1,525
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods

, &

References

  • Adhoum, N. and Monser, L. (2004). Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chem. Eng. Process.: Process Intensification 43(10):1281–1287.
  • Alburquerque, J. A., Gonzálvez, J., Garcıa, D. and Cegarra, J. (2004). Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresource Technol. 91(2):195–200.
  • Al-Otoom, A., Al-Asheh, S., Allawzi, M., Mahshi, K., Alzenati, N., Banat, B. and Alnimr, B. (2014). Extraction of oil from uncrushed olives using supercritical fluid extraction method. J. Supercrit. Fluids 95:512–518.
  • Allouche, N., Fki, I. and Sayadi, S. (2004). Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 52(2):267–273.
  • Araújo, M., Pimentel, F. B., Alves, R. C. and Oliveira, M. B. P. P. (2015). Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxidants. Trends Food Sci. Technol. 45(2):200–211.
  • Barbato, G., Savarese, M., Paduano, A., Sacchi, R., Galdi, M. and Incarnato, M. (2015). Realization of a natural antioxidant based biodegradable active coating for shelf life prolongation of fatty foods. Shelf Life International Meeting (SLIM for Young) 2015, Vimercate (Monza, Italy).
  • Belaqziz, M., El-Abbassi, A., Lakhal, E. K., Agrafioti, E. and Galanakis, C. M. (2016). Agronomic application of olive mill wastewater: Effects on maize production and soil properties. J. Environ. Manage. 171:158–165.
  • Bendini, A., Bonoli, M., Cerretani, L., Biguzzi, B., Lercker, G. and Gallina Toschi, T. (2003). Liquid-liquid and solid-phase extractions of phenols from virgin olive oil and their separation by chromatographic and electrophoretic methods. J. Chromatogr. A 985:425–433.
  • Bertin, L., Ferri, F., Scoma, A., Marchetti, L. and Fava, F. (2011). Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction. Chem. Eng. J. 171(3):1287–1293.
  • Bianco, A., Buiarelli, F., Cartoni, G. P., Coccioli, F., Jasionowska, R. and Margherita, P. (2003). Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in olives and vegetation waters, Part I. J. Sep. Sci. 26(5):409–416.
  • Bonilla, F., Mayen, M., Merida, J. and Medina, M. (1999). Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem. 66(2):209–215.
  • Bouaziz, M., Feki, I., Ayadi, M., Jemai, H. and Sayadi, S. (2010). Stability of refined olive oil and olive-pomace oil added by phenolic compounds from olive leaves. Eur. J. Lipid Sci. Technol. 112(8):894–905.
  • Bouzid, O., Navarro, D., Roche, M., Asther, M., Haon, M., Delattre, M., … Lesage-Meessen, L. (2005). Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochem. 40(5):1855–1862.
  • Çam, M., Erdoǧan, F., Aslan, D. and Dinç, M. (2013). Enrichment of functional properties of ice cream with pomegranate by-products. J. Food Sci. 78(10):C1543–1550.
  • Caporaso, N. (2016). Virgin olive oils: Environmental conditions, agronomical factors and processing technology affecting the chemistry of flavor profile. J. Food Chem. Nanotechnol. 2(1):21–31.
  • Caporaso, N., Genovese, A., Burke, R., Barry-Ryan, C. and Sacchi, R. (2016a). Effect of olive mill wastewater phenolic extract, whey protein isolate and xanthan gum on the behaviour of olive O/W emulsions using response surface methodology. Food Hydrocolloids 61:66–76.
  • Caporaso, N., Genovese, A., Burke, R., Barry-Ryan, C. and Sacchi, R. (2016b). Physical and oxidative stability of functional olive oil-in-water emulsions formulated using olive mill wastewater biophenols and whey proteins. Food Funct. 7(1):227–238.
  • Caporaso, N., Savarese, M., Paduano, A., Guidone, G., De Marco, E. and Sacchi, R. (2015). Nutritional quality assessment of extra virgin olive oil from the Italian retail market: Do natural antioxidants satisfy EFSA health claims? J. Food Compos. Anal. 40:154–162.
  • Cardinali, A., Pati, S., Minervini, F., D’Antuono, I., Linsalata, V. and Lattanzio, V. (2012). Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J. Agric. Food Chem. 60(7):1822–1829.
  • Carraro, L., Fasolato, L., Montemurro, F., Martino, M. E., Balzan, S., Servili, M., … Cardazzo, B. (2014). Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12. Microbial Biotechnol. 7(3):265–275.
  • Casa, R., D’Annibale, A., Pieruccetti, F., Stazi, S. R., Sermanni, G. G. and Lo Cascio, B. (2003). Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere 50(8):959–966.
  • Cassano, A., Conidi, C., Giorno, L. and Drioli, E. (2013). Fractionation of olive mill wastewaters by membrane separation techniques. J. Hazard. Mater. 248–249(1):185–193.
  • Castro-Munoz, R., Yanez-Fernandez, J. and Fila, V. (2016). Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 213:753–762.
  • Cayuela, M. L., Millner, P. D., Meyer, S. L. F. and Roig, A. (2008). Potential of olive mill waste and compost as biobased pesticides against weeds, fungi, and nematodes. Sci. Total Environ. 399(1–3):11–18.
  • Chaves-López, C., Serio, A., Mazzarrino, G., Martuscelli, M., Scarpone, E. and Paparella, A. (2015). Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters. Int. J. Food Microbiol. 207:49–56.
  • Comandini, P., Lerma-García, M. J., Massanova, P., Simó-Alfonso, E. F. and Gallina Toschi, T. (2015). Phenolic profiles of olive mill wastewaters treated by membrane filtration systems. J. Chem. Technol. Biotechnol. 90(6):1086–1093.
  • D’Antuono, I., Kontogianni, V. G., Kotsiou, K., Linsalata, V., Logrieco, A. F., Tasioula-Margari, M. and Cardinali, A. (2014). Polyphenolic characterization of olive mill wastewaters, coming from Italian and Greek olive cultivars, after membrane technology. Food Res. Int. 65(PC):301–310.
  • Dai, J. and Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 15(10):7313–7352.
  • De Leonardis, A., Macciola, V., Lembo, G., Aretini, A. and Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem. 100(3):998–1004.
  • De Marco, E., Savarese, M., Paduano, A. and Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104(2):858–867.
  • di Lecce, G., Cassano, A., Bendini, A., Conidi, C., Giorno, L. and Toschi, T. G. (2014). Characterization of olivemill wastewater fractions treatment by integrated membrane process. J. Sci. Food Agric. 94(14):2935–2942.
  • Di Mattia, C. D., Sacchetti, G. and Pittia, P. (2011). Interfacial behavior and antioxidant efficiency of olive phenolic compounds in O/W olive oil emulsions as affected by surface active agent type. Food Biophys. 6(2):295–302.
  • El-Abbassi, A., Hafidi, A., García-Payo, M. C. and Khayet, M. (2009). Concentration of olive mill wastewater by membrane distillation for polyphenols recovery. Desalination 245(1–3):670–674.
  • El-Abbassi, A., Khayet, M., Kiai, H., Hafidi, A. and García-Payo, M. C. (2013). Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif. Technol. 104:327–332.
  • Esposto, S., Taticchi, A., Di Maio, I., Urbani, S., Veneziani, G., Selvaggini, R., … Servili, M. (2015). Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem. 176:184–192.
  • Fasolato, L., Cardazzo, B., Balzan, S., Carraro, L., Taticchi, A., Montemurro, F. and Novelli, E. (2015). Minimum bactericidal concentration of phenols extracted from oil vegetation water on spoilers, starters and food-borne bacteria. Ital. J. Food Saf. 4(2):75–77.
  • Fki, I., Allouche, N. and Sayadi, S. (2005). The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: A potential alternative to synthetic antioxidants. Food Chem. 93:197–204.
  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26(2):68–87.
  • Galanakis, C. M., Tornberg, E. and Gekas, V. (2010a). Recovery and preservation of phenols from olive waste in ethanolic extracts. J. Chem. Technol. Biotechnol. 85(8):1148–1155.
  • Galanakis, C. M., Tornberg, E. and Gekas, V. (2010b). Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT – Food Sci. Technol. 43(7):1018–1025.
  • Galanakis, C. M., Yücetepe, A., Kasapoğlu, K. N. and Özçelik, B. (2017). High-value compounds from olive oil processing waste. In Edible Oils Extraction, Processing, and Applications, Chapter: High-Value Compounds from Olive Oil Processing Waste, pp. 179–203. Smain Chemat (Ed.), CRC Press Taylor & Francis Group, Boca Raton, Florida, USA.
  • Garcia-Castello, E., Cassano, A., Criscuoli, A., Conidi, C. and Drioli, E. (2010). Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 44(13):3883–3892.
  • García García, I., Jiménez Peña, P. R., Bonilla Venceslada, J. L., Martín Martín, A., Martín Santos, M. A. and Ramos Gómez, E. (2000). Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem. 35(8):751–758.
  • Genovese, A., Caporaso, N., Villani, V., Paduano, A. and Sacchi, R. (2015). Olive oil phenolic compounds affect the release of aroma compounds. Food Chem. 181:284–294.
  • Gerasopoulos, K., Stagos, D., Kokkas, S., Petrotos, K., Kantas, D., Goulas, P. and Kouretas, D. (2015). Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem. Toxicol. 82:42–49.
  • Gerasopoulos, K., Stagos, D., Petrotos, K., Kokkas, S., Kantas, D., Goulas, P. and Kouretas, D. (2015). Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food Chem. Toxicol. 86:319–327.
  • Girón, M. V., Ruiz-Jiménez, J. and De Castro, M. D. L. (2009). Dependence of fatty-acid composition of edible oils on their enrichment in olive phenolsx. J. Agric. Food Chem. 57(7):2797–2802.
  • Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K. and Ammar, E. (2009). Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J. Hazard. Mater. 161(2–3):1131–1139.
  • Hamza, M. and Sayadi, S. (2015). Valorisation of olive mill wastewater by enhancement of natural hydroxytyrosol recovery. Int. J. Food Sci. Technol. 50(3):826–833.
  • Hanifi, S. and El Hadrami, I. (2009). Olive mill wastewaters: Diversity of the fatal product in olive oil industry and its valorisation as agronomical amendment of poor soils: A review. J. Agron. 8(1):1–13.
  • Inglezakis, V. J., Moreno, J. L. and Doula, M. (2012). Olive oil waste management EU legislation: current situation and policy recommendation. Int. J. Chem. Environ. Eng. Syst. 3:65–77.
  • Janakat, S., Al-Nabulsi, A. A. R., Allehdan, S., Olaimat, A. N. and Holley, R. A. (2015). Antimicrobial activity of amurca (olive oil lees) extract against selected foodborne pathogens. Food Sci. Technol. 35(2):259–265.
  • Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N. and Ammar, E. (2008). Olive mill wastewater stabilization in open-air ponds: Impact on clay-sandy soil. Bioresour. Technol. 99(16):7699–7708.
  • Jerman Klen, T. and Mozetič Vodopivec, B. (2011). Ultrasonic extraction of phenols from olive mill wastewater: Comparison with conventional methods. J. Agric. Food Chem. 59(24):12725–12731.
  • Kalogerakis, N., Politi, M., Foteinis, S., Chatzisymeon, E. and Mantzavinos, D. (2013). Recovery of antioxidants from olive mill wastewaters: A viable solution that promotes their overall sustainable management. J. Environ. Manage. 128:749–758.
  • Khayet, M. S. and Matsuura, T. (2011). Membrane Distillation: Principles and Applications. Elsevier B. V., Rijeka, Croatia.
  • Khoufi, S., Aloui, F. and Sayadi, S. (2008). Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. J. Hazard. Mater. 151(2–3):531–539.
  • Khoufi, S., Louhichi, A. and Sayadi, S. (2015). Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Bioresour. Technol. 182:67–74.
  • Kiai, H., García-Payo, M. C., Hafidi, A. and Khayet, M. (2014). Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process.: Process Intensification 86:153–161.
  • Lafka, T. I., Lazou, A. E., Sinanoglou, V. J. and Lazos, E. S. (2011). Phenolic and antioxidant potential of olive oil mill wastes. Food Chem. 125(1):92–98.
  • Lafka, T. I., Sinanoglou, V. and Lazos, E. S. (2007). On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 104(3):1206–1214.
  • Lalas, S., Athanasiadis, V., Gortzi, O., Bounitsi, M., Giovanoudis, I., Tsaknis, J. and Bogiatzis, F. (2011). Enrichment of table olives with polyphenols extracted from olive leaves. Food Chem. 127(4):1521–1525.
  • Lozano-Sánchez, J., Castro-Puyana, M., Mendiola, J. A., Segura-Carretero, A., Cifuentes, A. and Ibáñez, E. (2014). Recovering bioactive compounds from olive oil filter cake by advanced extraction techniques. Int. J. Mol. Sci. 15(9):16270–16283.
  • Mantzavinos, D. and Kalogerakis, N. (2005). Treatment of olive mill effluents: Part I. Organic matter degradation by chemical and biological processes - An overview. Environ. Int. 31:289–295. https://doi.org/10.1016/j.envint.2004.10.005.
  • Martín-Peláez, S., Covas, M. I., Fitó, M., Kušar, A. and Pravst, I. (2013). Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 57(5):760–771.
  • Mirabella, N., Castellani, V. and Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. J. Cleaner Prod. 65:28–41.
  • Niaounakis and Halvadakis, C. P. (2006). Characterization of olive processing waste. Olive Process. Waste Manage. Lit. Rev. Patent Surv. 5:23–64.
  • Ntougias, S., Baldrian, P., Ehaliotis, C., Nerud, F., Merhautov??, V. and Zervakis, G. I. (2015). Olive mill wastewater biodegradation potential of white-rot fungi - Mode of action of fungal culture extracts and effects of ligninolytic enzymes. Bioresour. Technol. 189:121–130.
  • Obied, H. K., Bedgood, D., Mailer, R., Prenzler, P. D. and Robards, K. (2008). Impact of cultivar, harvesting time, and seasonal variation on the content of biophenols in olive mill waste. J. Agric. Food Chem. 56(19):8851–8858.
  • Obied, H. K., Bedgood, D. R., Prenzler, P. D. and Robards, K. (2007). Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 45(7):1238–1248.
  • Paiva-Martins, F., Barbosa, S., Pinheiro, V., Mour??o, J. L. and Outor-Monteiro, D. (2009). The effect of olive leaves supplementation on the feed digestibility, growth performances of pigs and quality of pork meat. Meat Sci. 82(4):438–443.
  • Paiva-Martins, F., Correia, R., Félix, S., Ferreira, P. and Gordon, M. H. (2007). Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. J. Agric. Food Chem. 55:4139–4143.
  • Paiva-Martins, F., Ribeirinha, T., Silva, A., Gonçalves, R., Pinheiro, V., LMourão, J. and Outor-Monteiro, D. (2014). Effects of the dietary incorporation of olive leaves on growth performance, digestibility, blood parameters and meat quality of growing pigs. J. Sci. Food Agric. 94(14):3023–3029.
  • Paraskeva, C. A., Papadakis, V. G., Tsarouchi, E., Kanellopoulou, D. G. and Koutsoukos, P. G. (2007a). Membrane processing for olive mill wastewater fractionation. Desalination 213(1–3):218–229.
  • Paraskeva, C. A., Papadakis, V. G., Tsarouchi, E., Kanellopoulou, D. G. and Koutsoukos, P. G. (2007b). Membrane processing for olive mill wastewater fractionation. Desalination 213(1–3):218–229.
  • Pereira, A. P., Ferreira, I. C., Marcelino, F., Valentão, P., Andrade, P. B., Seabra, R., … Pereira, J. A. (2007). Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 12(5):1153–1162.
  • Peri, C. (2014). The Extra-Virgin Olive Oil Handbook. Wiley, Chichester, West Sussex, UK.
  • Rinaldi, M., Rana, G. and Introna, M. (2003). Olive-mill wastewater spreading in southern Italy: Effects on a durum wheat crop. Field Crops Res. 84(3):319–326.
  • Rodis, P. S., Karathanos, V. T. and Mantzavinou, A. (2002). Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem. 50(3):596–601.
  • Rodrigues, F., da Mota Nunez, M. A. and Pinto Olveira, M. B. P. (2016). Applications of recovered bioactivty compounds in cosmetics and health care products. In Olive Mill Waste Recent Advances for Sustainable Management, pp. 255–274. C. M. Galanakis (Ed.), Nikki Levy, Chichester, West Sussex, UK.
  • Roig, A., Cayuela, M. L. and Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Manage. 26(9):960–969.
  • Sánchez De Medina, V., Priego-Capote, F. and Luque De Castro, M. D. (2012). Characterization of refined edible oils enriched with phenolic extracts from olive leaves and pomace. J. Agric. Food Chem. 60(23):5866–5873.
  • Savournin, C., Baghdikian, B., Elias, R., Dargouth-Kesraoui, F., Boukef, K. and Balansard, G. (2001). Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J. Agric. Food Chem. 49:618–621.
  • Schieber, A., Stintzing, F. and Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends Food Sci. Technol. 12(2001):401–413.
  • Scoma, A., Bertin, L., Zanaroli, G., Fraraccio, S. and Fava, F. (2011). A physicochemical-biotechnological approach for an integrated valorization of olive mill wastewater. Bioresour. Technol. 102(22):10273–10279.
  • Serra, A. T., Matias, A. A., Nunes, A. V. M., Leitão, M. C., Brito, D., Bronze, R., … Duarte, C. M. (2008). In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 9(3):311–319.
  • Servili, M., Esposto, S., Fabiani, R., Urbani, S., Taticchi, A., Mariucci, F., … Montedoro, G. F. (2009). Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacol. 17(2):76–84.
  • Servili, M., Esposto, S., Veneziani, G., Urbani, S., Taticchi, A., Di Maio, I., … Montedoro, G. (2011). Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food Chem. 124(4):1308–1315.
  • Servili, M., Rizzello, C. G., Taticchi, A., Esposto, S., Urbani, S., Mazzacane, F., … Di Cagno, R. (2011). Functional milk beverage fortified with phenolic compounds extracted from olive vegetation water, and fermented with functional lactic acid bacteria. Int. J. Food Microbiol. 147(1):45–52.
  • Shaide, T., Martin-Vertedor, D., Hernandez, A., Delgado-Adamez, J., Cordoba, M. G. and Perez-Nevado, F. (2016). Antimicrobial activity of olive (Olea europaea) leaf extract to be used during the elaboration process of green table olives. In Microbes in the Spotlight: Recent Progress in the Understanding of Beneficial and Harmful Microorganisms, pp. 155–159. A. Mendez-Vilas (Ed.), BrownWalker Press, Boca Raton, Florida, USA.
  • Soni, M. G., Burdock, G. A., Christian, M. S., Bitler, C. M. and Crea, R. (2006). Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem. Toxicol. 44(7):903–915.
  • Suárez, M., Romero, M. P., Ramo, T., Macià, A. and Motilva, M. J. (2009). Methods for preparing phenolic extracts from olive cake for potential application as food antioxidants. J. Agric. Food Chem. 57(4):1463–1472.
  • Sudha, M. L., Baskaran, V. and Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 104(2):686–692.
  • Takaç, S. and Karakaya, A. (2009). Recovery of phenolic antioxidants from olive mill wastewater. Recent Patents Chem. Eng. 2:230–237.
  • Troise, A. D., Fiore, A., Colantuono, A., Kokkinidou, S., Peterson, D. G. and Fogliano, V. (2014). Effect of olive mill wastewater phenol compounds on reactive carbonyl species and maillard reaction end-products in ultrahigh-temperature-treated milk. J. Agric. Food Chem. 62(41):10092–10100.
  • Veneziani, G., Novelli, E., Taticchi, A. and Servili, M. (2017). Application of recovered bioactive compounds in food products. In, Olive Mill Waste Recent Advances for Sustainable Management, pp. 231–253. C. M. Galanakis Ed., Academic Press, Cambridge, Massachusetts, USA.
  • Visioli, F., Poli, A. and Gall, C. (2002). Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 22(1):65–75.
  • Yangui, T., Sayadi, S., Rhouma, A. and Dhouib, A. (2010). Potential use of hydroxytyrosol-rich extract from olive mill wastewater as a biological fungicide against Botrytis cinerea in tomato. J. Pest Sci. 83(4):437–445.
  • Zagklis, D. P., Vavouraki, A. I., Kornaros, M. E. and Paraskeva, C. A. (2015). Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard. Mater. 285:69–76.
  • Zagklis, D. P. and Paraskeva, C. A. (2015). Purification of grape marc phenolic compounds through solvent extraction, membrane filtration and resin adsorption/desorption. Sep. Purif. Technol. 156:328–335.
  • Zbakh, H. and El Abbassi, A. (2012). Potential use of olive mill wastewater in the preparation of functional beverages: A review. J. Funct. Foods. 4(1):53–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.