1,948
Views
43
CrossRef citations to date
0
Altmetric
Reviews

The mouthfeel of white wine

, , &

References

  • Adler, E., Hoon, M. A., Mueller, K. L., Chandrashekar, J., Ryba, N. J. P., and Zuker, C. S. (2000). A novel family of mammalian taste receptors. Cell 100:693–702.
  • Allen, A. L., McGeary, J. E., and Hayes, J. E. (2014). Polymorphisms in TRPV1 and TAS2Rs associated with sensations from sampled ethanol. Alcohol: Clin. Exp. Res. 38:2550–2560.
  • Bacon, J. R., and Rhodes, M. J. (2000). Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it. J. Agric. Food Chem. 48:838–843.
  • Baderschneider, B., and Winterhalter, P. (2001). Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food Chem. 49:2788–2798.
  • Bartoshuk, L. M. (1975). Taste mixtures: Is mixture suppression related to compression? Physiol. Behav. 14:643–649.
  • Baxter, N. F., Lilley, T. H., Haslam, E., and Williamson, M. P. (1997). Multiple interactions between polyphenols and a salivary proline-rich protein repeat results in complexation and precipitation. Biochemistry 36:5566–5577.
  • Berg, I. C. H., Rutland, M. W., and Arnebrant, T. (2003). Lubricating properties of the initial salivary pellicle—an AFM study. Biofouling 19:365–369.
  • Betés-Saura, C., Andrés-Lacueva, C., and Lamuela-Raventós, R. M. (1996). Phenolics in white free run juices and wines from Penedes by high-performance liquid chromatography: Changes during vinification. J. Agric. Food Chem. 44:3040–3046.
  • Cala, O., Dufourc, E. J., Fouquet, E., Manigand, C., Laguerre, M., and Pianet, I. (2012). The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Langmuir 28:17410–17418.
  • Cala, O., Pinaud, N., Simon, C., Fouquet, E., Laguerre, M., Dufourc, E. J., and Pianet, I. (2010). NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. FASEB J. 24:4281–4290.
  • Canon, F., Pate, F., Cheynier, V., Sarni-Manchado, P., Giuliani, A., Perez, J., Durand, D., Li, J., and Cabane, B. (2013). Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG. Langmuir 29:1926–1937.
  • Canon, F., Ballivian, R., Chirot, F., Antoine, R., Sarni-Manchado, P., Lemoine, J., and Dugourd, P. (2011). Folding of a salivary intrinsically disordered protein upon binding to tannins. J. Am. Chem. Soc. 133:7847–7852.
  • Carando, S., Teissedre, P., Pascual-Martinez, L., and Cabanis, J. (1999a). Levels of flavan-3-ols in French wines. J. Agric. Food Chem. 47:4161–4166.
  • Carando, S., Teissedre, P. L., and Cabanis, J. C. (1999b). HPLC coupled with fluorescence detection for the determination of procyanidins in white wines. Chromatographia 50:253–254.
  • Cardenas, M., Elofsson, U., and Lindh, L. (2007). Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva: An in situ ellipsometry and atomic force microscopy study. Biomacromolecules 8:1149–1156.
  • Carpenter, G. H. (2013). Do transient receptor protein (TRP) channels play a role in oral astringency? J. Texture Stud. 44:334–337.
  • Carvalho, E., Mateus, N., Plet, B., Pianet, I., Dufourc, E., and De Freitas, V. (2006). Influence of wine polysaccharides on the interactions between condensed tannins and salivary proteins. J. Agric. Food Chem. 54:8936–8944.
  • Castillo-Muñoz, N., Gómez-Alonso, S., García-Romero, E., and Hermosin-Gutiérrez, I. (2010). Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Composit. Anal. 23:699–705.
  • Cejudo-Bastante, M. J., Castro-Vázquez, L., Hermosín-Gutiérrez, I., and Pérez-Coello, M. S. (2011a). Combined effects of prefermentative skin maceration and oxygen addition of must on color-related phenolics, volatile composition, and sensory characteristics of Airén wine. J. Agric. Food Chem. 59:12171–12182.
  • Cejudo-Bastante, M. J., Hermosín-Gutiérrez, I., Castro-Vázquez, L., and Pérez-Coello, M. S. (2011b). Hyperoxygenation and bottle storage of Chardonnay white wines: Effects on color-related phenolics, volatile composition, and sensory characteristics. J. Agric. Food Chem. 59:4171–4182.
  • Cejudo-Bastante, M. J., Pérez-Coello, M. S., and Hermosín-Gutiérrez, I. (2010). Identification of new derivatives of 2-S-Glutathionylcaftaric acid in aged white wines by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 58:11483–11492.
  • Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L. X., Guo, W., Zuker, C. S., and Ryba, N. J. P. (2000). T2Rs function as bitter taste receptors. Cell 100:703–711.
  • Cheynier, V. F., Trousdale, E. K., Singleton, V. L., and Salgues, M. J. (1986). Characterization of 2-s-Glutathionylcaftaric acid and its hydrolysis in relation to grape wines. J. Agric. Food Chem. 34:217–221.
  • Clapham, E. E. (2003). TRP channels as cellular sensors. Nature 426:517–524.
  • Coles, J. M., Chang, D. P., and Zauscher, S. (2010). Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr. Opin. Colloid Interf. Sci. 15:406–416.
  • Dadic, M., and Belleau, G. (1973). Polyphenols and beer flavor. Proc. Am. Soc. Brewing Chem. 4:107–114.
  • Delcour, J. A., Vandenberghe, M. M., Corten, P. F., and Dondeyne, P. (1984). Flavor thresholds of polyphenolics in water. Am. J. Enol. Viticult. 35:134–136.
  • Delwiche, J. (2004). The impact of perceptual interactions on perceived flavor. Food Qual. Prefer. 15:137–146.
  • DeMiglio, P., and Pickering, G. J. (2008). The influence of ethanol and pH on the taste and mouthfeel sensations elicited by red wine. J. Food Agric. Environ. 6:143–150.
  • DeMiglio, P., Pickering, G.J. and Reynolds, A.G. (2002). Astringent sub-qualities elicited by red wine: the role of ethanol and pH. In: Proceedings of the International Bacchus to The Future Conference. May 23rd–25th 2002, St Catharines, ON, pp. 31–52. Cullen, C. W., Pickering, G. J. and Phillips, R., Eds., Brock University Press, St Catharines.
  • de Pascual-Teresa, S., Rivas-Gonzalo, J. C., and Santos-Buelga, C. (2000). Prodelphinidins and related flavanols in wine. Int. J. Food Sci. Technol. 35:33–40.
  • Desportes, C., Charpentier, M., Duteurtre, B., Maujean, A., and Duchiron, F. (2001). Isolation, identification, and organoleptic characterization of low-molecular-weight peptides from white wine. Am. J. Enol. Viticult. 52:376–380.
  • de Villiers, A., Majek, P., Lynen, F., Crouch, A., Lauer, H., and Sandra, P. (2005). Classification of South African red and white wines according to grape variety based on non-coloured phenolic content. Eur. Food Res. Technol. 221:520–528.
  • Di Lecce, G., Arranz, S., Jáuregui, O., Tresserra-Rimbau, A., Quifer-Rada, P., and Lamuela-Raventós, R. M. (2014). Phenolic profiling of the skin, pulp and seeds of Albarino grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 145:874–882.
  • DuBois, G. (2011). Validity of early indirect models of taste active sites and advances in new taste technologies enabled by improved models. Flavour Fragrance J. 26:239–253.
  • Esaki, S., Tanaka, R., and Kamiya, S. (1983). Structure-taste relationships of flavanone and dihydrochalcone glycosides containing (1→2) linked disaccharides. Agric. Biol. Chem. 47:1831–1834.
  • Escot, S., Feuillat, M., Dulau, L., and Charpentier, C. (2001). Release of polysaccharides by yeasts and the influence of released polysaccharides on colur stability and wine astringency. Aust. J. Grape Wine Res. 7:153–159.
  • Fernández-Pachon, M. S., Villaño, D., Troncoso, A. M., and Garcia-Parrilla, M. C. (2006). Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Anal. Chim. Acta. 563:101–108.
  • Ferrer-Gallego, R., Brás, N. F., García-Estévez, I., Mateus, N., Rivas-Gonzalo, J. C., de Freitas, V., and Escribano-Bailón, M. T. (2016). Effect of flavonols on wine astringency and their interaction with human saliva. Food Chem. 209:358–364.
  • Ferrer-Gallego, R., Quijada-Morín, N., Brás, N. F., Gomes, P., de Freitas, V., Rivas-Gonzalo, J. C., and Escribano-Bailón, M. T. (2015). Characterization of sensory properties of flavanols - A molecular dynamic approach. Chem. Senses 40:381–390.
  • Ferrer-Gallego, R., Hernández-Hierro, J. M., Rivas-Gonzalo, J. C., and Escribano-Bailón, M. T. (2014). Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: synergistic effect and modulation by aromas. Food Res. Int. 62:1100–1107.
  • Fincher, G. B., and Stone, B. A. (1983). Arabinogalactan-proteins: Structure, biosynthesis and function. Ann. Rev. Plant Physiol. 34:47–70.
  • Fischer, U., and Noble, A. C. (1994). The effect of ethanol, catechin concentration, and pH on sourness and bitterness of wine. Am. J. Enol. Viticult. 45:6–10.
  • Fontoin, H., Saucier, C., Teissedre, P. L., and Glories, Y. (2008). Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Prefer. 19:286–291.
  • Foo, L. Y., and Porter, L. J. (1980). The phytochemistry of proanthocyanidin polymers. Phytochemistry 19:1747–1754.
  • Friedel, M., Stoll, M., Patz, C. D., Will, F., and Dietrich, H. (2015). Impact of light exposure on fruit composition of white ‘Riesling’ grape berries (Vitis vinifera L.). Vitis 54:107–116.
  • Frijters, J. E. R., and DeGraaf, C. (1987). The equiratio taste mixture model successfully predicts the sensory response to the sweetness intensity of complex mixtures of sugars and sugar alcohols. Perception 5:615–628.
  • Fulcrand, H., Remy, S., Souquet, J. M., Cheynier, V., and Moutounet, M. (1999). Study of wine tannin oligomers by on-line liquid chromatography electrospray ionisation mass spectrometry. J. Agric. Food Chem. 47:1023–1028.
  • Furlan, A. L., Jobin, M.-L., Pianet, I., Dufourc, E. J., and Géan, J. (2015). Flavanol/lipid interaction: a novel molecular perspective in the description of wine astringency & bitterness and antioxidant action. Tetrahedron 71:3143–3147.
  • Furlan, A. L., Castets, A., Nallet, F., Pianet, I., Grélard, A., Dufourc, E. J., and Géan, J. (2014). Red wine tannins fluidify and precipitate lipid liposomes and bicelles. A role for lipids in wine tasting? Langmuir 30:5518–5526.
  • Gawel, R., Smith, P. A., and Waters, E. J. (2016). The influence of polysaccharides on the taste and mouth-feel of white wine. Aust. J. Grape Wine Res. 22:350–357.
  • Gawel, R., Day, M., Van Sluyter, S. C., Holt, H., Waters, E. J., and Smith, P. A. (2014a). White wine taste and mouthfeel as affected by juice extraction and processing. J. Agric. Food Chem. 62:10008–10014.
  • Gawel, R., Schulkin, A., Smith, P. A., and Waters, E. J. (2014b). Taste and textural characters of mixtures of caftaric acid and Grape Reaction Product in model wine. Aust. J. Grape Wine Res. 20:25–30.
  • Gawel, R., Van Sluyter, S. C., Smith, P. A., and Waters, E. J. (2013). Effect of pH and alcohol on perception of phenolic character in white wine. Am. J. Enol. Viticult. 64:425–429.
  • Gawel, R., and Waters, E. J. (2008). The effect of glycerol on the perceived viscosity of dry white table wine. J. Wine Res. 19:109–114.
  • Gawel, R., Van Sluyter, S., and Waters, E. J. (2007). The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Aust. J. Grape Wine Res. 13:38–45.
  • Gawel, R. (1998). Red wine astringency: A review. Aust. J. Grape Wine Res. 4:74–95.
  • Glabasnia, A., and Hofmann, T. (2006). Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in Bourbon whiskey and oak-matured red wines. J. Agric. Food Chem. 54:3380–3390.
  • Gonçalves, F., Heyraud, A., De Pinho, M. N., and Rinaudo, M. (2002). Characterization of white wine mannoproteins. J. Agric. Food Chem. 50:6097–6101.
  • Gong, J., and Osada, Y. (1998). Gel friction: A model based on surface repulsion and adsorption. J. Chem. Phys. 109:8062–8068.
  • Goold, H. D., Kroukamp, H., Williams, T. C., I.T., P., Varela, C., and Petorius, I. S. (2017). Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microbiol. Technol. 10:264–278.
  • Green, B. G. (2002). Studying taste as a cutaneous sense. Food Qual. Prefer. 14:99–109.
  • Guadagni, D. G., Maier, V. P., and Turnbaugh, J. G. (1973). Effect of some citrus juice constituents on taste thresholds for limonin and naringin bitterness. J. Sci. Food Agric. 24:1277–1288.
  • Guadalupe, Z., and Ayestarán, B. (2007). Polysaccharide profile and content during the vinification and aging of Tempranillo red wines. J. Agric. Food Chem. 55:10720–10728.
  • Gürbüz, O., Goçmen, D., Dagdelen, F., Gürsoy, M., Aydin, S., Sahin, I., Büyükuysal, L., and Usta, M. (2007). Determination of flavan-3-ols and trans-resveratrol in grapes and wine using HPLC with fluorescence detection. Food Chem. 100:518–525.
  • Hartwig, P., and McDaniel, M. R. (1995). Flavor characteristics of lactic, malic, citric and acetic acids at various pH levels. J. Food Sci. 60:384–388.
  • Haslam, E., and Lilley, T. H. (1988). Natural astringency in foodstuffs: A molecular interpretation. Crit. Revues Food Sci. Nutr. 27:1–40.
  • Herrick, I. W., and Nagel, C. W. (1985). The caffeoyl tartrate content of White Riesling wines from California, Washington, and Alsace. Am. J. Enol. Viticult. 36:95–97.
  • Hewson, L., Hollowood, T., Chandra, S., and Hort, J. (2009). Gustatory, olfactory and trigeminal interactions in a model carbonated beverage. Chemosens Percept. 2:94–107.
  • Horowitz, R. M., and Gentili, B. (1969). Taste and structure of phenolic glycosides. J. Agric. Food Chem. 17:696–700.
  • Hufnagel, J. C., and Hofmann, T. (2008). Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J. Agric. Food Chem. 56:1376–1386.
  • Iontcheva, I., Oppenheim, F. G., Offner, G. D., and Troxler, R. F. (2000). Molecular mapping of statherin- and histatin-binding domains in human salivary mucin MG1 (MUC5B) by the yeast two-hybrid system. J. Dental Res. 79:732–739.
  • Jackson, R. (2014). Wine Science: Principles and Applications. Academic Press, San Diego.
  • Jones, P. R., Gawel, R., Francis, I. L., and Waters, E. J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual. Prefer. 19:596–607.
  • Kallithraka, S., Salacha, M. I., and Tzourou, I. (2009). Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 113:500–505.
  • Kaneko, S., Kumazawa, K., Masuda, H., Henze, A., and Hofmann, T. (2006). Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 54:2688–2694.
  • Kauffman, D. L., Bennick, A., Blum, M., and Keller, P. J. (1991). Basic proline-rich proteins from human parotid saliva: Relationships of the covalent structures of ten proteins from a single individual. Biochemistry 30:3351–3356.
  • Keast, R. S. J., Bournazel, M. M. E., and Breslin, P. A. S. (2003). A psychophysical investigation of binary bitter-compound interactions. Chem. Senses 28:301–313.
  • Kielhorn, S., and Thorngate, J. H. (1999). Oral sensations associated with the flavan-3-ols (+)-catechin and (−)-epicatechin. Food Qual. Prefer. 10:109–116.
  • Konitz, R., Fruend, M., Seckler, J., Christmann, M., Netzel, M., Strass, G., Bitsch, R., and Bitsch, I. (2003). Einfluss der Mostvorklärung auf die sensorische qualität von Riesling weinen aus dem Rheingau. Mitteilungen Klosterneuburg 53:166–183.
  • Korenika, A. J., Zulj, M. M., Puhelek, I., Plavsa, T., and Jeromel, A. (2014). Study of phenolic composition and antioxidant capacity of Croatian macerated wines. Mitteilungen Klosterneuburg 64:171–180.
  • Kosmerl, T., Abramovic, H., and Klofutar, C. (2000). The rheological properties of Slovenian wines. J. Food Eng. 46:165–171.
  • Kubı́cková, J., and Grosch, W. (1998). Evaluation of flavour compounds of Camembert cheese. Int. Dairy J. 8:11–16.
  • Kurogi, M., Kawai, Y., Nagatomo, K., Tateyama, M., Kubo, Y., and Saitoh, O. (2015). Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem. Senses 40:27–46.
  • Lawless, H. T., Horne, J., and Giasi, P. (1996). Astringency of organic acids is related to pH. Chem. Senses 21:397–403.
  • Lea, A. G. H., Bridle, P., Timberlake, C. F., and Singleton, V. L. (1979). The procyanidins of white grapes and wines. Am. J. Enol. Viticult. 30:289–300.
  • Lea, A. G. H., and Arnold, G. M. (1978). The phenolics of ciders: Bitterness and astringency. J. Sci. Food Agric. 29:478–483.
  • Lee, S. K., Lee, S. W., Chung, S. C., Kim, Y. K., and Kho, H. S. (2002). Analysis of residual saliva and minor salivary gland secretions in patients with dry mouth. Arch Oral Biol. 47:637–641.
  • Lubbers, S., Verret, C., and Voilley, A. (2001). The effect of glycerol on the perceived aroma of a model wine and white wine. Food Sci. Technol. 34:262–265.
  • Lubbers, S., Voilley, A., Feuillat, M., and Charpentier, C. (1994). Influence of mannoproteins from yeast on the aroma intensity of a model wine. Food Sci. Technol. 27:108–114.
  • Luck, G., Liao, H., Murray, N. J., Grimmer, H. R., Warminski, E. E., Williamson, M. P., Lilley, T. H., and Haslam, E. (1994). Polyphenol, astringency and proline rich proteins. Phytochemistry 37:357–371.
  • Maga, J. A. (1990). Compound structure versus bitter taste. In: Bitterness in Foods and Beverages. pp. 35–48. Rouseff, R. L. Eds. Elsevier, Amsterdam.
  • Maga, J. A., and Lorenz, K. (1973). Taste threshold values for phenolic acids which can influence flavor properties of certain flours, grains, and oilseeds. Cereal Sci. Today. 18:326–328.
  • Maheshwari, R., and Dhathathreyan, A. (2006). Mucin at solution/air and solid/solution interfaces. J. Colloid Interface Sci. 293:263–269.
  • Malone, M. E., Appelqvist, I. A. M., and Norton, I. T. (2003). Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocoll. 17:763–773.
  • Masa, A., Vilanova, A., and Pomar, F. (2007). Varietal differences among the flavonoid profiles of white grape cultivars studied by high-performance liquid chromatography. J. Chromatogr. A 1164:291–297.
  • Mattes, R. D., and DiMeglio, D. (2001). Ethanol perception and ingestion. Physiol Behav. 72:217–229.
  • McArthur, C., Sanson, G. D., and Beal, A. M. (1995). Salivary proline-rich proteins in mammals: Roles in oral homeostasis and counteracting dietary tannin. J. Chem. Ecol. 21:663–691.
  • McLean, H. (2005). Managing phenolics in white wine. In: Advances in Tannin Management, pp. 36–39. Allen, M., Dundon, C., Francis, M.E., Howell, G., and Wall, G., Eds., Australian Society of Viticulture and Oenology Inc., Adelaide.
  • McRae, J. M., Ziora, Z. M., Kassara, S., Cooper, M. A., and Smith, P. A. (2015). Ethanol concentration influences the mechanisms of wine tannin Interactions with poly(L-proline) in model wine. J. Agric. Food Chem. 63:4345–4352.
  • Meyerhof, W., Batram, C., Kuhn, C., Brockhoff, A., Chudoba, E., Bufe, B., Appendino, G., and Behrens, M. (2010). The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 35:157–170.
  • Monagas, M., Bartolomé, B., and Gomez-Cordovés, C. (2005). Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. Nutr. 45:85–118.
  • Myers, T. E., and Singleton, V. L. (1979). The nonflavonoid phenolic fraction of wine and its analysis. Am. J. Enol. Viticult. 30:98–102.
  • Narukawa, M., Kimata, H., Noga, C., and Watanabe, T. (2010). Taste characterisation of green tea catechins. Int. J. Food Sci. Technol. 45:1579–1585.
  • Nayak, A., and Carpenter, G. H. (2008). A physiological model of tea-induced astringency. Physiol. Behav. 95:290–294.
  • Nicolini, G., Mattivi, F., and Dalla Serra, A. (1991). Iperossigenazione dei mosti: Conseguenze analitiche e sensoriali su vini dell vendemmia 1989. Rivista di Viticoltura e di Enologia 3:45–56.
  • Nieuwoudt, H. H., Prior, B. A., Pretorius, I. S., and Bauer, F. F. (2002). Glycerol in South African table wines. An assessment of its relationship to wine quality. S. Afric. J. Enol. Viticult. 23:22–30.
  • Noble, A. C., and Bursick, G. F. (1984). The contribution of glycerol to perceived viscosity and sweetness in white wine. Am. J. Enol. Viticult. 35:110–112.
  • Nordbo, H., Darwish, S., and Bhatnagar, R. S. (1984). Salivary viscosity and lubrication: Influence of pH and calcium. Scand. J. Dental Res. 92:306–314.
  • Nurgel, C., and Pickering, G. J. (2005). Contribution of glycerol, ethanol and sugar to the perception of viscosity and density elicited model white wines. J. Texture Stud. 36:303–325.
  • Oberholster, A., Francis, I. L., Iland, P. G., and Waters, E. J. (2009). Mouthfeel of white wines made with and without pomace contact and added anthocyanins. Aust. J. Grape Wine Res. 15:59–69.
  • Okamura, S., and Watanabe, M. (1981). Determination of phenolic cinnamates in white wine and their effect on wine quality. Agric. Biol. Chem. 45:2063–2070.
  • Okuda, T., Fukui, M., Hisamoto, M., Iino, S., Hikawa, Y., Ogino, S., Takayanagi, T., and Yokotsuka, K. (2007). Relationships between macromolecules and thickness of dry white wine. J. Am. Soc. Enol. Viticult. Jpn. 18:15–21.
  • Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., and Cook, D. (2017). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chem. 230:215–224.
  • Ong, B. Y., and Nagel, C. W. (1978). Hydroxycinnamic acid-tartaric acid ester content in mature grapes and during the maturation of White Riesling grapes. Am. J. Enol. Viticult. 29:277–281.
  • Oszmianski, J., and Sapis, J. C. (1989). Fractionation and identification of some low molecular weight grape seed phenolics. J. Agric. Food Chem. 37:1293–1297.
  • Pascal, C., Páte, F., Cheynier, V., and Delsuc, M. A. (2009). Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: Residual structures in the natively unfolded protein provides anchorage points for the ligand. Biopolymers 91:745–756.
  • Pascal, C., Poncet-Legrand, C., Cabane, B., and Verhnet, A. (2008). Aggregation of a proline-rich protein induced by epigallocatechin gallate and condensed tannins: Effect of protein glycosylation. J. Agric. Food Chem. 56:6724–6732.
  • Payne, C., Bowyer, P. K., Herderich, M., and Bastian, S. E. P. (2009). Interaction of astringent grape seed procyanidins with oral epithelial cells. Food Chem. 115:551–557.
  • Peleg, H., Gacon, K., Schlich, P., and Noble, A. C. (1999). Bitterness and astringency of flavan-3-ol monomers, dimers and trimers. J. Sci. Food Agric. 79:1123–1128.
  • Peleg, H., and Noble, A. C. (1995). Perceptual properties of benzoic acid derivatives. Chem. Sens. 20:393–400.
  • Pellerin, P., Doco, T., Vidal, S. P. W., Brillouet, J. M., and O'Neill, M. A. (1996). Structural characterization of red wine rhamnogalacturonan II. Carbohydr. Res. 190:183–197.
  • Peña-Neira, A., Hernández, T., Garcia-Vallejo, C., Estrella, I., and Suarez, J. A. (2000). A survey of phenolic compounds in Spanish wines of different geographical origin. Eur. Food Res. Technol. 210:445–448.
  • Pickering, G. J., and DeMiglio, P. (2008). The wine wine mouth-feel wheel: A lexicon for describing the oral sensations elicited by white wine. J. Wine Res. 19:51–67.
  • Plet, B., Delcambre, A., Chaignepain, S., and Schmitter, J.-M. (2015). Affinity ranking of peptide–polyphenol non-covalent assemblies by mass spectrometry approaches. Tetrahedron 71:3007–3011.
  • Poncet-Legrand, C., Edelmann, A., Putaux, J.-L., Cartalade, D., Sarni-Manchado, P., and Vernhet, A. (2006). Poly (L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocoll. 20:687–697.
  • Prescott, J. (1999). Flavour as a psychological construct: implications for perceiving and measuring the sensory quality of foods. Food Qual. Prefer. 10:349–356.
  • Proctor, G. B., Hamdan, S., Carpenter, G. H., and Wilde, P. (2005). A statherin and calcium enriched layer at the air interface of human parotid saliva. Biocheml. J. 389:111–116.
  • Quijada-Morín, N., Williams, P., Rivas-Gonzalo, J. C., Doco, T., and Escribano-Bailón, M. T. (2014). Polyphenolic, polysaccharide and oligosaccharide composition of Tempranillo red wines and their relationship with the perceived astringency. Food Chem. 154:44–51.
  • Ricardo da Silva, J. M., Cheynier, V., Samsom, A., and Bourzeux, M. (1993). Effect of pomace contact, carbonic maceration, and hyperoxidation on the procyanidin composition of Grenache blanc wines. Am. J. Enol. Viticult. 44:168–172.
  • Rinaldi, A., Gambuti, A., and Moio, L. (2012). Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins. J. Food Sci. 77:C485–490.
  • Robichaud, J. L., and Noble, A. C. (1990). Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 53:343–353.
  • Robinson, J. (1999). Vines Grapes and Wines. Mitchell Beazley, London.
  • Rodrígues Montealegre, R., Romero Peces, R., Chacón Vozmediano, J. L., Martinez Gascueña, J., and Carcia Romero, E. (2006). Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in warm climates. J. Food Composit. Anal. 19:687–693.
  • Rossetti, D., Bongaerts, J. H. H., Wantling, E., Stokes, J. R., and Williamson, A. M. (2009). Astringency of tea catechins: More than an oral lubrication tactile percept. Food Hydrocoll. 23:1984–1992.
  • Rotzoll, N., Dunkel, A., and Hofmann, T. (2006). Quantitative studies, taste reconstitution, and omission experiments on the key taste compounds in Morel mushrooms (Morchella deliciosa fr.). J. Agric. Food Chem. 54:2705–2711.
  • Runnebaum, R. C., Boulton, R. B., Powell, R. L., and Heymann, H. (2011). Key constituents affecting wine body—an exploratory study. J. Sens. Stud. 26:62–70.
  • Sáenz-Navajas, M. P., Avizcuri, J. M., Ferreira, V., and Fernández-Zurbano, P. (2012). Insights on the chemical basis of the astringency of Spanish red wines. Food Chem. 134:1484–1493.
  • Sáenz-Navajas, M. P., Campo, E., Fernández-Zurbano, P., Valentin, D., and Ferreira, V. (2010). An assessment of the effects of wine volatiles on the perception of taste and astringency in wine. Food Chem. 121:1139–1149.
  • Sarni-Manchado, P., and Cheynier, V. (2002). Study of non-covalent complexation between catechin derivatives and peptides by electrospray ionization mass spectrometry. J. Mass Spectrom. 37:609–616.
  • Scharbert, S., Holzmann, N., and Hofmann, T. (2004). Identification of the astringent taste compounds in black tea by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52:3498–3508.
  • Schobel, N., Radtke, D., Kyereme, J., Wollmann, N., Cichy, A., Obst, K., Kallweit, K., Kletke, O., Minovi, A., Dazert, S., Wetzel, C. H., Vogt-Eisele, A., Gisselmann, G., Ley, J. P., Bartoshuk, L. M., Spehr, J., Hofmann, T., and Hatt, H. (2014). Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds. Chem. Senses 39:471–487.
  • Schwender, N., Huber, K., Al Marrawi, F., Hannig, M., and Ziegler, C. (2005). Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy. Appl. Surf. Sci. 252:117–122.
  • Simonetti, P., Pietta, P., and Testolin, G. (1997). Polyphenol content and total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 45:1152–1155.
  • Singleton, V. L., Salgues, M., Zaya, J., and Trousdale, E. (1985). Caftaric acid disappearance and conversion to products of enzymic oxidation in grape must and wine. Am. J. Enol. Viticult. 36:50–56.
  • Singleton, V. L., and Trousdale, E. (1983). White wine phenolics—varietal and processing differences as shown by HPLC. Am. J. Enol. Viticult. 34:27–34.
  • Singleton, V. L., Zaya, J., and Trousdale, E. (1980). White table wine quality and polyphenol composition as affected by must SO2 content and pomace contact time. Am. J. Enol. Viticult. 31:14–20.
  • Singleton, V. L., Sieberhagen, H. A., de Wet, P., and van Wyk, C. J. (1975). Composition and sensory qualities of wines prepared from white grapes by fermentation with and without grape solids. Am. J. Enol. Viticult. 26:62–69.
  • Skogerson, K., Runnebaum, R., Wohlgemuth, G., de Ropp, J., Heymann, H., and Fiehn, O. (2009). Comparison of gas chromatography-coupled time-of-flight mass spectrometry and 1H nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body. J. Agric. Food Chem. 57:6899–6907.
  • Soares, S., Ferrer-Galego, R., Brandao, E., Silva, M., Mateus, N., and De Freitas, V. (2016). Contribution of human oral cells to astringency by binding salivary protein/tannin complexes. J. Agric. Food Chem..
  • Soares, S., Kohl, S., Thalmann, S., Mateus, N., Meyerhof, W., and De Freitas, V. (2013). Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 61:1525–1533.
  • Soares, S. I., Gonçalves, R. M., Fernandes, I., Mateus, N., and de Freitas, V. (2009). Mechanistic approach by which polysaccharides inhibit alpha-amylase/procyanidin aggregation. J. Agric. Food Chem. 57:4352–4358.
  • Sokolowsky, M., and Fischer, U. (2012). Evaluation of bitterness in white wine applying descriptive analysis, time-intensity analysis, and temporal dominance of sensations analysis. Anal. Chim. Acta. 732:46–52.
  • Solms, J. (1969). The taste of amino acids, peptides and proteins. J. Agric. Food Chem. 17:686–688.
  • Sowalski, R. A., and Noble, A. C. (1998). Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chem. Senses 23:343–349.
  • Spencer, C. M., Cai, Y., Martin, R., Gaffney, S. H., Goulding, P. N., Magnolato, D., Lilley, T. H., and Haslam, E. (1988). Polyphenol complexation: Some thoughts and observations. Phytochemistry 27:2397–2409.
  • Squier, C. A., and Kremer, M. J. (2001). Biology of the oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 29:7–15.
  • Svendsen, I. E., Lindh, L., and Arnebrant, T. (2006). Adsorption behaviour and surfactant elution of cationic salivary proteins at solid/liquid interfaces, studied by in situ ellipsometry. Colloids Surf. B-Biointerf. 63:157–166.
  • Symoneaux, R., Le Quére, J. M., Baron, A., Bauduin, R., and Chollet, S. (2015). Impact of CO2 and its interactions with the matrix components on sensory perception in model cider. LWT – Food Sci. Technol. 63:886–891.
  • Szabo, D., Akiyoshi, S., Matsunaga, T., Gong, J. P., and Osada, Y. (2000). Spreading of liquids on gel surfaces. J. Chem. Phys. 113:8253–8259.
  • Takahashi, K., Tadenuma, M., Kitamoto, K., and Sato, S. (1974). L-Prolyl-L-leucine anhydride: A bitter compound formed in aged sake. Agric. Biol. Chem. 38:927–932.
  • Thorngate, J. H., and Noble, A. C. (1995). Sensory evaluation of bitterness and astringency of 3R(−)-epicatechin and 3S(+)-catechin. J. Sci. Food Agric. 67:531–535.
  • Trevisani, M., Smart, D., Gunthorpe, M. J., Tognetto, M., Barbieri, M., Campi, B., Amadesi, S., Gray, J., Jerman, J. C., Brough, S. J., Owen, D., Smith, G. D., Randall, A. D., Harrison, S., Bianchi, A., Davis, J. B., and Geppetti, P. (2002). Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat. Neurosci. 5:546–551.
  • Van Bursick, R. L., and Erickson, R. P. (1977). Odorant responses in taste neurons of the rat NTS. Brain Res. 135:287–303.
  • Van Vliet, T., van Aken, G. A., de Jongh, H. H., and Hamer, R. J. (2009). Colloidal aspects of texture perception. Adv. Colloid Interface Sci. 150:27–40.
  • Veerman, E. C. I., Valentijm-Benz, M., and Nieuw Amerongen, A. V. (1989). Viscosity of human salivary mucins: Effect of pH and ionic strength and role of sialic acid. J. Biol. Buccale 17:297–306.
  • Vérette, E., Noble, A. C., and Somers, T. C. (1988). Hydroxy-cinnamates of Vitis vinifera: Sensory assessment in relation to bitterness in white wines. J. Sci. Food Agric. 45:267–272.
  • Verhagen, J. V., and Engelen, L. (2006). The neurocognitive bases of human multimodal food perception: Sensory integration. Neurosci. Biobehav. Rev. 30:613–650.
  • Verhnet, A., Pellerin, P., Prieur, C., Osmianski, J., and Moutounet, M. (1996). Charge properties of some grape and wine polysaccharide and polyphenolic fractions. Am. J. Enol. Viticult. 47:25–30.
  • Vidal, S., Francis, L., Williams, P., Kwiatkowski, M., Gawel, R., Cheynier, V., and Waters, E. (2004a). The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem. 85:519–525.
  • Vidal, S., Courcoux, P., Francis, L., Kwiatkowski, M., Gawel, R., Williams, P., Waters, E., and Cheynier, V. (2004b). Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Prefer. 15:209–217.
  • Vilanova, M., Santalla, M., and Masa, A. (2009). Environmental and genetic variation of phenolic compounds in grapes (Vitis vinifera) from northwest Spain. J. Agric. Sci. 147:683–697.
  • Vitkov, L., Hannig, M., Nekrashevych, Y., and Krautgartner, W. D. (2004). Supramolecular pellicle precursors. Eur. J. Oral Sci. 112:320–325.
  • Vitrac, X., Monti, J. P., Vercauteren, J., Deffieux, G., and Mérillon, J. M. (2002). Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal. Chim. Acta. 458:103–110.
  • Walz, A., Stühler, K., Wattenberg, A., Hawranke, E., Meyer, H. E., Schmalz, G., Blüggel, M., and Ruhl, S. (2006). Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics 6:1631–1639.
  • Watanabe, I. (2004). Ultrastructures of mechanoreceptors in the oral mucosa. Anatom. Sci. Int. 79:55–61.
  • Work, T. M., and Camire, M. E. (1996). Phenolic acid detection thresholds in processed potatoes. Food Qual. Prefer. 7:271–274.
  • Yamazaki, T., Narukawa, M., Mochizuki, M., Misaka, T., and Watanabe, T. (2013). Activation of the hTAS2R14 human bitter-taste receptor by (−)-epogallocatechin gallate and (−)-epcatechin gallate. Biosci., Biotechnol. Biochem. 77:1981–1983.
  • Yao, Y., Berg, E. A., Costello, C. E., Troxler, R. F., and Oppenheim, F. G. (2003). Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J. Biol. Chem. 278:5300–5308.
  • Ye, A., Zheng, T., Ye, J. Z., and Singh, H. (2012). Potential role of the binding of whey proteins to human buccal cells on the perception of astringency in whey protein beverages. Physiol. Behav. 106:645–650.
  • Yu, P., Yeo, A. S., Low, M., and Zhou, W. (2014). Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chem. 155:9–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.