1,578
Views
72
CrossRef citations to date
0
Altmetric
Reviews

Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods

, , , , , & show all

References

  • Aburto, N. J., Ziolkovska, A., Hooper, L., Elliott, P., Cappuccio, F. P. and Meerpohl, J. J. (2013). Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ-Brit. Med. J. 346:f1326–f1346.
  • Aguilera, J. M. and Park, D. J. (2016). Texture-modified foods for the elderly: Status, technology and opportunities. Trends Food Sci. Technol. 57:156–164.
  • Angsupanich, K. and Ledward, D. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem. 63(1):39–50.
  • Asghar, A., Samejima, K., Yasui, T. and Henrickson, R. L. (1985). Functionality of muscle proteins in gelation mechanisms of structured meat products. Crit. Rev. Food Sci. 22(1): 27–106.
  • Ashie, I. N. A. and Lanier, T. C. (1999). High pressure effects on gelation of surimi and turkey breast muscle enhanced by microbial transglutaminase. J. Food Sci. 64(4):704–708.
  • Balasubramaniam, V. M., Barbosa-Cánovas, G. V. and Lelieveld, H. L. M. (2016). High-Pressure Processing Equipment for the Food Industry. In: High Pressure Processing of Food, pp. 39–65. Balasubramaniam, V.M., Barbosa-Cánovas, G.V. and Lelieveld, H.L.M., Eds., Springer-Verlag, New York.
  • Bandman, E. (1999). Solubility of myosin and the binding quality of meat products. In: International Congress of Meat Science and Technology, 1999. pp. 236–245. Helsinki, Finland.
  • Bandman, E., Arrizubieta, M. J., Wick, M., Hattori, A., Tablin, F., Zhang, S. and Zhang, Q. (1997). Functional analysis of the chicken sarcomeric myosin rod: regulation of dimerization, solubility, and fibrillogenesis. Cell Struct. Funct. 22(1):131–137.
  • Barbosa-Cánovas, G. V., Medina-Meza, I., Candoğan, K. and Bermúdez-Aguirre, D. (2014). Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Sci. 98(3):420–434.
  • Bolumar, T., Enneking, M., Toepfl, S. and Heinz, V. (2013). New developments in shockwave technology intended for meat tenderization: Opportunities and challenges. A review. Meat Sci. 95(4):931–939.
  • Bolumar, T., Middendorf, D., Toepfl, S. and Heinz, V. (2016). Structural changes in foods caused by high-pressure processing. In: High Pressure Processing of Food, pp. 509–537. Balasubramaniam, V.M., Barbosa-Cánovas, G.V. and Lelieveld, H.L.M., Eds., Springer-Verlag, New York.
  • Boyer, C., Joandel, S., Roussilhes, V., Culioli, J. and Ouali, A. (1996). Heat-induced gelation of myofibrillar proteins and myosin from fast-and slow-twitch rabbit muscles. J. Food Sci. 61(6):1138–1143.
  • Buckow, R., Sikes, A. and Tume, R. (2013). Effect of high pressure on physicochemical properties of meat. Crit. Rev. Food Sci. 53(7):770–786.
  • Cando, D., Borderías, A. J. and Moreno, H. (2016a). Combined effect of aminoacids and microbial transglutaminase on gelation of low salt surimi content under high pressure processing. Innov. Food Sci. Emerg. Technol. 36:10–17.
  • Cando, D., Herranz, B., Borderías, A. J. and Moreno, H. M. (2015). Effect of high pressure on reduced sodium chloride surimi gels. Food Hydrocolloids. 51:176–187.
  • Cando, D., Moreno, H. M., Borderías, A. J. and Skåra, T. (2016b). Combined effect of high hydrostatic pressure and lysine or cystine addition in low-grade surimi gelation with low salt content. Food Bioprocess Technol. 9(8):1391–1398.
  • Cando, D., Moreno, H. M., Tovar, C. A., Herranz, B. and Borderias, A. J. (2014). Effect of high pressure and/or temperature over gelation of isolated hake myofibrils. Food Bioprocess Technol. 7(11):3197–3207.
  • Cao, Y. and Xiong, Y. L. (2015). Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem. 180:235–243.
  • Cao, Y. Y., Xia, T. L., Zhou, G. H. and Xu, X. L. (2012). The mechanism of high pressure-induced gels of rabbit myosin. Innov. Food Sci. Emerg. Technol. 16:41–46.
  • Carballo, J., Fernández, P. and Colmenero, F. J. (1996). Texture of uncooked and cooked low-and high-fat meat batters as affected by high hydrostatic pressure. J. Agric. Food Chem. 44(7):1624–1625.
  • Carballo, J., Fernandez, P., Carrascosa, A. V., Solas, M. T. and Jiménez Colmenero, F. (1997). Characteristics of low-and high-fat beef patties: effect of high hydrostatic pressure. J Food Prot. 60(1):48–53.
  • Chan, J. T., Omana, D. A. and Betti, M. (2011). Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat. Innov. Food Sci. Emerg. Technol. 12(3):216–225.
  • Chang, H. S. (1997). Solubility and gelation of chicken breast muscle proteins as affected by salts. Doctoral Dissertations Available from Proquest Paper AAI9721436
  • Chapleau, N., Mangavel, C., Compoint, J. P. and de Lamballerie-Anton, M. (2004). Effect of high-pressure processing on myofibrillar protein structure. J. Sci. Food Agric. 84(1):66–74.
  • Chapleau, N. J. and de Lamballerie-Anton, M. I. (2003). Changes in myofibrillar proteins interactions and rheological properties induced by high-pressure processing. Eur. Food Res. Technol. 216(6):470–476.
  • Chattong, U. and Apichartsrangkoon, A. (2009). Dynamic viscoelastic characterisation of ostrich-meat yor (Thai sausage) following pressure, temperature and holding time regimes. Meat Sci. 81(3): 426–432.
  • Chattong, U., Apichartsrangkoon, A., Chaikham, P., Supavititpatana, T. and Bell, A. E. (2015). Viscoelastic properties and physicochemical characteristics of pressurized ostrich-meat emulsions containing gum additives. Innov. Food Sci. Emerg. Technol. 32:64–69.
  • Cheah, P. B. and Ledward, D. A. (1996). High pressure effects on lipid oxidation in minced pork. Meat Sci. 43(2):123–134.
  • Chen, X., Chen, C. G., Zhou, Y. Z., Li, P. J., Ma, F., Nishiumi, T. and Suzuki, A. (2014a). Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan. Food Hydrocolloids. 40:262–272.
  • Chen, X., Li, P. J., Nishiumi, T., Takumi, H., Suzuki, A. and Chen, C. G. (2014b). Effects of high-pressure processing on the cooking loss and gel strength of chicken breast actomyosin containing sodium alginate. Food Bioprocess Technol. 7(12):3608–3617.
  • Chen, X., Li, Y., Zhou, R. Y., Liu, Z. M., Lu, F. Z., Lin, H., Xu, X. L. and Zhou, G. H. (2016a). L-histidine improves water retention of heat-induced gel of chicken breast myofibrillar proteins in low ionic strength solution. Int. J. Food Sci. Technol. 51(5):1195–1203.
  • Chen, X., Tume, R., Xu, X. L. and Zhou, G. H. (2017). Solubilization of myofibrillar proteins in water or low ionic strength media: classical techniques, basic principles and novel functionalities. Crit. Rev. Food Sci. 57(15):3260–3280.
  • Chen, X., Xu, X. L. and Zhou, G. H. (2016b). Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water. Innov. Food Sci. Emerg. Technol. 33:170–179.
  • Chung, Y. C., Gebrehiwot, A., Farkas, D. F. and Morrissey, M. T. (1994). Gelation of surimi by high hydrostatic pressure. J. Food Sci. 59(3):523–524.
  • Colmenero, F. J. (2002). Muscle protein gelation by combined use of high pressure/temperature. Trends Food Sci. Technol. 13(1):22–30.
  • Colmenero, F. J., Carballo, J., Fernández, P., Barreto, G. and Solas, M. T. (1997). High-pressure-induced changes in the characteristics of low-fat and high-fat sausages. J. Sci. Food Agric. 75(1):61–66.
  • Daigle, S. P., Schilling, M. W., Marriott, N. G., Wang, H., Barbeau, W. E. and Williams, R. C. (2005). PSE-like turkey breast enhancement through adjunct incorporation in a chunked and formed deli roll. Meat Sci. 69(2):319–324.
  • Davis, J. S. (1981). The influence of pressure on the self-assembly of the thick filament from the myosin of vertebrate skeletal muscle. Biochem. J. 197(2):301–308.
  • De Vries, J. (2007). The obesity epidemic: medical and ethical considerations. Sci. Eng. Ethics. 13(1):55–67.
  • Dickinson, E. (2012). Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids. 28(1):224–241.
  • Eom, S. H., Lee, S. H., Chun, Y. G., Kim, B. K. and Park, D. J. (2015). Texture softening of beef and chicken by enzyme injection process. Korean J. Food Sci. Anim. Resour. 35(4):486–493.
  • Fernández-Martín, F., Fernández, P., Carballo, J. and Jiménez Colmenero, F. (1997). Pressure/heat combinations on pork meat batters: protein thermal behavior and product rheological properties. J. Agric. Food Chem. 45(11):4440–4445.
  • Gordon, A. and Barbut, S. (1990). The role of the interfacial protein film in meat batter stabilization. Food Struct. 9(2):77–90.
  • Grossi, A., Olsen, K., Bolumar, T., Rinnan, Å., Øgendal, L. H. and Orlien, V. (2016). The effect of high pressure on the functional properties of pork myofibrillar proteins. Food Chem. 196:1005–1015.
  • Guo, T. Y., Xue, S. W., Zou, Y. F., Han, M. Y., Xu, X. L. and Zhou, G. H. (2017). Effect of sodium chloride on the properties of ready-to-eat pressure-induced gel-type chicken meat products. J. Food Process Eng. 40(1):e12299–e12310.
  • Hsieh, C. W., Lai, C. H., Hsieh, H. C. and Ko, W. C. (2009). Simultaneous application of hydrostatic pressure and microbial transglutaminase as pretreatment to improve the physicochemical properties of heat-induced gels from tilapia surimi paste. J. Food Drug Anal. 17(2):100–106.
  • Hsu, K. C., Hwang, J. S., Yu, C. C. and Jao, C. L. (2007). Changes in conformation and in sulfhydryl groups of actomyosin of tilapia (Orechromis niloticus) on hydrostatic pressure treatment. Food Chem. 103(2):560–564.
  • Hsu, K. C. and Ko, W. C. (2001). Effect of hydrostatic pressure on aggregation and viscoelastic properties of tilapia (Orechromis niloticus) myosin. J. Food Sci. 66(8):1158–1163.
  • Huff-Lonergan, E. and Lonergan, S. M. (2005). Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71(1):194–204.
  • Hwang, J.-S., Lai, K.-M. and Hsu, K.-C. (2007). Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting. Food Chem. 104(2):746–753.
  • Hygreeva, D. and Pandey, M. (2016). Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology-A review. Trends Food Sci. Technol. 54:175–185.
  • Ikeuchi, Y., Suzuki, A., Oota, T., Hagiwara, K., Tatsumi, R., Ito, T. and Balny, C. (2002). Fluorescence study of the high pressure-induced denaturation of skeletal muscle actin. Eur. J. Biochem. 269(1):364–371.
  • Ikeuchi, Y., Tanji, H., Kim, K. and Suzuki, A. (1992a). Dynamic rheological measurements on heat-induced pressurized actomyosin gels. J. Agric. Food Chem. 40(10):1751–1755.
  • Ikeuchi, Y., Tanji, H., Kim, K. and Suzuki, A. (1992b). Mechanism of heat-induced gelation of pressurized actomyosin: pressure-induced changes in actin and myosin in actomyosin. J. Agric. Food Chem. 40(10):1756–1761.
  • Inguglia, E. S., Zhang, Z., Tiwari, B. K., Kerry, J. P. and Burgess, C. M. (2017). Salt reduction strategies in processed meat products–A review. Trends Food Sci. Technol. 59:70–78.
  • Ishioroshi, M., Jima, K. S. and Yasui, T. (1979). Heat-induced gelation of myosin: factors of pH and salt concentrations. J. Food Sci. 44(5):1280–1284.
  • Ivanov, I. I., Bert, Y. N. and Lebedeva, N. A. (1960). Changes in some properties of myosin, actomyosin, and actin under the influence of high pressure. Biochem.-Moscow. 25(3):386–389.
  • Iwasaki, T., Noshiroya, K., Saitoh, N., Okano, K. and Yamamoto, K. (2006). Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chem. 95(3):474–483.
  • Iwasaki, T., Washio, M., Yamamoto, K. and Nakamura, K. (2005). Rheological and morphological comparison of thermal and hydrostatic pressure-induced filamentous myosin gels. J. Food Sci. 70(7):e432–e436.
  • Iwasaki, T. and Yamamoto, K. (2003). Changes in rabbit skeletal myosin and its subfragments under high hydrostatic pressure. Int. J. Biol. Macromol. 33(4):215–220.
  • Jiménz-Colmenero, F., Cofrades, S., Herrero, A. M., Solas, M. T. and Ruiz-Capillas, C. (2013). Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocolloids. 30(1):351–357.
  • Jiménz-Colmenero, F., Fernandez, P. and Carballo, J. (1998). High-pressure-cooked low-fat pork and chicken batters as affected by salt levels and cooking temperature. J. Food Sci. 63(4):656–659.
  • Ko, W. C., Hwang, J. S., Jao, C. L. and Hsu, K. C. (2004). Denaturation of tilapia myosin fragments by high hydrostatic pressure. J. Food Sci. 69(8):C604–C607.
  • Ko, W. C. (1996). Effect of high pressure on gelation of meat paste and inactivation of actomyosin Ca-ATPase prepared from milkfish. Fish. Sci. 62(1):101–104.
  • Lee, E. J., Kim, Y. J., Lee, N. H., Hong, S. I. and Yamamoto, K. (2007). Differences in properties of myofibrillar proteins from bovine semitendinosus muscle after hydrostatic pressure or heat treatment. J. Sci. Food Agric. 87(1):40–46.
  • Lee, S. H., Joo, S. T. and Ryu, Y. C. (2010). Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 86(1):166–170.
  • Li, K., Kang, Z. L., Zhao, Y. Y., Xu, X. L. and Zhou, G. H. (2014). Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food Bioprocess Technol. 7(12):3466–3477.
  • Liu, R., Zhao, S. M., Xiong, S. B., Xie, B. J. and Qin, L. H. (2008). Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 80(3):632–639.
  • Ma, F., Chen, C. G., Sun, G. J., Wang, W., Fang, H. M. and Han, Z. (2012). Effects of high pressure and CaCl2 on properties of salt-soluble meat protein gels containing locust bean gum. Innov. Food Sci. Emerg. Technol. 14:31–37.
  • Ma, F., Chen, C. G., Zheng, L., Zhou, C. L., Cai, K. Z. and Han, Z. (2013). Effect of high pressure processing on the gel properties of salt-soluble meat protein containing CaCl2 and κ-carrageenan. Meat Sci. 95(1):22–26.
  • Ma, H. J. and Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Sci. 68(3):347–355.
  • Macfarlane, J. J. (1974). Pressure-induced solubilization of meat proteins in saline solution. J. Food Sci. 39(3):542–547.
  • Macfarlane, J. J. (1985). High pressure technology and meat quality. Devel. Meat Sci. 3:155–184.
  • Macfarlane, J. J. and McKenzie, I. J. (1976). Pressure-induced solubilization of myofibrillar proteins. J. Food Sci. 41(6):1442–1446.
  • Macfarlane, J. J., McKenzie, I. J., Turner, R. H. and Jones, P. N. (1984). Binding of comminuted meat: effect of high pressure. Meat Sci. 10(4):307–320.
  • Marcos, B. and Mullen, A. M. (2014). High pressure induced changes in beef muscle proteome: Correlation with quality parameters. Meat Sci. 97(1):11–20.
  • Matak, K. E., Tahergorabi, R. and Jaczynski, J. (2015). A review: Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods. Food Res. Int. 77:697–703.
  • Menéndez, O., Rawel, H., Schwarzenbolz, U. and Henle, T. (2006). Structural changes of microbial transglutaminase during thermal and high-pressure treatment. J. Agric. Food Chem. 54(5):1716–1721.
  • Montero, P., Pérez-Mateos, M. and Solas, T. (1997). Comparison of different gelation methods using washed sardine (Sardina pilchardus) mince: effects of temperature and pressure. J. Agric. Food Chem. 45(12):4612–4618.
  • Mor-Mur, M. and Yuste, J. (2003). High pressure processing applied to cooked sausage manufacture: physical properties and sensory analysis. Meat Sci. 65(3):1187–1191.
  • Morild, E. (1981). The theory of pressure effects on enzymes. Adv.Protein Chem. 34:93–166.
  • Nayak, R., Kenney, P. B. and Slider, S. (1996). Protein extractability of turkey breast and thigh muscle with varying sodium chloride solutions as affected by calcium, magnesium and zinc chloride. J. Food Sci. 61(6):1149–1154.
  • O'Flynn, C., Cruz-Romero, M., Troy, D., Mullen, A. and Kerry, J. (2014a). The application of high-pressure treatment in the reduction of phosphate levels in breakfast sausages. Meat Sci. 96(1):633–639.
  • O'Flynn, C. C., Cruz-Romero, M. C., Troy, D., Mullen, A. M. and Kerry, J. P. (2014b). The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages. Meat Sci. 96(3):1266–1274.
  • O'shea, J. M., Horgan, D. J. and JMacfarlane, J. (1976). Some effects of pressure treatment on actomyosin systems. Aust. J. Biol. Sci. 29(3):197–208.
  • Omana, D. A., Plastow, G. and Betti, M. (2011). The use of β-glucan as a partial salt replacer in high pressure processed chicken breast meat. Food Chem. 129(3):768–776.
  • Pérez-Mateos, M. and Montero, P. (1997). High-pressure-induced gel of sardine (sardina pilchardus) washed mince as affected by pressure-time-temperature. J. Food Sci. 62(6):1183–1188.
  • Pauling, L. (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell university press, Ithaca, New York.
  • Pearce, K. L., Rosenvold, K., Andersen, H. J. and Hopkins, D. L. (2011). Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 89(2):111–124.
  • Qiu, C. J., Xia, W. S. and Jiang, Q. X. (2014). Pressure-induced changes of silver carp (Hypophthalmichthys molitrix) myofibrillar protein structure. Eur. Food Res. Technol. 238(5):753–761.
  • Ritz, E., Hahn, K., Ketteler, M., Kuhlmann, M. K. and Mann, J. (2012). Phosphate additives in food-a health risk. Dtsch. Arztebl. Int. 109(4):49–55.
  • Ruusunen, M., Vainionpää, J., Lyly, M., Lähteenmäki, L., Niemistö, M., Ahvenainen, R. and Puolanne, E. (2005). Reducing the sodium content in meat products: the effect of the formulation in low-sodium ground meat patties. Meat Sci. 69(1):53–60.
  • Samejima, K., Ishioroshi, M. and Yasui, T. (1981). Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J. Food Sci. 46(5):1412–1418.
  • Sano, T., Noguchi, S. F., Matsumoto, J. J. and Tsuchiya, T. (1989a). Dynamic viscoelastic behavior of F-actin on heating. J. Food Sci. 54(1):231–232.
  • Sano, T., Noguchi, S. F., Matsumoto, J. J. and Tsuchiya, T. (1989b). Role of F-actin in thermal gelation of fish actomyosin. J. Food Sci. 54(4):800–804.
  • Santhi, D., Kalaikannan, A., Malairaj, P. and Arun Prabhu, S. (2017a). Application of microbial transglutaminase in meat foods: A review. Crit. Rev. Food Sci. 57(10):2071–2076.
  • Santhi, D., Kalaikannan, A. and Sureshkumar, S. (2017b). Factors influencing meat emulsion properties and product texture: a review. Crit. Rev. Food Sci. 57(10):2021–2027.
  • Sikes, A. L., Tobin, A. B. and Tume, R. K. (2009). Use of high pressure to reduce cook loss and improve texture of low-salt beef sausage batters. Innov. Food Sci. Emerg. Technol. 10(4):405–412.
  • Simonin, H., Duranton, F. and De Lamballerie, M. (2012). New insights into the high-pressure processing of meat and meat products. Compr. Rev. Food Sci. F. 11(3):285–306.
  • Sinard, J. H., Stafford, W. F. and Pollard, T. D. (1989). The mechanism of assembly of acanthamoeba myosin-II minifilaments: minifilaments assemble by three successive dimerization steps. J. Cell Biol. 109(4):1537–1547.
  • Smith, D. M. (2001). Functional properties of muscle proteins in processed poultry products. In: Poultry Meat Processing, pp. 181–194. Sams, A.R., Eds., Taylor & Francis Group, Boca Raton, FL.
  • Speroni, F., Szerman, N. and Vaudagna, S. (2014). High hydrostatic pressure processing of beef patties: Effects of pressure level and sodium tripolyphosphate and sodium chloride concentrations on thermal and aggregative properties of proteins. Innov. Food Sci. Emerg. Technol. 23:10–17.
  • Strazzullo, P., D'Elia, L., Kandala, N. B. and Cappuccio, F. P. (2009). Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ-Brit. Med. J. 339:b4567–b4576.
  • Sun, X. D. and Holley, R. A. (2010). High hydrostatic pressure effects on the texture of meat and meat products. J. Food Sci. 75(1):R17–R23.
  • Sun, X. D. and Holley, R. A. (2011). Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. F. 10(1):33–51.
  • Suzuki, T. and Macfarlane, J. J. (1984). Modification of the heat-setting characteristics of myosin by pressure treatment. Meat Sci. 11(4):263–274.
  • Tahergorabi, R. and Jaczynski, J. (2012). Physicochemical changes in surimi with salt substitute. Food Chem. 132(3):1281–1286.
  • Tintchev, F., Bindrich, U., Toepfl, S., Strijowski, U., Heinz, V. and Knorr, D. (2013). High hydrostatic pressure/temperature modeling of frankfurter batters. Meat Sci. 94(3):376–387.
  • Tokifuji, A., Matsushima, Y., Hachisuka, K. and Yoshioka, K. (2013). Texture, sensory and swallowing characteristics of high-pressure-heat-treated pork meat gel as a dysphagia diet. Meat Sci. 93(4):843–848.
  • Totosaus, A. and Pérez-Chabela, M. L. (2009). Textural properties and microstructure of low-fat and sodium-reduced meat batters formulated with gellan gum and dicationic salts. LWT-Food Sci. Technol. 42(2):563–569.
  • Trespalacios, P. and Pla, R. (2007a). Simultaneous application of transglutaminase and high pressure to improve functional properties of chicken meat gels. Food Chem. 100(1):264–272.
  • Trespalacios, P. and Pla, R. (2007b). Synergistic action of transglutaminase and high pressure on chicken meat and egg gels in absence of phosphates. Food Chem. 104(4):1718–1727.
  • Trespalacios, P. and Pla, R. (2009). Development of low-fat chicken meat and dried egg white gels by high pressure. High Pressure Res. 29(1):150–161.
  • Truong, B. Q., Buckow, R., Nguyen, M. H. and Furst, J. (2017). Gelation of barramundi (Lates calcarifer) minced muscle as affected by pressure and thermal treatments at low salt concentration. J. Sci. Food Agric. 97(11):3781–3789. doi: 10.1002/jsfa.8242.
  • Uresti, R. M., Velazquez, G., Vázquez, M., Ramírez, J. A. and Torres, J. A. (2006). Effects of combining microbial transglutaminase and high pressure processing treatments on the mechanical properties of heat-induced gels prepared from arrowtooth flounder (Atheresthes stomias). Food Chem. 94(2):202–209.
  • Villamonte, G., Jury, V., Jung, S. and de Lamballerie, M. (2015). Influence of xanthan gum on the structural characteristics of myofibrillar proteins treated by high pressure. J. Food Sci. 80(3):C522–C531.
  • Villamonte, G., Simonin, H., Duranton, F., Chéret, R. and De Lamballerie, M. (2013). Functionality of pork meat proteins: Impact of sodium chloride and phosphates under high-pressure processing. Innov. Food Sci. Emerg. Technol. 18:15–23.
  • Wang, M. Y., Chen, X., Zou, Y. F., Chen, H. Q., Xue, S. W., Qian, C., Wang, P., Xu, X. L. and Zhou, G. H. (2017). High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel. Int. J. Food Sci. Technol. 52(3):724–732.
  • Xiong, Y. L. (1994). Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. 34(3):293–320.
  • Xiong, Y. L. (1997). Structure-functionality relationships of muscle proteins. In: Food Proteins and Their Applications, pp. 341–392. Damoradan, S. and Paraf, A., Eds., Marcel Dekker, Inc., New York.
  • Xiong, Y. L., Noel, D. C. and Moody, W. G. (1999). Textural and sensory properties of low-fat beef sausages with added water and polysaccharides as affected by pH and salt. J. Food Sci. 64(3):550–554.
  • Xue, S. W., Yang, H. J., Liu, R., Qian, C., Wang, M. Y., Zou, Y. F., Xu, X. L. and Zhou, G. H. (2017). Applications of high pressure to pre-rigor rabbit muscles affect the functional properties associated with heat-induced gelation. Meat Sci. 129:176–184.
  • Xue, S. W., Zou, Y. F., Chen, X., Yang, H. J., Xing, T., Xu, X. L. and Zhou, G. H. (2016). Effects of sodium tripolyphosphate on functional properties of low-salt single-step high-pressure processed chicken breast sausage. Int. J. Food Sci. Technol. 51(9):2106–2113.
  • Yamamoto, K., Hayashi, S. and Yasui, T. (1993). Hydrostatic pressure-induced aggregation of myosin molecules in 0.5 M KCl at pH 6.0. Biosci. Biotechnol. Biochem. 57(3):383–389.
  • Yamamoto, K., Miura, T. and Yasui, T. (1990). Gelatin of myosin filament under high hydrostatic pressure. Food Struct. 9(4):269–277.
  • Yamamoto, K., Yoshida, T. and Iwasaki, T. (2002). Hydrostatic pressure-induced solubilization and gelation of chicken myofibrils. Prog. Biotechnol. 19:461–468.
  • Yang, H. J., Han, M. Y., Bai, Y., Han, Y. Q., Xu, X. L. and Zhou, G. H. (2015a). High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages. Meat Sci. 102:69–78.
  • Yang, H. J., Han, M. Y., Wang, X., Han, Y. Q., Wu, J. Q., Xu, X. L. and Zhou, G. H. (2015b). Effect of high pressure on cooking losses and functional properties of reduced-fat and reduced-salt pork sausage emulsions. Innov. Food Sci. Emerg. Technol. 29:125–133.
  • Yang, J. and Powers, J. R. (2016). Effects of high pressure on food proteins. In: High Pressure Processing of Food, pp. 353–389. Balasubramaniam, V.M., Barbosa-Cánovas, G.V. and Lelieveld, H.L.M., Eds., Springer-Verlag, New York.
  • Yasui, T., Ishioroshi, M. and Samejima, K. (1980). Heat-induced gelation of myosin in the presence of actin. J. Food Biochem. 4(2):61–78.
  • Yoshioka, K., Yamamoto, A., Matsushima, Y., Hachisuka, K. and Ikeuchi, Y. (2016). Effects of high pressure on the textural and sensory properties of minced fish meat gels for the dysphagia diet. Food Nutr Sci. 7(09):732–742.
  • Yuste, J., Pla, R., Capellas, M., Ponce, E. and Mor-Mur, M. (2000). High-pressure processing applied to cooked sausages: bacterial populations during chilled storage. J Food Prot. 63(8):1093–1099.
  • Zhang, L. and Barbut, S. (2005). Effects of regular and modified starches on cooked pale, soft, and exudative; normal; and dry, firm, and dark breast meat batters. Poult. Sci. 84(5):789–796.
  • Zhang, Z. Y., Yang, Y. L., Tang, X. Z., Chen, Y. J. and You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chem. 188:111–118.
  • Zhang, Z. Y., Yang, Y. L., Zhou, P., Zhang, X. and Wang, J. Y. (2017). Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 217:678–686.
  • Zhao, X., Chen, X., Han, M. Y., Qian, C., Xu, X. L. and Zhou, G. H. (2016). Application of isoelectric solubilization/precipitation processing to improve gelation properties of protein isolated from pale, soft, exudative (PSE)-like chicken breast meat. LWT-Food Sci. Technol. 72:141–148.
  • Zheng, H. B., Xiong, G. Y., Han, M. Y., Deng, S. L., Xu, X. L. and Zhou, G. H. (2015). High pressure/thermal combinations on texture and water holding capacity of chicken batters. Innov. Food Sci. Emerg. Technol. 30:8–14.
  • Zhou, A. M., Lin, L. Y., Liang, Y., Benjakul, S., Shi, X. L. and Liu, X. (2014). Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure. Food Chem. 156:402–407.
  • Zhu, Z. W., Lanier, T. C. and Farkas, B. E. (2015). High pressure effects on heat-induced gelation of threadfin bream (Nemipterus spp.) surimi. J. Food Eng. 146:23–27.
  • Zhu, Z. W., Lanier, T. C., Farkas, B. E. and Li, B. (2014). Transglutaminase and high pressure effects on heat-induced gelation of Alaska pollock (Theragra chalcogramma) surimi. J. Food Eng. 131:154–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.