1,077
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Nutritional biomarkers: Current view and future perspectives

, , , &

References

  • Alp Ikizler, T. (2012). The use and misuse of serum albumin as a nutritional marker in kidney disease. Clin. J. Am. Soc. Nephrol. 7:1375–1377.
  • Andersen, H. U., Fey, S. J., Larsen, P. M., Nawrocki, A., Hejnaes, K. R., Mandrup–Poulsen, T. and Nerup, J. (1997). Interleukin-1 beta induced changes in the protein expression of rat islets: A computerised database. Electrophoresis 18:2091–2103.
  • Bajoub, A., Bendini, A., Fernández–gutiÉrrez, A. and Carrasco–Pancorbo, A. (2016). Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment– a review. Crit. Rev. Food Sci. Nutr. Doi:10.1080/10408398.2016.1225666.
  • Banh, L. (2006). Serum proteins as markers of nutrition: What are we treating? Prac. Gastroenterol. 46:46–64.
  • Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V, Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., Sinclair, D. A. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342.
  • Bayram, B., Ozcelik, B. S., Grimm Roeder, T., Schrader, C., Ernst, I. M., Wagner, A. E., Grune, T., Frank, J. and Rimbach, G. (2012). A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2–dependent gene expression. Rejuvenation Res. 15:71–81.
  • Beck, F. K. and Rosenthal, T. C. (2002). Prealbumin: A marker for nutritional evaluation. Am. Fam. Physician 65:1575–1578.
  • Bell, E. L., Emerling, B. M., Ricoult, S. J. H. and Guarente, L. (2011). SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30:2986–2996.
  • Bordone, L. and Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat. Rev. Mol. Cell Biol. 6:298–305.
  • Borra, M. T., Smith, B. C. and Denu, J. M. (2005). Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280:17187–17195.
  • Borra, M. T. and Denu, J. M. (2004). Quantitative assays for characterization of the Sir2 family of NAD +-dependent deacetylases. Methods Enzymol. 376:171–187.
  • Bradbury, C. A., Khanim, F. L., Hayden, R., Bunce, C. M., White, D. A, Drayson, M. T., Craddock, C. and Turner, B. M. (2005). Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19:1751–1759.
  • Brooks, C. L. and Gu, W. (2010). How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer 9:123–128.
  • Budayeva, H. G., Rowland, E. A. and Cristea, I. M. (2016). Intricate roles of mammalian sirtuins in defense against viral pathogens. J. Virol. 90:5–8.
  • Calabrese, V., Cornelius, C., Leso, V., Trovato-Salinaro, A., Ventimiglia, B., Cavallaro, M., Scuto, M., Rizza, S., Zanoli, L., Neri, S. and Castellino, P. (2012). Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim. Biophys. Acta 1822:729–36.
  • Castro, R. E., Ferreira, D. M. S., Afonso, M. B., Borralho, P. M., MacHado, M. V., Cortez-Pinto, H. and Rodrigues, C. M. P. (2013). MiR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J. Hepatol. 58:119–125.
  • Chalkiadaki, A. and Guarente, L. (2012). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8:287–296.
  • Chong, Z. Z. and Maiese, K. (2008). Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways. Curr. Neurovasc. Res. 5:159–70.
  • Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. and Mann, M. (2014). The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15:536–550.
  • Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G. and Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 23:2812–2817.
  • Combs, G. F., Trumbo, P. R., Mckinley, M. C., Milner, J., Studenski, S., Kimura, T., Watkin, S. M. and Raiten, D. J. (2013). Biomarkers in nutrition: New frontiers in research and application. Ann. NY. Acad. Sci. 1278:1–10.
  • de Roos, B. and McArdle, H. J. (2008). Proteomics as a tool for the modelling of biological processes and biomarker development in nutrition research. Br. J. Nutr. 99:66–71.
  • Dang, W., Steffen, K. K., Perry, R., Dorsey, J. A., Johnson, F. B., Shilatifard, A., Kaeberlein, M., Kennedy, B. K. and Berger, S. L. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 459:802–807.
  • Dominy, J. E. Jr, Lee, Y., Gerhart–Hines, Z. and Puigserver, P. (2010). Nutrient–dependent regulation of PGC–1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 1804:1676–1683.
  • Don, B. R. and Kaysen, G. (2004). Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 17:432–437.
  • Erion, D. M., Yonemitsu, S., Nie, Y., Nagai, Y., Gillum, M. P., Hsiao, J. J., Iwasaki, T., Stark, R., Weismann, D., Yu, X. X., Murray, S. F., Bhanot, S., Monia, B. P., Horvath, T. L., Gao, Q., Samuel, V. T. and Shulman, G. I. (2009). SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc. Natl. Acad. Sci. U. S. A. 106:11288–11293.
  • Fan, Y., Ludewig, R. and Scriba, G. K. E. (2009). 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes. Anal. Biochem. 387:243–248.
  • Ferguson, L. R. (2001). Role of plant polyphenols in genomic stability. Mutat. Res. 18:89–111.
  • Finley, L. W. S., Carracedo, A., Lee, J., Souza, A., Egia, A., Zhang, J., Teruya-Feldstein, J., Moreira, P. I., Cardoso, S. M., Clish, C. B., Pandolfi, P. P. and Haigis, M. C. (2011). SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19:416–428.
  • Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I. and Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20:1075–1080.
  • Frye, R. A. (1999). Characterization of five human cDNAs with homology to the yeast SIR2 gene. Biochem. Biophys. Res. Commum. 260:273–279.
  • Frye, R. A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2–like proteins. Biochem. Biophys. Res. Commun. 273:793–798.
  • Fuchs, D., Winkelmann, I., Johnson, I. T., Mariman, E., Wenzel, U. and Daniel, H. (2005). Proteomics in nutrition research: Principles, technologies and applications. Br. J. Nutr. 94:302–314.
  • Gambini, J., Gomez-Cabrera, M. C., Borras, C., Valles, S. L., Lopez-Grueso, R., Martinez-Bello, V. E., Herranz, D., Pallardo, F. V., Tresguerres, J. A. F., Serrano, M. and Viña, J. (2011). Free [NADH]/[NAD+] regulates sirtuin expression. Arch. Biochem. Biophys. 512:24–29.
  • Gertz, M. and Steegborn, C. (2010). Function and regulation of the mitochondrial Sirtuin isoform Sirt5 in Mammalia. Biochim. Biophys. Acta 1804:1658–1665.
  • Gibson, R. S. (2005). Measuring food composition in individuals In: Principles of Nutritional Assessment, pp. 41–64. Gibson, R. S., Eds., 2nd edition, Oxford University Press, New York.
  • Grabowska, W., Suszek, M., Wnuk, M., Lewinska, A., Wasiak, E., Sikora, E. and Bielak–Zmijewska, A. (2016). Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature. Oncotarget. 7, Doi: 10.18632/oncotarget8450.
  • Grbesa, I., Pajares, M. J., Martínez-Terroba, E., Agorreta, J., Mikecin, A. M., Larráyoz, M., Idoate, M. A., Gall-Troselj, K., Pio, R. and Montuenga, L. M. (2015). Expression of sirtuin 1 and 2 is associated with poor prognosis in non-small cell lung cancer patients. PLoS One 10:1–17.
  • Greiss, S. and Gartner, A. (2009). Sirtuin/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells 28:407–415.
  • Guarente, L. (2000). Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021–1026.
  • Guarente, L. (2006). Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874.
  • Guarente, L. (2014). Linking DNA damage, NAD+/SIRT1, and aging. Cell Metab. 20:706–707.
  • Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y. and Aebersold, R. (2000). Evaluation of two-dimensional gel electrophoresis based proteome analysis technology. Proc. Natl. Acad. Sci. U. S. A. 97:9390–9395.
  • Hafner, A. V., Dai, J., Gomes, A. P., Xiao, C. Y., Palmeira, K. C. M., Rosenzweig, A. and Sinclair, D. A. (2010). Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany. NY). 2:914–923.
  • Hagopian, K., Ramsey, J. J. and Weindruch, B. (2009). Caloric restriction counteracts age–related changes in the activities of sorbitol metabolizing enzymes from mouse liver. Biogerontology 10:471–479.
  • Haigis, M. C. and Sinclair, D. A. (2010). Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. 5:253–295.
  • Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W. and Guarente, L. (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954.
  • Harikumar, K. B. and Aggarwal, B. B. (2008). Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 7:1020–1037.
  • Hasegawa, K., Wakino, S., Yoshioka, K., Tatematsu, S., Hara, Y., Minakuchi, H., Washida, N., Tokuyama, H., Hayashi, K. and Itoh, H. (2008). Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun. 372:51–56.
  • Hauffman, D. M., Grizzle, W. E., Bamman, M. M., Kim, J. S., Eltoum, I. A., Elgavish, A. and Nagy, T. R. (2007). SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 67:6612–6618.
  • Hedrick, V. E., Dietrich, A. M., Estabrooks, P. A., Savla, J., Serrano, E. and Davy, B. M. (2012). Dietary biomarkers: Advances, limitations and future directions. Nutr. J. 11:109–113.
  • Heltweg, B., Dequiedt, F., Verdin, E. and Jung, M. (2003). Nonisotopic substrate for assaying both human zinc and NAD+-dependent histone deacetylases. Anal. Biochem. 319:42–48.
  • Herranz, D. and Serrano, M. (2013). Sirt1: Recent lessons from mouse models. Nat. Rev. Cancer 10:819–823.
  • Herranz, D., Muñoz-Martin, M., Cañamero, M., Mulero, F., Martinez-Pastor, B., Fernandez-Capetillo, O. and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1:3.
  • Hirschey, M. D., Shimazu, T., Capra, J. A., Pollard, K. S. and Verdin, E. (2011). SIRT1 and SIRT3 deacetylate homologous substrates. Aging 3:635–642.
  • Hishida, T., Nozaki, Y., Nakachi, Y., Mizuno, Y., Iseki, H., Katano, M., Kamon, M., Hirasaki, M., Nishimoto, M., Okazaki, Y. and Okuda, A. (2012). Sirt1, p53, and p38MAPK are crucial regulators of detrimental phenotypes of embryonic stem cells with Max expression ablation. Stem Cells 30:1634–1644.
  • Hochberg, I. and Hochberg, Z. (2009). Hypothalamic obesity. Endocrine Dev. 17:185–196.
  • Hou, X., Xu, S., Maitland-Toolan, K. A., Sato, K., Jiang, B., Ido, Y., Lan, F., Walsh, K., Wierzbicki, M., Verbeuren, T. J., Cohen, R. A. and Zang, M. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283:20015–20026.
  • Howitz, K., Bitterman, J. and Cohen, H. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196.
  • Hulka, B. S. (1993). Overview of biological markers In: Biological Markers in Epidemiology, pp. 3–15. Hulka, B. S., Wilcosky, T. C., and Griffin, J. D., Eds., Oxford University Press, New york.
  • Kaaks, R., Riboli, E. and Sinha, R. (1997). Biochemical markers of dietary intake In: Application of Biomarkers in Cancer Epidemiology, pp. 103–126. Toniolo, P., Boffetta, P, Shuker, D. E. G., Rothman, N., Hulka, B. and Pearce, N., Eds., IARC Scientific Publications No. 142, International Agency for Research on Cancer, Lyons, France.
  • Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., Westman, E. A., Caldwell, S. D., Napper, A., Curtis, R., DiStefano, P. S., Fields, S., Bedalov, A. and Kennedy, B. K. (2005). Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280:17038–17045.
  • Kaidi, A., Weinert, B. T., Choudhary, C. and Jackson, S. P. (2010). Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348–1353.
  • Kanfi, Y., Shalman, R., Peshti, V., Pilosof, S. N., Gozlan, Y. M., Pearson, K. J., Lerrer, B., Moazed, D., Marine, J. C., de Cabo, R. and Cohen, H. Y. (2008). Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett. 582:543–548.
  • Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z. and Cohen, H. Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221.
  • Kawahara, T. L., Michishita, E., Adler, A. S., Damian, M., Berber, E., Lin, M., McCord, R. A., Ongaigui, K. C., Boxer, L. D., Chang, H. Y. and Chua, K. F. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74.
  • Kennedy, B. K., Gotta, M., Sinclair, D. A., Mills, K, David, S. M., Mala, M., Pak, S. M., Laroche, T., Gasser, S. M. and Guarenteet, L. (1997). Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391.
  • Koyuncu, E., Budayeva, H. G., Miteva, Y. V., Ricci, D. P., Silhavy, T. J., Shenk, T. and Cristea, I. M. (2014). Sirtuins are evolutionarily conserved viral restriction factors. MBio 5:1–10.
  • Kuhnle, G. G. C. (2012). Nutritional biomarkers for objective dietary assessment. J. Sci. Food Agric. 92:1145–1149.
  • Kume, S., Uzu, T., Kashiwagi, A. and Koya, D. (2010). SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications. Endocr. Metab. Immune Disord. Drug Targets 10:16–24.
  • Kuzuya, M., Izawa, S., Enoki, H., Okada, K. and Iguchi, A. (2007). Is serum albumin a good marker for malnutrition in the physically impaired elderly? Clin. Nutr. 26:84–90.
  • Laurent, G., de Boer, V. C. J., Finley, L. W. S., Sweeney, M., Lu, H., Schug, T. T., Cen, Y., Jeong, S. M., Li, X., Sauve, A. A. and Haigis, M. C. (2013). SIRT4 represses peroxisome proliferator-activated receptor activity to suppress hepatic fat oxidation. Mol. Cell. Biol. 33:4552–4561.
  • Li, X. (2013). SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin. 45:51–60.
  • Li, X. and Kazgan, N. (2011). Mammalian sirtuins and energy metabolism. Int. J. Biol. Sci. 7:575–587.
  • Li, Y., Xu, R., Zhang, X. M., Li, D. D. and He, Q. Y. (2008). Mechanism of apoptosis induced by SIRT1 deacetylase inhibitors in human breast cancer MCF–7 drug–resistant cells. Yao Xue Xue Bao 43:1003–1010.
  • Liu, T. F., Vachharajani, V. T., Yoza, B. K. and McCall, C. E. (2012). NAD+ -dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287:25758–25769.
  • Liu, Y., Gerber, R., Wu, J., Tsuruda, T., McCarter, J. D. (2008). High-throughput assays for sirtuin enzymes: A microfluidic mobility shift assay and a bioluminescence assay. Anal. Biochem. 378:53–59.
  • Lomb, D. J., Laurent, G. and Haigis, M. C. (2010). Sirtuins regulate key aspects of lipid metabolism. Biochim. Biophys. Acta 1804:1652–1657.
  • Lundby, C. and Olsen, J. V. (2012). Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2:419–431.
  • Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–48.
  • Maiese, K., Chong, Z. Z., Shang, Y. C. and Hou, J. (2009). A “FOXO” in sight: Targeting Foxo proteins from conception to cancer. Med. Res. Rev. 29:395–418.
  • Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A. and Gorbunova, V. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–1446.
  • Marcotte, P. A., Richardson, P. R., Guo, J., Barrett, L. W., Xu, N., Gunasekera, A. and Glaser, K. B. (2004). Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal. Biochem. 332:90–99.
  • Martínez-Redondo, P. and Vaquero, A. (2013). The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4:148–63.
  • McDonagh, T., Hixon, J., DiStefano, P. S., Curtis, R. and Napper, A. D. (2005). Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin. Methods 36:346–350.
  • Menendez, J. A., Joven, J., Aragonès, G., Barrajón-Catalán, E., Beltrán-Debón, R., Borrás-Linares, I., Camps, J., Corominas-Faja, B., Cufí, S., Fernández-Arroyo, S., Garcia-Heredia, A., Hernández-Aguilera, A., Herranz-López, M., Jiménez-Sánchez, C., López-Bonet, E., Lozano-Sánchez, J., Luciano-Mateo, F., Martin-Castillo, B., Martin-Paredero, V., Pérez-Sánchez, A., Oliveras-Ferraros, C., Riera-Borrull, M., Rodríguez-Gallego, E., Quirantes-Piné, R., Rull, A., Tomás-Menor, L., Vazquez-Martin, A., Alonso-Villaverde, C., Micol, V. and Segura-Carretero, A. (2013). Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: A new family of gerosuppressant agents. Cell Cycle 12:555–578.
  • Michan, S. and Sinclair, D. (2007). Sirtuins in mammals: Insights into their biological function. Biochem. J. 15(404):1–13.
  • Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla‐Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T. L., Barrett, J. C., Chang, H. Y. Bohr, Y. A. and Ried, T. (2005b). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496.
  • Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T. L. A., Barrett, J. C., Chang, H. Y., Bohr, V. A., Ried, T., Gozani, O. and Chua, K. F. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496.
  • Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. and Horikawa, I. (2005a). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16:4623–4635.
  • Miroslava, C. and Adrian, S. C. (2014). Role of histone deacetylases in fungal phytopathogenesis: A review. Int. J. Modern Botany 4:48–60.
  • Mischak, H., Allmaier, G., Apweiler, R., Attwood, T., Baumann, M., Benigni, A., Bennett, S. E., Bischoff, R., Bongcam-Rudloff, E., Capasso, G., Coon, J. J., D'Haese, P., Dominiczak, A. F., Dakna, M., Dihazi, H., Ehrich, J. H., Fernandez-Llama, P., Fliser, D., Frokiaer, J., Garin, J., Girolami, M., Hancock, W. S., Haubitz, M., Hochstrasser, D., Holman, R. R., Ioannidis, J. P. A., Jankowski, J., Julian, B. A., Klein, J. B., Kolch, W., Luider, T., Massy, Z., Mattes, W. B., Molina, F., Monsarrat, B., Novak, J., Peter, K., Rossing, P., Sánchez-Carbayo, M., Schanstra, J. P., Semmes, O. J., Spasovski, G., Theodorescu, D., Thongboonkerd, V., Vanholder, R., Veenstra, T. D., Weissinger, E., Yamamoto, T. and Vlahou, A. (2010). Recommendations for biomarker identification and qualification in clinical proteomics. Sci. Transl. Med. 2:42–45.
  • Morris, B. J. (2013). Seven sirtuins for seven deadly diseases ofaging. Free Radic. Biol. Med. 56:133–171.
  • Morselli, E., Maiuri, M. C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S. a, Vitale, I., Michaud, M., Madeo, F., Tavernarakis, N. and Kroemer, G. (2010). Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 21:1–11.
  • Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fisher, M. R., Gellon, L., Liu, P., Mostoslavsky, G., Franco, S. and Murphy, M. M. (2006). Cell 124:315–329.
  • Muller, P. A. J. and Vousden, K. H. (2013). p53 mutations in cancer. Nat. Cell Biol. 15:2–8.
  • Nadtochiy, S. M., Urciuoli, W., Zhang, J., Schafer, X., Munger, J. and Brookes, P. S. (2015). Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. J. Mol. Cell. Cardiol. 88:64–72.
  • Nakagawa, T., Lomb, D. J., Haigis, M. C. and Guarente, L. (2009). SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570.
  • Nasrin, N., Wu, X., Fortier, E., Feng, Y., Baré, O. C., Chen, S., Ren, X., Wu, Z., Streeper, R. S. and Bordone, L. (2010). SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 285:31995–32002.
  • Nemoto, S., Fergusson, M. M. and Finkel, T. (2004). Nutrient availability regulates SIRT1 through a fork head dependent pathway. Science 306:2105–2108.
  • Nemoto, S., Fergusson, M. M. and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280(16):16456–16460.
  • Nie, Y., Erion, D., Yuan, Z., Dietrich, M., Shulman, G., Horvath, T. and Gao, Q. (2009). STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell. Biol. 11:492–500.
  • Nikiforov, A., Kulikova, V. and Ziegler, M. (2015). The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 50:284–297.
  • Nogueiras, R., Habegger, K. M., Chaudhary, N., Finan, B., Banks, A. S., Dietrich, M. O., Horvath, T. L., Sinclair, D. A., Pfluger, P. T. and Tschop, M. H. (2012). Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev. 92:1479–1514.
  • North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. and Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11:437–444.
  • North, B. J. and Verdin, E. (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome biol. 5(5):224.
  • Oellerich, M. F. and Potente, M. (2012). FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ. Res. 110:1238–1251.
  • Osborne, T. F. and Espenshade, P. J. (2009). Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it's been. Genes Dev. 23:2578–2591.
  • Pagans, S., Pedal, A., North, B. J., Kaehlcke, K., Marshall, B. L., Dorr, A., Hetzer-Egger, C., Henklein, P., Frye, R., McBurney, M. W., Hruby, H., Jung, M., Verdin, E. and Ott, M. (2005). SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3:0210–0220.
  • Pallàs, M., Pizarro, J. G., Gutierrez-Cuesta, J., Crespo-Biel, N., Alvira, D., Tajes, M., Yeste-Velasco, M., Folch, J., Canudas, A. M., Sureda, F. X., Ferrer, I. and Camins, A. (2008). Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154:1388–1397.
  • Pallauf, K., Giller, K., Huebbe, P. and Rimbach, G. (2013). Nutrition and healthy ageing: Calorie restriction or polyphenol-rich “mediterrAsian” diet? Oxid. Med. Cell. Longev. 2013:14–28.
  • Pande, S. and Srinivasan, K. (2012). Potentiation of hypolipidemic and weight–reducing influence of dietary tender cluster bean (Cyamopsis tetragonoloba) when combined with capsaicin in high–fat–fed rats. J. Agri. Food Chem. 60:8155–8162.
  • Pande, S. and Srinivasan, K. (2013). Protective effect of dietary tender cluster beans (Cyamopsis tetragonoloba) in the gastrointestinal tract of experimental rats. Appl. Physiol. Nutr. Metab. 38:169–176.
  • Pérez, V. I., Bokov, A., Remmen, H. Van, Mele, J., Ran, Q., Ikeno, Y. and Richardson, A. (2009). Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790:1005–1014.
  • Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. and Tschop, M. H. (2008). Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U. S. A. 105:9793–9798.
  • Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W. and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776.
  • Ponugoti, B., Kim, D. H., Xiao, Z., Smith, Z., Miao, J., Zang, M., Wu, S. Y., Chiang, C. M., Veenstra, T. D. and Kemper, J. K. (2010). SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285:33959–33970.
  • Potischman, N. (2003). Biologic and methodologic issues for nutritional biomarkers. J. Nutr. 133:875S–880S.
  • Priyanka, A., Solanki, V., Parkesh, R. and Thakur, K. G. (2016). Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture. Proteins Struct. Funct. Bioinforma. 1–6. Doi:10.1002/prot.25085
  • Prozorovski, T., Schulze-Topphoff, U., Glumm, R., Baumgart, J., Schröter, F., Ninnemann, O., Siegert, E., Bendix, I., Brüstle, O., Nitsch, R., Zipp, F. and Aktas, O. (2008). Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 10:385–94.
  • Purushotham, A., Xu, Q., Lu, J., Foley, J. F., Yan, X., Kim, D. H. and Kemper, J. K. (2012). Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol. Cell. Biol. 32:1226–1236.
  • Purushotham, A., Schug, T. T., Xu, Q., Surapureddi, S., Guo, X. and Li, X. (2009). Hepatocyte–specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9:327–38.
  • Qiu, X., Brown, K., Hirschey, M. D., Verdin, E. and Chen, D. (2010). Calorie restriction reduces oxidative stress by SIRT3–mediated SOD2 activation. Cell. Metab. 1:662–667.
  • Rajapakse, N. and Kim, S. K. (2011). Nutritional and digestive health benefits of seaweed. Adv. Food. Nutr. Res. 64:17–28.
  • Rasbach, K. A. and Schnellmann, R. G. (2008). Isoflavones promote mitochondrial biogenesis. J. Pharmacol. Exp. Ther. 325:536–543.
  • Rauh, D., Fischer, F., Gertz, M., Lakshminarasimhan, M., Bergbrede, T., Aladini, F., Kambach, C., Becker, C. F. W., Zerweck, J., Schutkowski, M. and Steegborn, C. (2013). An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat. Commun. 4:2327.
  • Ren, J. H., Tao, Y., Zhang, Z. Z., Chen, W.-X., Cai, X. F., Chen, K., Ko, B. C. B., Song, C.-L., Ran, L. K., Li, W. Y., Huang, A. L. and Chen, J. (2014). Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1. J. Virol. 88:2442–2451.
  • Reny, J. L., Vuagnat, A., Ract, C., Benoit, M. O., Safar, M. and Fagon, J. Y. (2002). Diagnosis and follow-up of infections in intensive care patients: Value of C-reactive protein compared with other clinical and biological variables. Crit. Care Med. 30:529–535.
  • Rimbach, G., Boesch-Saadatmandi, C., Frank, J., Fuchs, D., Wenzel, U., Daniel, H., Hall, W. L. and Weinberg, P. D. (2008). Dietary isoflavones in the prevention of cardiovascular disease - A molecular perspective. Food Chem. Toxicol. 46:1308–1319.
  • Rodgers, J. T. and Puigserver, P. (2007). Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl. Acad. Sci. U. S. A. 104:12861–1286.
  • Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M. and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature 434:113–118.
  • Rogina, B. and Helfand, S. L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. 101:5998–6003.
  • Rui, L. (2014). Energy metabolism in the liver. Compr. Physiol. 4:177–197.
  • Sadhukhan, S., Liu, X., Ryu, D., Nelson, O. D., Stupinski, J. A., Li, Z., Chen, W., Zhang, S., Weiss, R. S., Locasale, J. W., Auwerx, J. and Lin, H. (2016). Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl. Acad. Sci. 113:201519858. Doi:10.1073/pnas.1519858113
  • Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C. F. W. and Steegborn, C. (2008). Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382:790–801.
  • Schug, T. T., Xu, Q., Gao, H., Peres–da–Silva, A., Draper, D. W., Fessler, M. B., Purushotham, A. and Li, X. (2010). Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol. Cell Biol. 30:4712–4721.
  • Schug, T. T. and Li, X. (2011). Sirtuin 1 in lipid metabolism and obesity. Ann. Med. 43:198–211.
  • Schuster, S., Roessler, C., Meleshin, M., Zimmermann, P., Simic, Z., Kambach, C., Schiene-Fischer, C., Steegborn, C., Hottiger, M. O. and Schutkowski, M. (2016). A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Sci. Rep. 6:22643.
  • Schwer, B. and Verdin, E. (2008). Conserved Metabolic Regulatory Functions of Sirtuins. Cell Metab. 7:104–112.
  • Simó-Mirabet, P., Bermejo-Nogales, A., Calduch-Giner, J. A. and Pérez-Sánchez, J. (2016). Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata). J. Comp. Physiol. B. 187, Doi:10.1007/s00360-016-1014-0.
  • Sinclair, D. A. and Guarente, L. (2006). Unlocking the secrets of longevity genes. Sci. Am. 294:48–57.
  • Sohal, R. S. and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273:59–63.
  • Someya, S., Yu, W., Hallows, W. C., Xu, J., Vann, J. M., Leeuwenburgh, C., Tanokura, M., Denu, J. M. and Prolla, T. A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age–related hearing loss under caloric restriction. Cell 143:802–812.
  • Spiekerman, A. M. (1995). Nutritional assessment (protein nutrition). Anal. Chem. 67:29–36.
  • Suresh, D. and Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res. 131:682–691.
  • Tanno, M., Kuno, A., Yano, T., Miura, T., Hisahara, S., Ishikawa, S., Shimamoto, K. and Horio, Y. (2010). Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J. Biol. Chem. 285:8375–8382.
  • Tao, R., Coleman, M. C., Pennington, J. D., Ozden, O., Park, S. H., Jiang, H., Kim, H. S., Flynn, C. R., Hill, S., McDonald, W. H., Olivier, A. K., Spitz, D. R. and Gius, D. (2010). Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40:893–904.
  • Tarantino, G., Finelli, C., Scopacasa, F., Pasanisi, F., Contaldo, F., Capone, D. and Savastano, S. (2014). Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from nafld, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev. 9:1–10.
  • Tissenbaum, H. A. and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230.
  • Trayhurn, P. (2000). Proteomics and nutrition – a science for the first decade of the new millennium. Br. J. Nutr. 83:1–2.
  • Vachharajani, V. T., Liu, T., Wang, X., Hoth, J. J., Yoza, B. K. and McCall, C. E. (2016). Sirtuins link inflammation and metabolism. J. Immunol. Res. 2016, doi:10.1155/2016/8167273.
  • Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T. and Bober, E. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102:703–710.
  • Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P. and Reinberg, D. (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16:93–105.
  • Walker, A. K., Yang, F., Jiang, K., Ji, J. Y., Watts, J. L., Purushotham, A., Boss, O., Hirsch, M. L., Ribich, S., Smith, J. J., Israelian, K., Westphal, C. H., Rodgers, J. T., Shioda, T., Elson, S. L., Mulligan, P., Najafi-Shoushtari, H., Black, J. C., Thakur, J. K., Kadyk, L. C., Whetstine, J. R., Mostoslavsky, R., Puigserver, P., Li, X., Dyson, N. J., Hart, A. C. and Näär, A. M. (2010). Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24:1403–1417.
  • Wang, F., Nguyen, M., Qin, F. X. F. and Tong, Q. (2007). SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514.
  • Wang, T. J., Gona, P., Larson, M. G., Tofler, G. H., Levy, D., Newton-Cheh, C., Jacques, P. F., Rifai, N., Selhub, J., Robins, S. J., Benjamin, E. J., D'Agostino, R. B. and Vasan, R. S. (2006). Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 355:2631–2639.
  • Wang, W., McReynolds, M. R., Goncalves, J. F., Shu, M., Dhondt, I., Braeckman, B. P., Lange, S. E., Kho, K., Detwiler, A. C., Pacella, M. J. and Hanna-Rose, W. (2015). Comparative metabolomic profiling reveals that dysregulated glycolysis stemming from lack of salvage NAD+ biosynthesis impairs reproductive development in Caenorhabditis elegans. J. Biol. Chem. 290:26163–26179.
  • Wegener, D., Hildmann, C., Riester, D., Schwienhorst, A. (2003). Improved fluorogenic histone deacetylase assay for high-throughput-screening applications. Anal. Biochem. 321:202–208.
  • Yoshizaki, T., Schenk, S., Imamura, T., Babendure, J. L., Sonoda, N., Bae, E. J., Oh, D. Y., Lu, M., Milne, J. C., Westphal, C., Bandyopadhyay, G. and Olefsky, J. M. (2010). SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 298:E419–E428.
  • Zhang, S. and Wang, X. I. (2013). SIRT1 is a useful biomarker for high-grade dysplasia and carcinoma in barrett's esophagus. Ann. Clin. Lab. Sci. 43:373–377.
  • Zhang, T. and Kraus, W. L. (2010). SIRT1-dependent regulation of chromatin and transcription: Linking NAD+ metabolism and signaling to the control of cellular functions. Biochim. Biophys. Acta - Proteins Proteomics 1804:1666–1675.
  • Zhao, K., Chai, X. and Marmorstein, R. (2004). Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. J. Mol. Biol. 337:731–741.
  • Zhao, S., Xu, W., Jiang, W. Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong, Y. and Guan, K. L. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004.
  • Ziemke, F. and Mantzoros, C. S. (2010). Adiponectin in insulin resistance: Lessons from translational research. Am. J. Clin. Nutr. 91:258–261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.