, A., Ed., Badajoz, Spain: Formatex Research Centre.
  • Mansour, M. and Millière, J.-B. (2001). An inhibitory synergistic effect of a nisin–monolaurin combination on Bacillus sp. vegetative cells in milk. Food Microbiol. 18(1):87–94.
  • Martí, M. I., Horn, N. and Dodd, H. M. (2003). Heterologous production of bacteriocins by lactic acid bacteria. Int. J. Food Microbiol. 80(2):101–116.
  • Martin-Visscher, L. A., Gong, X., Duszyk, M. and Vederas, J. C. (2009). The three-dimensional structure of carnocyclin A reveals that many circular bacteriocins share a common structural motif. J. Biol. Chem. 284(42):28674–81. doi: 10.1074/jbc.M109.036459
  • Martinez, B., Bravo, D. and Rodriguez, A. (2005). Consequences of the development of nisin-resistant Listeria monocytogenes in fermented dairy products. J. Food Prot. 68(11):2383–8.
  • Marugg, J. D., Gonzalez, C. F., Kunka, B. S., Ledeboer, A. M., Pucci, M. J., Toonen, M. Y., Walker, S. A., Zoetmulder, L. C. and Vandenbergh, P. A. (1992). Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1. 0. Appl. Environ. Microbiol. 58(8):2360–2367.
  • Massani, M. B., Vignolo, G. M., Eisenberg, P. and Morando, P. J. (2013). Adsorption of the bacteriocins produced by Lactobacillus curvatus CRL705 on a multilayer-LLDPE film for food-packaging applications. LWT - Food Sci. Technol. 53(1):128–138. doi: 10.1016/j.lwt.2013.01.018
  • Masschalck, B., Van Houdt, R. and Michiels, C. W. (2001). High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. Int. J. Food Microbiol. 64(3):325–332.
  • McAuliffe, O., Hill, C. and Ross, R. P. (2000). Each peptide of the two-component lantibiotic lacticin 3147 requires a separate modification enzyme for activity. Microbiology 146(9):2147–2154.
  • McAuliffe, O., Ross, R. P. and Hill, C. (2001a). Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25(3):285–308. doi: https://doi.org/10.1016/S0168-6445(00)00065-6
  • McAuliffe, O., Ryan, M. P., Ross, R. P., Hill, C., Breeuwer, P. and Abee, T. (1998). Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 64(2):439–445.
  • Meghrous, J., Lacroix, C. and Simard, R. E. (1999). The effects on vegetative cells and spores of three bacteriocins from lactic acid bacteria. Food Microbiol. 16(2):105–114. doi: 10.1006/fmic.1998.0221
  • Meseguer, I. and Rodriguez‐Valera, F. (1985). Production and purification of halocin H4. FEMS Microbiol. Lett. 28(2):177–182. https://doi.org/10.1111/j.1574-6968.1985.tb00787.x
  • Messens, W., Neysens, P., Vansieleghem, W., Vanderhoeven, J. and De Vuyst, L. (2002). Modeling growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in response to temperature and pH values used for sourdough fermentations. Appl. Environ. Microbiol. 68(3):1431–1435.
  • Messens, W., Verluyten, J., Leroy, F. and De Vuyst, L. (2003). Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int. J. Food Microbiol. 81(1):41–52.
  • Miller, M. B. and Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology 55(1):165–199.
  • Ming, X., Weber, G. H., Ayres, J. W. and Sandine, W. E. (1997). Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 62(2):413–415.
  • Mohamed, H. M., Elnawawi, F. A. and Yousef, A. E. (2011). Nisin treatment to enhance the efficacy of gamma radiation against Listeria monocytogenes on meat. J. Food Prot. 74(2):193–9. doi: 10.4315/0362-028X.JFP-10-288
  • Molinos, A. C., Abriouel, H., López, R. L., Omar, N. B., Valdivia, E. and Gálvez, A. (2009). Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food. Chem. Toxicol. 47(9):2216–2223.
  • Moll, G. N., Konings, W. N. and Driessen, A. J. M. (1999). Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76(1–4):185–198. https://doi.org/10.1023/A:1002002718501
  • Montalbán-López, M., Sánchez-Hidalgo, M., Cebrián, R. and Maqueda, M. (2012). Discovering the bacterial circular proteins: Bacteriocins, Cyanobactins, and Pilins*. J. Biol. Chem. 287(32):27007–13. doi: 10.1074/jbc.R112.354688
  • Montville, T. and Chikindas, M. (2013). Biological Control of Foodborne Bacteria. Food Microbio. 803–822. In: Doyle, M., Buchanan, R. (Eds.), ASM Press, Washington, DC. doi:10.1128/9781555818463.ch31
  • Morgan, S. M., Ross, R. P., Beresford, T. and Hill, C. (2000). Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. J. Appl. Microbiol. 88(3):414–420.
  • Mota-Meira, M., Lapointe, G., Lacroix, C. and Lavoie, M. C. (2000). MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob. Agents. Chemother. 44(1):24–29.
  • Motlagh, A. M., Bhunia, A. K., Szostek, F., Hansen, T. R., Johnson, M. C. and Ray, B. (1992). Nucleotide and amino acid sequence of pap‐gene (pediocin AcH production) in Pediococcus acidilactici H. Lett. Appl. Microbiol. 15(2):45–48.
  • Mulders, J. W., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. and de Vos, W. M. (1991). Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur. J. Biochem. 201(3):581–4.
  • Mulet-Powell, N., Lacoste-Armynot, A. M., Vinas, M. and Simeon De Buochberg, M. (1998). Interactions between pairs of bacteriocins from lactic bacteria. J. Food Protection® 61(9):1210–1212.
  • Murinda, S. E., Rashid, K. A. and Roberts, R. F. (2003). In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40-transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. J. Food Prot. 66(5):847–53.
  • Naidu, A. S. (2000). Natural Food Antimicrobial Systems, Naidu, A. S. Ed., CRC Press, Taylor & Francis Group, London. ISBN: 978-0-8493-2047-7, https://doi.org/10.1201/9781420039368.
  • Neetoo, H., Ye, M., Chen, H., Joerger, R. D., Hicks, D. T. and Hoover, D. G. (2008). Use of nisin-coated plastic films to control Listeria monocytogenes on vacuum-packaged cold-smoked salmon. Int. J. Food Microbiol. 122(1):8–15.
  • Nes, I. F., Diep, D. B., Havarstein, L. S., Brurberg, M. B., Eijsink, V. and Holo, H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie. Van. Leeuwenhoek. 70(2–4):113–28.
  • Nes, I. F., Diep, D. B. and Holo, H. (2007). Bacteriocin diversity in Streptococcus and Enterococcus. J. Bacteriol. 189(4):1189–98. doi: 10.1128/JB.01254-06
  • Nes, I. F., Diep, D. B., Håvarstein, L. S., Brurberg, M. B., Eijsink, V. and Holo, H. (1996). Biosynthesis of bacteriocins in lactic acid bacteria. Antonie. Van. Leeuwenhoek. 70(2–4):113–128.
  • Nes, I. F. and Holo, H. (2000). Class II antimicrobial peptides from lactic acid bacteria. Pept. Sci. 55(1):50–61.
  • Nes, I. F., Yoon, S. and Diep, D. B. (2007). Ribosomally synthesized antimicrobial peptides (bacteriocins) in lactic acid bacteria: A review. Food Sci. Biotechnol. 16(5):675.
  • Neysens, P. and De Vuyst, L. (2005). Kinetics and modelling of sourdough lactic acid bacteria. Tren. Food Sci. Technol. 16(1):95–103.
  • Nigutova, K., Serencova, L., Piknova, M., Javorsky, P. and Pristas, P. (2008). Heterologous expression of functionally active enterolysin A, class III bacteriocin from Enterococcus faecalis, in Escherichia coli. Protein Expr. Purif. 60(1):20–4. doi: 10.1016/j.pep.2008.03.006
  • Nilsen, T., Nes, I. F. and Holo, H. (2003). Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69(5):2975–2984. doi: 10.1128/aem.69.5.2975-2984.2003
  • Nilsson, L., Chen, Y., Chikindas, M. L., Huss, H. H., Gram, L. and Montville, T. J. (2000). Carbon dioxide and nisin act synergistically on listeria monocytogenes. Appl. Environ. Microbiol. 66(2):769–774.
  • Nishie, M., Nagao, J.-I. and Sonomoto, K. (2012). Antibacterial peptides “bacteriocins”: An overview of their diverse characteristics and applications. Biocontrol Sci. 17(1):1–16.
  • Nissen-Meyer, J., Håvarstein, L. S., Holo, H., Sletten, K. and Nes, I. F. (1993). Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. Microbiology 139(7):1503–1509.
  • Nissen-Meyer, J., Oppegård, C., Rogne, P., Haugen, H. S. and Kristiansen, P. E. (2010). Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2(1):52–60. doi: 10.1007/s12602-009-9021-z
  • Padgett, T., Han, I. Y. and Dawson, P. L. (1998). Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J. Food Protection® 61(10):1330–1335.
  • Palumbo, S. A. (1986). Is refrigeration enough to restrain foodborne pathogens? J. Food Protection® 49(12):1003–1009.
  • Pašić, L., Velikonja, B. H. and Ulrih, N. P. (2008). Optimization of the culture conditions for the production of a bacteriocin from halophilic Archaeon Sech7a. Prep. Biochem. Biotechnol. 38(3):229–245. https://doi.org/10.1080/10826060802164637
  • Parada, J. L., Caron, C. R., Medeiros, A. B. P. and Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Bra. Arch. Biol. Technol. 50(3):521–542.
  • Parkinson, J. S. (1993). Signal transduction schemes of bacteria. Cell 73(5):857–871.
  • Pawar, D. D., Malik, S. V. S., Bhilegaonkar, K. N. and Barbuddhe, S. B. (2000). Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci. 56(3):215–219.
  • Pérez Pulido, R., del Árbol, J. T., Burgos, M. J. G. and Gálvez, A. (2012). Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control 28(1):19–24. doi: 10.1016/j.foodcont.2012.04.045
  • Periago, P. M. and Moezelaar, R. (2001). Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int. J. Food Microbiol. 68(1):141–148.
  • Peschel, A. and Götz, F. (1996). Analysis of the Staphylococcus epidermidis genes epiF,-E, and-G involved in epidermin immunity. J. Bacteriol. 178(2):531–536.
  • Pol, I. E., Mastwijk, H. C., Bartels, P. V. and Smid, E. J. (2000). Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl. Environ. Microbiol. 66(1):428–430.
  • Pomares, M. F., Salomon, R. A., Pavlova, O., Severinov, K., Farias, R. and Vincent, P. A. (2009). Potential applicability of chymotrypsin-susceptible microcin J25 derivatives to food preservation. Appl. Environ. Microbiol. 75(17):5734–8. doi: 10.1128/AEM.01070-09
  • Qi, F., Chen, P. and Caufield, P. W. (1999a). Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans. Appl. Environ. Microbiol. 65(2):652–658.
  • Qi, F., Chen, P. and Caufield, P. W. (1999b). Purification of mutacin III from group III streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl. Environ. Microbiol. 65(9):3880–3887.
  • Qi, F., Chen, P. and Caufield, P. W. (2001). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl. Environ. Microbiol. 67(1):15–21.
  • Quadri, L. E., Kleerebezem, M., Kuipers, O. P., de Vos, W. M., Roy, K. L., Vederas, J. C. and Stiles, M. E. (1997). Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J. Bacteriol. 179(19):6163–6171.
  • Quadri, L. E., Sailer, M., Roy, K. L., Vederas, J. C. and Stiles, M. E. (1994). Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. J. Biol. Chem. 269(16):12204–12211.
  • Quadri, L. E., Sailer, M., Terebiznik, M. R., Roy, K. L., Vederas, J. C. and Stiles, M. E. (1995). Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J. Bacteriol. 177(5):1144–1151.
  • Ra, R., Beerthuyzen, M. M., de Vos, W. M., Saris, P. E. J. and Kuipers, O. P. (1999). Effects of gene disruptions in the nisin gene cluster of Lactococcus lactis on nisin production and producer immunity. Microbiology 145(5):1227–1233.
  • Rai, V. R., Bai, J. A., Khan, H., Flint, S. H. and Yu, P.-L. (2014). Bacteriocins: The natural food preservatives. In: Microbial Food Safety and Preservation Techniques, pp. 251–286, Rai, V. R. and Bai, J. A., Eds., CRC Press, Taylor & Francis Group, London. ISBN: 978-1-4665-9306-0, https://doi.org/10.1201/b17465-18
  • Raloff, J. (1998). Staging germ warfare in foods. Sci. News 153.
  • Reis, M., Eschbach-Bludau, M., Iglesias-Wind, M. I., Kupke, T. and Sahl, H.-G. (1994). Producer immunity towards the lantibiotic Pep5: identification of the immunity gene pepI and localization and functional analysis of its gene product. Appl. Environ. Microbiol. 60(8):2876–2883.
  • Rekhif, N., Atrih, A. and Lefebvre, G. (1994). Selection and properties of spontaneous mutants ofListeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Curr. Microbiol. 28(4):237–241.
  • Reviriego, C., Fernandez, A., Horn, N., Rodrıguez, E., Marın, M. L., Fernandez, L. and Rodríguez, J. M. (2005). Production of pediocin PA-1, and coproduction of nisin A and pediocin PA-1, by wild Lactococcus lactis strains of dairy origin. Int. Dairy J. 15(1):45–49.
  • Riley, M. A. (1998). Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet. 32(1):255–278.
  • Riley, M. A. and Gordon, D. M. (1992). A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. Microbiology 138(7):1345–1352.
  • Riley, M. A. and Wertz, J. E. (2002a). Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84(5–6):357–64. doi: https://doi.org/10.1016/S0300-9084(02)01421-9
  • Riley, M. A. and Wertz, J. E. (2002b). Bacteriocins: evolution, ecology, and application. Ann. Rev. Microbiol. 56(1):117–137.
  • Rince, A., Dufour, A., Uguen, P., Le Pennec, J.-P. and Haras, D. (1997). Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl. Environ. Microbiol. 63(11):4252–4260.
  • Roberts, C. M. and Hoover, D. G. (1996). Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin. J. Appl. Bacteriol. 81(4):363–368.
  • Rodríguez, E. and Laviña, M. (2003). The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin H47 antibiotic action. Antimicrob. Agents. Chemother. 47(1):181–187.
  • Rodriguez, J. M., Martinez, M. I. and Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food. Sci. Nutr. 42(2):91–121. doi: 10.1080/10408690290825475
  • Rollema, H. S., Kuipers, O. P., Both, P., de Vos, W. M. and Siezen, R. J. (1995). Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl. Environ. Microbiol. 61(8):2873–8.
  • Rose, N. L., Sporns, P., Stiles, M. E. and McMullen, L. M. (1999). Inactivation of nisin by glutathione in fresh meat. Journal of Food Science-Chicago- 64(5):759–762.
  • Ross, K. F., Ronson, C. W. and Tagg, J. R. (1993). Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 59(7):2014–2021.
  • Ross, R. P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, W. J. and Hill, C. (1999). Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek 76(1–4):337–346. https://doi.org/10.1023/A:1002069416067; https://doi.org/10.1023/A:1002002718501
  • Rouse, S., Field, D., Daly, K. M., O’Connor, P. M., Cotter, P. D., Hill, C. and Ross, R. P. (2012). Bioengineered nisin derivatives with enhanced activity in complex matrices. Microb. Biotechnol. 5(4):501–8. doi: 10.1111/j.1751-7915.2011.00324.x
  • Ruiz-Barba, J. L., Cathcart, D. P., Warner, P. J. and Jiménez-Díaz, R. (1994). Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in Spanish-style green olive fermentations. Appl. Environ. Microbiol. 60(6):2059–2064.
  • Ryan, M. P., Flynn, J., Hill, C., Ross, R. P. and Meaney, W. J. (1999). The natural food grade inhibitor, Lacticin 3147, reduced the incidence of mastitis after experimental challenge with streptococcus dysgalactiae in nonlactating dairy cows. J. Dairy Sci. 82(10):2108–2114. doi: 10.3168/jds.S0022-0302(99)75453-6
  • Ryan, M. P., Rea, M. C., Hill, C. and Ross, R. P. (1996). An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl. Environ. Microbiol. 62(2):612–619.
  • Sablon, E., Contreras, B. and Vandamme, E. (2000). Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. In: New Products and New Areas of Bioprocess Engineering. Advances in Biochemical Engineering/Biotechnology, 68:21–60. Springer, Berlin, Heidelberg https://doi.org/10.1007/3-540-45564-7_2.
  • Sahl, H.-G. and Bierbaum, G. (1998). Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Ann. Rev. Microbiol. 52(1):41–79.
  • Sanchez-Barrena, M. J., Martinez-Ripoll, M., Galvez, A., Valdivia, E., Maqueda, M., Cruz, V. and Albert, A. (2003). Structure of bacteriocin AS-48: from soluble state to membrane bound state. J. Mol. Biol. 334(3):541–9. doi: https://doi.org/10.1016/j.jmb.2003.09.060
  • Sánchez-González, L., Saavedra, J. I. Q. and Chiralt, A. (2013). Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocoll. 33(1):92–98.
  • Sanchez-Hidalgo, M., Montalban-Lopez, M., Cebrian, R., Valdivia, E., Martinez-Bueno, M. and Maqueda, M. (2011). AS-48 bacteriocin: close to perfection. Cell. Mol. Life. Sci. 68(17):2845–57. doi: 10.1007/s00018-011-0724-4
  • Santiago-Silva, P., Soares, N. F. F., Nóbrega, J. E., Júnior, M. A. W., Barbosa, K. B. F., Volp, A. C. P., Zerdas, E. R. M. A. and Würlitzer, N. J. (2009). Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 20(1):85–89.
  • Saris, P. E. J., Immonen, T., Michaela, R. and Sahl, H.-G. (1996). Immunity to lantibiotics. Antonie. Van. Leeuwenhoek. 69(2):151–159.
  • Sawa, N., Koga, S., Okamura, K., Ishibashi, N., Zendo, T. and Sonomoto, K. (2013). Identification and characterization of novel multiple bacteriocins produced by Lactobacillus sakei D98. J. Appl. Microbiol. 115(1):61–9. doi: 10.1111/jam.12226
  • Sawa, N., Zendo, T., Kiyofuji, J., Fujita, K., Himeno, K., Nakayama, J. and Sonomoto, K. (2009). Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl. Environ. Microbiol. 75(6):1552–8. doi: 10.1128/AEM.02299-08
  • Scannell, A. G. M., Hill, C., Ross, R. P., Marx, S., Hartmeier, W. and Arendt, E. K. (2000). Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int. J. Food Microbiol. 60(2):241–249.
  • Schlyter, J. H., Glass, K. A., Loeffelholz, J., Degnan, A. J. and Luchansky, J. B. (1993). The effects of diacetate with nitrite, lactate, or pediocin on the viability of Listeria monocytegenes in turkey slurries. Int. J. Food Microbiol. 19(4):271–281.
  • Schoeman, H., Vivier, M. A., Du, T. M., Dicks, L. M., Pretorius, I. S. (1999). The development of bactericidal yeast strains by expressing the Pediococcus acidilactici pediocin gene Ž pedA. in Saccharomyces cereÕisiae. Yeast 15(8):647–656.
  • Shand, R. F. and Leyva, K. J. (2007). Peptide and protein antibiotics from the domain archaea: Halocins and sulfolobicins. In: Bacteriocins, pp. 93–109, Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36604-1_5
  • ShiIIiner, U., Kaya, M. and Lucke, F.-K. (1991). Behaviour of Listeria monocytogenes in meat and its control by a bacteriocin-producing strain of Lactobacillus sake. J. Appi. Bacteriol. 70(6):473–478.
  • Siegers, K. and Entian, K. D. (1995). Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl. Environ. Microbiol. 61(3):1082–1089.
  • Simmonds, R. S., Pearson, L., Kennedy, R. C. and Tagg, J. R. (1996). Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl. Environ. Microbiol. 62(12):4536–41.
  • Skaugen, M., Abildgaard, C. I. M. and Nes, I. F. (1997). Organization and expression of a gene cluster involved in the biosynthesis of the lantibiotic lactocin S. Molecu. General Genet. MGG 253(6):674–686.
  • Stephens, S. K., Floriano, B., Cathcart, D. P., Bayley, S. A., Witt, V. F., Jiménez-Díaz, R., Warner, P. J. and Ruiz-Barba, J. L. (1998). Molecular analysis of the locus responsible for production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 64(5):1871–1877.
  • Stock, J. B., Ninfa, A. J. and Stock, A. M. (1989). Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53(4):450–490.
  • Stoddard, G. W., Petzel, J. P., Van Belkum, M. J., Kok, J. and McKay, L. L. (1992). Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Environ. Microbiol. 58(6):1952–1961.
  • Swe, P. M., Heng, N. C., Cook, G. M., Tagg, J. R. and Jack, R. W. (2010). Identification of DysI, the immunity factor of the streptococcal bacteriocin dysgalacticin. Appl. Environ. Microbiol. 76(23):7885–9. doi: 10.1128/AEM.01707-10
  • Szabo, E. A. and Cahill, M. E. (1998). The combined affects of modified atmosphere, temperature, nisin and ALTA™ 2341 on the growth of Listeria monocytogenes. Int. J. Food Microbiol. 43(1):21–31.
  • Tagg, J. R., Dajani, A. S. and Wannamaker, L. W. (1976). Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40(3):722.
  • Terebiznik, M. R., Jagus, R. J., Cerrutti, P., de Huergo, M. S. and Pilosof, A. M. (2000). Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli. J. Food Prot. 63(6):741–6.
  • Van Belkum, M. J., Hayema, B. J., Jeeninga, R. E., Kok, J. and Venema, G. (1991). Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl. Environ. Microbiol. 57(2):492–498.
  • van Belkum, M. J., Kok, J. and Venema, G. (1992). Cloning, sequencing, and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal bacteriocin plasmid p9B4-6. Appl. Environ. Microbiol. 58(2):572–577.
  • van der Meer, J. R., Rollema, H. S., Siezen, R. J., Beerthuyzen, M. M., Kuipers, O. P. and De Vos, W. M. (1994). Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J. Biol. Chem. 269(5):3555–3562.
  • Van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P. and De Vos, W. M. (1993). Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175(9):2578–2588.
  • van Kraaij, C., de Vos, W. M., Siezen, R. J. and Kuipers, O. P. (1999). Lantibiotics: Biosynthesis, mode of action and applications. Nat. Prod. Rep. 16(5):575–587.
  • Vaucher Rde, A., Velho Gewehr Cde, C., Correa, A. P., Sant’Anna, V., Ferreira, J. and Brandelli, A. (2011). Evaluation of the immunogenicity and in vivo toxicity of the antimicrobial peptide P34. Int. J. Pharm. 421(1):94–8. doi: 10.1016/j.ijpharm.2011.09.020
  • Venema, K., Chikindas, M. L., Seegers, J., Haandrikman, A. J., Leenhouts, K. J., Venema, G. and Kok, J. (1997). Rapid and efficient purification method for small, hydrophobic, cationic bacteriocins: Purification of Lactococcin B and Pediocin PA-1. Appl. Environ. Microbiol. 63(1):305–9.
  • Venema, K., Haverkort, R. E., Abee, T., Haandrikman, A. J., Leenhouts, K. J., de Leij, L., Venema, G. and Kok, J. (1994). Mode of action of LciA, the lactococcin A immunity protein. Mol. Microbiol. 14(3):521–532.
  • Venema, K., Kok, J., Marugg, J. D., Toonen, M. Y., Ledeboer, A. M., Venema, G. and Chikindas, M. L. (1995). Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1. 0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol. Microbiol. 17(3):515–522.
  • Venema, K., Venema, G. and Kok, J. (1995a). Lactococcins: Mode of action, immunity and secretion. Int. Dairy J. 5(8):815–832.
  • Venema, K., Venema, G. and Kok, J. (1995b). Lactococcal bacteriocins: Mode of action and immunity. Tren. Microbiol. 3(8):299–304.
  • Vera Pingitore, E., Hebert, E. M., Sesma, F. and Nader-Macias, M. E. (2009). Influence of vitamins and osmolites on growth and bacteriocin production by Lactobacillus salivarius CRL 1328 in a chemically defined medium. Can. J. Microbiol. 55(3):304–10. doi: 10.1139/w08-092
  • Vignolo, G., Fadda, S., De Kairuz, M. N., Pesce de Ruiz Holgado, A. A. and Oliver, G. (1996). Control of Listeria monocytogenes in ground beef by ‘Lactocin 705’, a bacteriocin produced by Lactobacillus casei CRL 705. Int. J. Food Microbiol. 29(2):397–402.
  • Vignolo, G., Palacios, J., Farías, M. E., Sesma, F., Schillinger, U., Holzapfel, W. and Oliver, G. (2000). Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Curr. Microbiol. 41(6):410–416.
  • Vos, W. M., Kuipers, O. P., Meer, J. R. and Siezen, R. J. (1995). Maturation pathway of nisin and other lantibiotics: post‐translationally modified antimicrobial peptides exported by Gram‐positive bacteria. Mol. Microbiol. 17(3):427–437.
  • Weyermann, J., Lochmann, D. and Zimmer, A. (2005). “A practical note on the use of cytotoxicity assays.” Int. J. Pharm. 288(2):369–376.
  • Winkowski, K., Crandall, A. D. and Montville, T. J. (1993). Inhibition of Listeria monocytogenes by Lactobacillus bavaricus MN in beef systems at refrigeration temperatures. Appl. Environ. Microbiol. 59(8):2552–2557.
  • Worobo, R. W., Van Belkum, M. J., Sailer, M., Roy, K. L., Vederas, J. C. and Stiles, M. E. (1995). A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J. Bacteriol. 177(11):3143–3149.
  • Yang, R., Johnson, M. C. and Ray, B. (1992). Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 58(10):3355–9.
  • Yoneyama, F., Ohno, K., Imura, Y., Li, M., Zendo, T., Nakayama, J., Matsuzaki, K. and Sonomoto, K. (2011). Lacticin Q-mediated selective toxicity depending on physicochemical features of membrane components. Antimicrob. Agents. Chemother. 55(5):2446–2450.
  • Yuan, J., Zhang, Z. Z., Chen, X. Z., Yang, W. and Huan, L. D. (2004). Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol. 64(6):806–15. doi: 10.1007/s00253-004-1599-1
  • Zakipour Rahimabadi, E., Rigi, M. and Rahnama, M. (2013). Combined effects of Zataria multiflora boiss essential oil and nisin on the shelf-life of refrigerated rainbow trout (Onchorynchus mykiss) fillets. Iran. J. Fisher. Sci. 12(1):115–126.
  • Zapico, P., Medina, M., Gaya, P. and Nuñez, M. (1998). Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. Int. J. Food Microbiol. 40(1):35–42.
  • Zendo, T., Koga, S., Shigeri, Y., Nakayama, J. and Sonomoto, K. (2006). Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl. Environ. Microbiol. 72(5):3383–9. doi: 10.1128/AEM.72.5.3383-3389.2006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.