1,354
Views
122
CrossRef citations to date
0
Altmetric
Reviews

Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence

, , , ORCID Icon, , , & show all

References

  • Alcaraz, M. J., Vicente, A. M., Araico, A., Dominguez, J. N., Terencio, M. C. and Ferrándiz, M. L. (2004). Role of nuclear factor‐κB and heme oxygenase-1 in the mechanism of action of an anti‐inflammatory chalcone derivative in RAW 264.7 cells. Br. J. Pharmacol. 142(7):1191–1199.
  • Amic, D., Davidovic-Amic, D., Beslo, D., Rastija, V., Lucic, B. and Trinajstic, N. (2007). SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem. 14(7):827–845.
  • Bandgar, B. P., Patil, S. A., Gacche, R. N., Korbad, B. L., Hote, B. S., Kinkar, S. N. and Jalde, S. S. (2010). Synthesis and biological evaluation of nitrogen-containing chalcones as possible anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett. 20(2):730–733.
  • Bauer, J., Kuehnl, S., Rollinger, J. M., Scherer, O., Northoff, H., Stuppner, H. and Koeberle, A. (2012). Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther. 342(1):169–176.
  • Benavente-Garcia, O. and Castillo, J. (2008). Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 56(15):6185–6205.
  • Boeck, P., Falcao, C. A. B., Leal, P. C., Yunes, R. A., Cechinel Filho, V., Torres-Santos, E. C. and Rossi-Bergmann, B. (2006). Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem. 14(5):1538–1545.
  • Braicu, C., Ladomery, M. R., Chedea, V. S., Irimie, A. and Berindan-Neagoe, I. (2013). The relationship between the structure and biological actions of green tea catechins. Food Chemistry 141(3):3282–3289.
  • Broom, O. J., Widjaya, B., Troelsen, J., Olsen, J. and Nielsen, O. H. (2009). Mitogen activated protein kinases: A role in inflammatory bowel disease?. Clin. Exp. Immunol. 158(3):272–280.
  • Byun, E. B., Sung, N. Y., Byun, E. H., Song, D. S., Kim, J. K., Park, J. H. and Kim, J. H. (2013). The procyanidin trimer C1 inhibits LPS-induced MAPK and NF-κB signaling through TLR4 in macrophages. Int. Immunopharmacol. 15(2):450–456.
  • Cao, H., Chen, X. Q., Jassbi, A. R., Xiao, J. B. (2015). Microbial biotransformation of bioactive flavonoids. Biotechnol. Adv. 33(1):214–223.
  • Celinski, K., Dworzanski, T., Fornal, R., Korolczuk, A., Madro, A. and Slomka, M. (2012). Comparison of the anti-inflammatory and therapeutic actions of PPAR-gamma agonists rosiglitazone and troglitazone in experimental colitis. J. Physiol. Pharmacol. 63(6):631–640.
  • Céspedes, C., Alarcon, J., Avila, J. G. and Nieto, A. (2010). Antiinflammatory activity of Aristotelia chilensis Mol.(Stuntz) (Elaeocarpaceae). Bol. Latinoam. Caribe Plant. Med. Aromát. 9(27):127–135.
  • Chacko, B. K., Chandler, R. T., Mundhekar, A., Khoo, N., Pruitt, H. M., Kucik, D. F. and Patel, R. P. (2005). Revealing anti-inflammatory mechanisms of soy isoflavones by flow: Modulation of leukocyte-endothelial cell interactions. Am. J. Physiol.-Heart Circulatory Physiol. 289(2):H908–H915.
  • Chamni, S. and De-Eknamkul, W. (2013). Recent progress and challenges in the discovery of new neuraminidase inhibitors. Expert. Opin. Ther. Pat. 23(4):409–423.
  • Chandrashekar, N., Selvamani, A., Subramanian, R., Pandi, A. and Thiruvengadam, D. (2012). Baicalein inhibits pulmonary carcinogenesis-associated inflammation and interferes with COX-2, MMP-2 and MMP-9 expressions in-vivo. Toxicol. Appl. Pharmacol. 261(1):10–21.
  • Chanet, A., Milenkovic, D., Claude, S., Maier, J. A., Khan, M. K., Rakotomanomana, N. and Morand, C. (2013). Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes. Br. J. Nutr. 110(04):587–598.
  • Che, H., Lim, H., Kim, H. P. and Park, H. (2011). A chrysin analog exhibited strong inhibitory activities against both PGE 2 and NO production. Eur. J. Med. Chem. 46(9):4657–4660.
  • Chen, C. C., Hung, T. H., Wang, Y. H., Lin, C. W., Wang, P. Y., Lee, C. Y. and Chen, S. F. (2012). Wogonin improves histological and functional outcomes, and reduces activation of TLR4/NF-κB signaling after experimental traumatic brain injury. PloS one 7(1):e30294.
  • Chen, L. and Kang, Y. H. (2013). Anti-inflammatory and antioxidant activities of red pepper (Capsicum annuum L.) stalk extracts: Comparison of pericarp and placenta extracts. J. Funct. Foods 5(4):1724–1731.
  • Chen, L. and Kang, Y. H. (2014). Antioxidant and enzyme inhibitory activities of plebeian herba (Salvia plebeia R. Br.) under different cultivation conditions. J. Agric. Food Chem. 62(10):2190–2197.
  • Chen, L., Kang, Y. H. and Suh, J. K. (2014). Roasting processed oriental melon (Cucumis melo L. var. makuwa Makino) seed influenced the triglyceride profile and the inhibitory potential against key enzymes relevant for hyperglycemia. Food Res. Int. 56:236–242.
  • Chen, L., Teng, H., Fang, T. and Xiao, J. B. (2016). Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-κB in lipopolysaccharide-stimulated macrophages. Phytomedicine 23(8):846–855.
  • Chen, L., Teng, H., Xie, Z., Cao, H., Cheang, W. S., Skalicka-Woniak, K. and Xiao, J. (2016). Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2016.1196334.
  • Chen, S. (2011). Natural products triggering biological targets-a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr. Drug Targets 12(3):288–301.
  • Chen, W. P., Wang, Y. L., Tang, J. L., Hu, P. F., Bao, J. P. and Wu, L. D. (2012). Morin inhibits interleukin-1β-induced nitric oxide and prostaglandin E 2 production in human chondrocytes. Int. Immunopharmacol. 12(2):447–452.
  • Chen, W., Ge, X., Xu, F., Zhang, Y., Liu, Z., Pan, J. and Liang, G. (2015). Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg. Med. Chem. Lett. 25(15):2998–3004.
  • Chiba, Y., Ogita, T., Ando, K. and Fujita, T. (2001). PPAR gamma ligands inhibit TNF-alpha-induced LOX-1 expression in cultured endothelial cells. Biochem. Biophys. Res. Commun. 286:541–546.
  • Chien, S. T., Lin, S. S., Wang, C. K., Lee, Y. B., Chen, K. S., Fong, Y. and Shih, Y. W. (2011). Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38α MAPK signaling pathway. Mol. Cell. Biochem. 350(1–2):135–148.
  • Clarke, D., Damera, G., Sukkar, M. B. and Tliba, O. (2009). Transcriptional regulation of cytokine function in airway smooth muscle cells. Pulmonary Pharmacol. Ther. 22(5):436–445.
  • Comalada, M., Ballester, I., Bailon, E., Sierra, S., Xaus, J., Galvez, J. and Zarzuelo, A. (2006). Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure–activity relationship. Biochem. Pharmacol. 72(8):1010–1021.
  • Costa, G., Francisco, V., Lopes, M. C., Cruz, M. T. and Batista, M. T. (2012). Intracellular signaling pathways modulated by phenolic compounds: Application for new anti-inflammatory drugs discovery. Curr. Med. Chem. 19(18):2876–2900.
  • Dinkova-Kostova, A. T., Holtzclaw, W. D. and Kensler, T. W. (2005). The role of Keap1 in cellular protective responses. Chem. Res. Toxicol. 18(12):1779–1791.
  • Ďuračková and Knasmüller, 2007Ďuračková, Z. and Knasmüller, S. (2007). The Activity of Natural Compounds in Diseases Prevention and Therapy. Slovak Academic Press, Bratislava.
  • Eo, H. J., Park, J. H., Park, G. H., Lee, M. H., Lee, J. R., Koo, J. S. and Jeong, J. B. (2014). Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complement. Altern. Med. 14(1):1.
  • Erlund, I. (2004). Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24(10):851–874.
  • Fan, G. W., Zhang, Y., Jiang, X., Zhu, Y., Wang, B., Su, L. and Gao, X. (2013). Anti-inflammatory activity of baicalein in LPS-stimulated RAW264. 7 macrophages via estrogen receptor and NF-κB-dependent pathways. Inflammation 36(6):1584–1591.
  • Fang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y. and Liang, G. (2015). A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration. Toxicol. Appl. Pharmacol. 282(2):129–138.
  • Fernandes, I., Faria, A., de Freitas, V., Calhau, C. and Mateus, N. (2015). Multiple-approach studies to assess anthocyanin bioavailability. Phytochemistry Rev. 14(6):899–919.
  • Ferreyra, M. L. F., Rius, S. P. and Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 3. doi: 10.3389/fpls.2012.00222
  • Fujimura, Y., Umeda, D., Yamada, K. and Tachibana, H. (2008). The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins. Arch. Biochem. Biophys. 476(2):133–138.
  • Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011). Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int. Immunopharmacol. 11(9):1150–1159.
  • Gadkari, P. V. and Balaraman, M. (2015). Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Process. 93:122–138.
  • García-Mediavilla, V., Crespo, I., Collado, P. S., Esteller, A., Sánchez-Campos, S., Tuñón, M. J. and González-Gallego, J. (2007). The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol. 557(2):221–229.
  • George, V. C., Vijesh, V. V., Dehigaspege, A. I., Lakshmi, C. A., Anbarasu, K., Kumar, D. R., Ethiraj, R., Kumar, R. A. and Rupasinghe, H. P. (2016). Mechanism of action of flavonoids in prevention of inflammation-associated skin cancer. Curr. Med. Chem. 23(32):3697.
  • Gleichenhagen, M. and Schieber, A. (2016). Current challenges in polyphenol analytical chemistry. Curr. Opin. Food Sci. 7:43–49.
  • Gomes, A., Fernandes, E., Lima, J. L., Mira, L. and Corvo, M. L. (2008). Molecular mechanisms of anti-inflammatory activity mediated by flavonoids. Curr. Med. Chem. 15(16):1586–1605.
  • Gómez-Rivera, A., Aguilar-Mariscal, H., Romero-Ceronio, N., Roa-de la Fuente, L. F. and Lobato-García, C. E. (2013). Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg. Med. Chem. Lett. 23(20):5519–5522.
  • Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012). 6-Shogaol, a ginger product, modulates neuroinflammation: A new approach to neuroprotection. Neuropharmacology 63(2):211–223.
  • Harikumar, K. B., Sung, B., Tharakan, S. T., Pandey, M. K., Joy, B., Guha, S. and Aggarwal, B. B. (2010). Sesamin manifests chemopreventive effects through the suppression of NF-κB–regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol. Cancer Res. 8(5):751–761.
  • Hostetler, G., Riedl, K., Cardenas, H., Diosa-Toro, M., Arango, D., Schwartz, S. and Doseff, A. I. (2012). Flavone deglycosylation increases their anti-inflammatory activity and absorption. Mol. Nutr. Food Res. 56(4):558–569.
  • Hou, D. X., Kai, K., Li, J. J., Lin, S., Terahara, N., Wakamatsu, M. and Colburn, N. (2004). Anthocyanidins inhibit activator protein 1 activity and cell transformation: Structure–activity relationship and molecular mechanisms. Carcinogenesis 25(1):29–36.
  • Hou, D. X., Yanagita, T., Uto, T., Masuzaki, S. and Fujii, M. (2005). Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure–activity relationship and molecular mechanisms involved. Biochem. Pharmacol. 70(3):417–425.
  • Hsieh, C. T., Hsieh, T. J., El-Shazly, M., Chuang, D. W., Tsai, Y. H., Yen, C. T. and Chang, F. R. (2012). Synthesis of chalcone derivatives as potential anti-diabetic agents. Bioorg. Med. Chem. Lett. 22(12):3912–3915.
  • Hsieh, T. P., Sheu, S. Y., Sun, J. S. and Chen, M. H. (2011). Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE 2 synthesis. Phytomedicine 18(2):176–185.
  • Hu, C. and Kitts, D. D. (2004). Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol. Cell. Biochem. 265(1–2):107–113.
  • Huan, S. K. H., Wang, K. T., Yeh, S. D., Lee, C. J., Lin, L. C., Liu, D. Z. and Wang, C. C. (2012). Scutellaria baicalensis alleviates cantharidin-induced rat hemorrhagic cystitis through inhibition of cyclooxygenase-2 overexpression. Molecules 17(6):6277–6289.
  • Huang, C. H., Jan, R. L., Kuo, C. H., Chu, Y. T., Wang, W. L., Lee, M. S. and Hung, C. H. (2010). Natural flavone kaempferol suppresses chemokines expression in human monocyte THP‐1 cells through MAPK pathways. J. Food Sci. 75(8):H254–H259.
  • Huang, D. W., Chung, C. P., Kuo, Y. H., Lin, Y. L. and Chiang, W. (2009). Identification of compounds in adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. J. Agric. Food Chem. 57(22):10651–10657.
  • Ishii, T., Minoda, K., Bae, M. J., Mori, T., Uekusa, Y., Ichikawa, T. and Nakayama, T. (2010). Binding affinity of tea catechins for HSA: Characterization by high‐performance affinity chromatography with immobilized albumin column. Mol. Nutr. Food Res. 54(6):816–822.
  • Itoh, K., Tong, K. I. and Yamamoto, M. (2004). Molecular mechanism activating Nrf2–Keap1 pathway in regulation of adaptive response to electrophiles. Free Radical Biol. Med. 36(10):1208–1213.
  • Iwanaga, K., Okada, M., Murata, T., Hori, M. and Ozaki, H. (2012). Prostaglandin E2 promotes wound-induced migration of intestinal subepithelial myofibroblasts via EP2, EP3, and EP4 prostanoid receptor activation. J. Pharmacol. Exp. Ther. 340(3):604–611.
  • Jang, M. Y., Lee, Y. L., Long, C. Y., Chen, C. H., Chuang, S. M., Lee, H. Y. and Juan, Y. S. (2015). The protective effect of green tea catechins on ketamine-induced cystitis in a rat model. Urological Sci. 26(3):186–192.
  • Jeong, J. B., Hong, S. C., Jeong, H. J. and Koo, J. S. (2011). Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Arc. Pharm. Res. 34(12):2109–2116.
  • Jeong, C. W., Yoo, K. Y., Lee, S. H., Jeong, H. J., Lee, C. S. and Kim, S. J. (2012). Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3β and inhibition of p38 MAPK and JNK. J. Cardiovasc. Pharmacol. Ther. 17(4):387–394.
  • Jiang, C., Ting, A. T. and Seed, B. (1998). PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86.
  • Jung, K. A. and Kwak, M. K. (2010). The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15(10):7266–7291.
  • Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754(1):253–262.
  • Kang, S. R., Park, K. I., Park, H. S., Lee, D. H., Kim, J. A., Nagappan, A. and Han, D. Y. (2011). Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways. Food Chem. 129(4):1721–1728.
  • Karcher, S. C. and Laufer, S. A. (2009). Successful structure-based design of recent p38 MAP kinase inhibitors. Curr. Top. Med. Chem. 9(7):655–676.
  • Kawakita, Y., Ikekita, M., Kurozumi, R. and Kojima, S. (2003). Increase of intracellular glutathione by low-dose. GAMMA.-Ray irradiation is mediated by transcription factor AP-1 in RAW 264.7 Cells. Biol. Pharm. Bull. 26(1):19–23.
  • Kensler, T. W., Wakabayashi, N. and Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47:89–116.
  • Khan, A. Q., Khan, R., Rehman, M. U., Lateef, A., Tahir, M., Ali, F. and Sultana, S. (2012). Soy isoflavones (daidzein & genistein) inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cutaneous inflammation via modulation of COX-2 and NF-κB in Swiss albino mice. Toxicology 302(2):266–274.
  • Kim, A. R., Lee, M. S., Shin, T. S., Hua, H., Jang, B. C., Choi, J. S. and Kim, H. R. (2011). Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, and p38 MAPK. Toxicol. Vitro 25(8):1789–1795.
  • Kim, H. P., Son, K. H., Chang, H. W. and Kang, S. S. (2004). Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 96(3):229–245.
  • Kim, H. S., Kim, M. J., Kim, E. J., Yang, Y., Lee, M. S. and Lim, J. S. (2012). Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem. Pharmacol. 83(3):385–394.
  • Kim, J. W., Jin, Y. C., Kim, Y. M., Rhie, S., Kim, H. J., Seo, H. G. and Chang, K. C. (2009). Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-kB activation. Life Sci. 84(7):227–234.
  • Kim, J., Cha, Y. N. and Surh, Y. J. (2010). A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 690(1):12–23.
  • Kim, Y. J. (2013). Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. Biol. Pharm. Bull. 36(8):1341–1347.
  • Kondo, S., Tsuda, K., Muto, N. and Ueda, J. E. (2002). Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Sci. Horticulturae 96(1):177–185.
  • Kumar, S. and Pandey, A. K. (2013). Chemistry and biological activity of flavonoids: An overview. Sci. World J. 2013, Article ID 162750. https://doi.org/10.1155/2013/162750
  • Kwon, S. H., Kim, J. A., Hong, S. I., Jung, Y. H., Kim, H. C., Lee, S. Y. and Jang, C. G. (2011). Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem. Int. 58(4):533–541.
  • Larsen, M., Kromann, H., Kharazmi, A. and Nielsen, S. F. (2005). Conformationally restricted anti-plasmodial chalcones. Bioorg. Med. Chem. Lett. 15(21):4858–4861.
  • Lau, G. T. Y., Huang, H., Lin, S. M. and Leung, L. K. (2010). Butein downregulates phorbol 12-myristate 13-acetate-induced COX-2 transcriptional activity in cancerous and non-cancerous breast cells. Eur. J. Pharmacol. 648(1):24–30.
  • Lee, W. K., Chung, K. W., Kim, G. H. and Kim, S. J. (2013). Gallotannin causes differentiation and inflammation via ERK-1/-2 and p38 kinase pathways in rabbit articular chondrocytes. Mol. Med. Rep. 7(2):701–707.
  • Li, F., Nitteranon, V., Tang, X., Liang, J., Zhang, G., Parkin, K. L. and Hu, Q. (2012a). In vitro antioxidant and anti-inflammatory activities of 1-dehydro-(6)-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem. 135(2):332–337.
  • Li, Q. and Verma, I. M. (2002). NF-κB regulation in the immune system. Nature Rev. Immunol. 2(10):725–734.
  • Li, W., Sun, Y. N., Yan, X. T., Yang, S. Y., Kim, S., Chae, D. and Kim, Y. H. (2014). Anti-inflammatory and antioxidant activities of phenolic compounds from Desmodium caudatum leaves and stems. Arch. Pharmacal. Res. 37(6):721–727.
  • Li, X., Han, Y., Guan, Y., Zhang, L., Bai, C. and Li, Y. (2012b). Aluminum induces osteoblast apoptosis through the oxidative stress-mediated JNK signaling pathway. Biol. Trace Element Res. 150(1–3):502–508.
  • Lim, R., Barker, G., Wall, C. A. and Lappas, M. (2013). Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol. Human Reprod. 19(7):451–462.
  • Liu, L., Shan, S., Zhang, K., Ning, Z. Q., Lu, X. P. and Cheng, Y. Y. (2008). Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up‐regulate transcription of adiponectin. Phytother. Res. 22(10):1400–1403.
  • Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J. B. and Tundis, R. (2016). Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycaemic activity. J. Agric. Food Chem. 64(12):2467–2474.
  • Lopez-Posadas, R., Ballester, I., Abadia-Molina, A. C., Suarez, M. D., Zarzuelo, A., Martinez-Augustin, O. and Sanchez de Medina, F. (2008). Effect of flavonoids on rat splenocytes, a structure- activity relationship study. Biochem. Pharmacol. 76:495–506.
  • Luca, V. S., Miron, A. and Aprotosoaie, A. C. (2016). The antigenotoxic potential of dietary flavonoids. Phytochem. Rev. 15(4):591–625.
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 79(5):727–747.
  • Marín, L., Miguélez, E. M., Villar, C. J. and Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed. Res. Int. 2015:905215.
  • Marinovic, M. P., Morandi, A. C. and Otton, R. (2015). Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway. Toxicol. Vitro 29(7):1766–1778.
  • Maruyama, T., Tomofuji, T., Endo, Y., Irie, K., Azuma, T., Ekuni, D. and Morita, M. (2011). Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation. Arc. Oral Biol. 56(1):48–53.
  • Marzio, L., Ventura, C. A., Cosco, D., Paolino, D., Di Stefano, A., Stancanelli, R. and Fresta, M. (2016). Nanotherapeutics for anti-inflammatory delivery. J. Drug Deliv. Sci. Technol. 32:174–191.
  • Mastuda, H., Morikawa, T., Ueda, K., Managi, H. and Yoshikawa, M. (2002). Structural requirements of flavonoids for inhibition of antigen-induced degranulation, TNF-α and IL-4 production from RBL-2H3 cells. Bioorg. Med. Chem. 10(10):3123–3128.
  • Melgarejo, E., Medina, M. Á., Sánchez-Jiménez, F. and Urdiales, J. L. (2010). Targeting of histamine producing cells by EGCG: A green dart against inflammation? J. Physiol. Biochem. 66(3):265–270.
  • Menezes, J. C., Orlikova, B., Morceau, F. and Diederich, M. (2016). Natural and synthetic flavonoids: Structure-activity relationship and chemotherapeutic potential for the treatment of leukemia. Crit. Rev. Food Sci. Nutr. 56(S1):S4–S28.
  • Muir, S. R., Collins, G. J., Robinson, S., Hughes, S., Bovy, A., De Vos, C. R. and Verhoeyen, M. E. (2001). Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnol. 19(5):470–474.
  • Mutoh, M., Takahashi, M., Fukuda, K., Komatsu, H., Enya, T., Matsushima-Hibiya, Y. and Wakabayashi, K. (2000). Suppression by flavonoids of cyclooxygenase‐2 promoter‐dependent transcriptional activity in colon cancer cells: Structure-activity relationship. Japan. J. Cancer Res. 91(7):686–691.
  • Nagai, K., Jiang, M. H., Hada, J., Nagata, T., Yajima, Y., Yamamoto, S. and Nishizaki, T. (2002). (−)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res. 956(2):319–322.
  • Nakamura, H., Ukai, T., Yoshimura, A., Kozuka, Y., Yoshioka, H., Yoshinaga, Y. and Hara, Y. (2010). Green tea catechin inhibits lipopolysaccharide‐induced bone resorption in vivo. J. Periodontal. Res. 45(1):23–30.
  • Nakano, T., Masuda, M., Suzuki, T. and Ohshima, H. (2012). Inhibition by polyphenolic phytochemicals and sulfurous compounds of the formation of 8-chloroguanosine mediated by hypochlorous acid, human myeloperoxidase, and activated human neutrophils. Biosci. Biotechnol. Biochem. 76(12):2208–2213.
  • Negrão, R., Costa, R., Duarte, D., Gomes, T. T., Azevedo, I. and Soares, R. (2013). Different effects of catechin on angiogenesis and inflammation depending on VEGF levels. J. Nutr. Biochem. 24(2):435–444.
  • Nworu, C. S. and Akah, P. A. (2015). Anti-inflammatory medicinal plants and the molecular mechanisms underlying their activities. Afr. J. Tradit. Complementary and Altern. Med. 12(s1):52–61.
  • O'Leary, K. A., de Pascual-Tereasa, S., Needs, P. W., Bao, Y. P., O'Brien, N. M. and Williamson, G. (2004). Effect of flavonoids and vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 551(1):245–254.
  • Odontuya, G., Hoult, J. R. S. and Houghton, P. J. (2005). Structure-activity relationship for antiinflammatory effect of luteolin and its derived glycosides. Phytotherapy Res. 19(9):782–786.
  • Ou, K. and Gu, L. (2014). Absorption and metabolism of proanthocyanidins. J. Funct. Foods 7:43–53.
  • Owuor, E. D. and Kong, A. N. T. (2002). Antioxidants and oxidants regulated signal transduction pathways. Biochem. Pharmacol. 64(5):765–770.
  • Pandey, K. B. and Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longevity 2(5):270–278.
  • Paquay, J. B., Haenen, G. R., Stender, G., Wiseman, S. A., Tijburg, L. B. and Bast, A. (2000). Protection against nitric oxide toxicity by tea. J. Agric. Food Chem. 48(11):5768–5772.
  • Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R. and Iranshahi, M. (2015). Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phytother. Res. 29(3):323–331.
  • Park, M. Y., Kwon, H. J. and Sung, M. K. (2009). Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci. Biotechnol. Biochem. 73(4):828–832.
  • Park, S. E., Sapkota, K., Kim, S., Kim, H. and Kim, S. J. (2011). Kaempferol acts through mitogen‐activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br. J. Pharmacol. 164(3):1008–1025.
  • Patel, N. K., Bairwa, K., Gangwal, R., Jaiswal, G., Jachak, S. M., Sangamwar, A. T. and Bhutani, K. K. (2015). 2′-Hydroxy flavanone derivatives as an inhibitors of pro-inflammatory mediators: Experimental and molecular docking studies. Bioorg. Med. Chem. Lett. 25(9):1952–1955.
  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K. and Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions 1. Endocrine Rev. 22(2):153–183.
  • Pereira, D. M., Valentão, P., Pereira, J. A. and Andrade, P. B. (2009). Phenolics: From chemistry to biology. Molecules 14(6):2202–2211.
  • Pergola, C., Rossi, A., Dugo, P., Cuzzocrea, S. and Sautebin, L. (2006). Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 15(1):30–39.
  • Pesce, M., Franceschelli, S., Ferrone, A., De Lutiis, M. A., Patruno, A., Grilli, A. and Speranza, L. (2015). Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP‐1 in the U937 cell line. J. Cell. Mol. Med. 19(7):1548–1556.
  • Pinho-Ribeiro, F. A., Hohmann, M. S., Borghi, S. M., Zarpelon, A. C., Guazelli, C. F., Manchope, M. F. and Verri, W. A. (2015). Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: Role of TRPV1, oxidative stress, cytokines and NF-κB. Chem.-Biol. Interact. 228:88–99.
  • Procházková, D., Boušová, I. and Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523.
  • Qi, Z., Yin, F., Lu, L., Shen, L., Qi, S., Lan, L. and Yin, Z. (2013). Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production. Inflammation Res. 62(9):845–855.
  • Qiao, H., Zhang, X., Zhu, C., Dong, L., Wang, L., Zhang, X. and Cao, X. (2012). Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia. Brain Res. 1448:71–81.
  • Ricciotti, E. and FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31(5):986–1000.
  • Ricote, M., Huang, J. T., Welch, J. S. and Glass, C. K. (1999). The peroxisome proliferator-activated receptor (PPAR gamma) as a regulator of monocyte/macrophage function. J. Leukoc. Biol. 66:733–739.
  • Rozmer, Z. and Perjesi, P. (2016). Naturally occurring chalcones and their biological activities. Phytochemistry Rev. 15(1):87–120.
  • Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H. and Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 51(3):571–581.
  • Sashidhara, K. V., Kumar, M., Modukuri, R. K., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. and Shukla, R. (2011). Synthesis and anti-inflammatory activity of novel biscoumarin–chalcone hybrids. Bioorg. Med. Chem. Lett. 21(15):4480–4484.
  • Schneider, M. J., Abdel-Aziz, H. and Efferth, T. (2014). Phytochemicals for the treatment of inflammatory bowel diseases. Phytochemistry Revi. 13(3):629–642.
  • Shanmugam, K., Holmquist, L., Steele, M., Stuchbury, G., Berbaum, K., Schulz, O. and Dobson, G. (2008). Plant‐derived polyphenols attenuate lipopolysaccharide‐induced nitric oxide and tumour necrosis factor production in murine microglia and macrophages. Mol. Nutr. Food Res. 52(4):427–438.
  • Sheng, W. Y., Chen, Y. R. and Wang, T. C. V. (2006). A major role of PKC θ and NFκB in the regulation of hTERT in human T lymphocytes. FEBS Lett. 580(30):6819–6824.
  • Shih, P. H., Yeh, C. T. and Yen, G. C. (2007). Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 55(23):9427–9435.
  • Sin, B. Y. and Kim, H. P. (2005). Inhibition of collagenase by naturally-occurring flavonoids. Arch. Pharmacal. Res. 28(10):1152–1155.
  • Singh, B. N., Shankar, S. and Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 82(12):1807–1821.
  • Singh, P., Anand, A. and Kumar, V. (2014). Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 85:758–777.
  • Song, L., Zhao, J., Zhang, X., Li, H. and Zhou, Y. (2013). Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur. J. Pharmacol. 714(1):15–22.
  • Sun, Y., Hung, W. C., Chen, F. Y., Lee, C. C. and Huang, H. W. (2009). Interaction of tea catechin (—)-epigallocatechin gallate with lipid bilayers. Biophys. J. 96(3):1026–1035.
  • Susanti, E., Ratnawati, R. and Rudijanto, A. (2015). Qualitative analysis of catechins from green tea GMB-4 clone using HPLC and LC-MS/MS. Asian Pac. J. Tropical. Biomed. 5(12):1046–1050.
  • Takano-Ishikawa, Y., Goto, M. and Yamaki, K. (2003). Inhibitory effects of several flavonoids on E‐selectin expression on human umbilical vein endothelial cells stimulated by tumor necrosis factor-α. Phytotherapy Res. 17(10):1224–1227.
  • Talalay, P. and Fahey, J. W. (2001). Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr. 131(11):3027S–3033S.
  • Teng, H., Chen, L., Huang, Q., Wang, J., Lin, Q., Liu, M. and Song, H. (2016). Ultrasonic-assisted extraction of raspberry seed oil and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. PloS One 11(4):e0153457.
  • Triebel, S., Trieu, H. L. and Richling, E. (2012). Modulation of inflammatory gene expression by a bilberry (Vaccinium myrtillus L.) extract and single anthocyanins considering their limited stability under cell culture conditions. J. Agric. Food Chem. 60(36):8902–8910.
  • Trnková, L., Ricci, D., Grillo, C., Colotti, G. and Altieri, F. (2013). Green tea catechins can bind and modify ERp57/PDIA3 activity. Biochim. Biophys. Acta (BBA)-Gen. Subjects 1830(3):2671–2682.
  • Vafeiadou, K., Vauzour, D., Lee, H. Y., Rodriguez-Mateos, A., Williams, R. J. and Spencer, J. P. (2009). The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch. Biochem. Biophys. 484(1):100–109.
  • Vona-Davis, L., Yu, A., Magabo, K., Evans, T., Jackson, B., Riggs, D. and McFadden, D. (2004). Peptide YY attenuates transcription factor activity in tumor necrosis factor-alpha-induced pancreatitis. J. Am. Coll. Surgeons 199(1):87–95.
  • Voronov, E., Apte, R. N. and Sofer, S. (1999). The systemic inflammatory response syndrome related to the release of cytokines following severe envenomation. J. Venom. Anim. Toxins 5(1), 5–33.
  • Wang, J. and Mazza, G. (2002). Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. J. Agric. Food Chem. 50(4):850–857.
  • Wang, J., Zhang, Q., Jin, S., He, D., Zhao, S. and Liu, S. (2008). Genistein modulate immune responses in collagen-induced rheumatoid arthritis model. Maturitas 59(4):405–412.
  • Wang, L. S. and Stoner, G. D. (2008). Anthocyanins and their role in cancer prevention. Cancer Lett. 269(2):281–290.
  • Warat, M., Szliszka, E., Korzonek-Szlacheta, I., Król, W. and Czuba, Z. P. (2014). Chrysin, apigenin and acacetin inhibit tumor necrosis factor-related apoptosis-inducing ligand receptor-1 (TRAIL-R1) on activated RAW264. 7 Macrophages. Int. J. Mol. Sci. 15(7):11510–11522.
  • Weng, C. J., Chen, M. J., Yeh, C. T. and Yen, G. C. (2011). Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. New Biotechnol. 28(6):767–777.
  • Xagorari, A., Roussos, C. and Papapetropoulos, A. (2002). Inhibition of LPS‐stimulated pathways in macrophages by the flavonoid luteolin. Br. J. Pharmacol. 136(7):1058–1064.
  • Xia, X., Ling, W., Ma, J., Xia, M., Hou, M., Wang, Q. and Tang, Z. (2006). An anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in apolipoprotein E-deficient mice. J. Nutr. 136(8):2220–2225.
  • Xiao, J. B. (2017). Dietary flavonoid aglycones and their glycosides: What show better biological benefits? Crit. Rev. Food Sci. Nutr. 57(6):1874–1905.
  • Xiao, J. B. and Högger, P. (2015). Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 22(1):23–38.
  • Xiao, J. B., Capanoglu, E., Jassbi, A. R. and Miron, A. (2016). Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr. 56:S29–S45.
  • Xiao, J. B., Muzashvili, T. S. and Georgiev, M. I. (2014). Advance on biotechnology for glycosylation of high-value flavonoids. Biotechnol. Adv. 32:1145–1156.
  • Xiao, J. B., Ni, X. L., Kai, G. Y. and Chen, X. Q. (2015). Advance in dietary polyphenols as aldose reductases inhibitors: Structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr. 55(1):16–31.
  • Xiao, J. B., Suzuki, M., Jiang, X. Y., Chen, X. Q., Yamamoto, K., Ren, F. L. and Xu, M. (2008). Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. J. Agric. Food Chem. 56(7):2350–2356.
  • Xiao, J. B. and Högger, P. (2014). Influence of diabetes on the pharmacokinetic behavior of natural polyphenols. Curr. Drug Metabol. 15:23–29.
  • Yamauchi, K., Mitsunaga, T., Inagaki, M. and Suzuki, T. (2014). Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg. Med. Chem. 22(13):3331–3340.
  • Yang, Y., Tan, Y. X., Chen, R. Y. and Kang, J. (2014). The latest review on the polyphenols and their bioactivities of Chinese Morus plants. J. Asian Natural Products Res. 16(6):690–702.
  • Yeh, C. H., Yang, J. J., Yang, M. L., Li, Y. C. and Kuan, Y. H. (2014). Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK–NF-κB pathway. Free Radic. Biol. Med. 69:249–257.
  • Ying, T. H., Yang, S. F., Tsai, S. J., Hsieh, S. C., Huang, Y. C., Bau, D. T. and Hsieh, Y. H. (2012). Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch. Toxicol. 86(2):263–273.
  • Yoon, H. Y., Lee, E. G., Lee, H., Cho, I. J., Choi, Y. J., Sung, M. S. and Yoo, W. H. (2013). Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. Int. J. Mol. Med. 32(4):971–977.
  • Yu, J. S. and Kim, A. K. (2011). Wogonin induces apoptosis by activation of ERK and p38 MAPKs signaling pathways and generation of reactive oxygen species in human breast cancer cells. Mol. Cells 31(4):327–335.
  • Yuan, J. P., Wang, J. H. and Liu, X. (2007). Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health. Mol. Nutr. Food Res. 51(7):765–781.
  • Zhan, K., Xu, K. and Yin, H. (2011). Preparative separation and purification of gingerols from ginger (Zingiber officinale Roscoe) by high-speed counter-current chromatography. Food Chem. 126(4):1959–1963.
  • Zhang, X., Wang, G., Gurley, E. C. and Zhou, H. (2014). Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 9(9):e107072.
  • Zhang, Y., Zhao, C., He, W., Wang, Z., Fang, Q., Xiao, B. and Yang, S. (2014). Discovery and evaluation of asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory agents. Drug Des. Dev. Ther. 8:373.
  • Zhao, Y., Jiang, F., Liu, P., Chen, W. and Yi, K. (2012). Catechins containing a galloyl moiety as potential anti-HIV-1 compounds. Drug Discovery Today 17(11):630–635.
  • Zhong, P., Wu, L., Qian, Y., Fang, Q., Liang, D., Wang, J. and Liang, G. (2015). Blockage of ros and NF-κB-mediated inflammation by a new chalcone l6h9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1852(7):1230–1241.
  • Zhong, Y., Chiou, Y. S., Pan, M. H. and Shahidi, F. (2012). Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chem. 134(2):742–748.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.