913
Views
43
CrossRef citations to date
0
Altmetric
Reviews

Quality of plant-based food materials and its prediction during intermittent drying

, , , , , & show all

References

  • Souraki, A., B.M,.D. 2008. Experimental and theoretical investigation of drying behaviour of garlic in an inert medium fluidized bed assisted by microwave. Journal of Food Engineering 88 (4):438–449. doi: 10.1016/j.jfoodeng.2007.12.034.
  • Achir, N., T. Hadjal, K. Madani, M. Dornier, and C. Dhuique-Mayer. 2015. Carotene Reactivity in Pink Grapefruit Juice Elucidated from Model Systems and Multiresponse Modeling. Journal of agricultural and food chemistry 63 (15):3970–3979. doi: 10.1021/acs.jafc.5b00509.
  • Achir, N., C. Pénicaud, S. Avallone, and P. Bohuon. 2011. Insight into β-Carotene Thermal Degradation in Oils with Multiresponse Modeling. Journal of the American Oil Chemists' Society 88 (12):2035–2045. doi: 10.1007/s11746-011-1864-2.
  • Afzal, M. T. 2003. Intermittent Far Infrared Radiation Drying. St. Joseph, ASABE, MI. doi: 10.13031/2013.14216
  • Aghilinategh, N., S. Rafiee, S. Hosseinpur, M. Omid, and S. S. Mohtasebi. 2015. Optimization of intermittent microwave–convective drying using response surface methodology. Food Science & Nutrition 3 (4):331–341. doi: 10.1002/fsn3.224.
  • Aguilera, J. M. 2005. Why food microstructure? Journal of Food Engineering 67 (1):3–11. doi: 10.1016/j.jfoodeng.2004.05.050.
  • Aguilera, J. M., and P. J. Lillford. 2008. Structure–property relationships in foods. Food Materials Science: Principles and Practice (pp. 229–253). New York: Springer.
  • Alli, I., H. Ramaswamy, and C. Chen. 2001. Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Drying Technology 19 ( Karina Di Scala):507–523. doi: 10.1081/DRT-100103931.
  • An, K., D. Zhao, Z. Wang, J. Wu, Y. Xu, and G. Xiao. 2016. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, Part B:1292–1300. doi: 10.1016/j.foodchem.2015.11.033.
  • Arikan, M. F., Z. Ayhan, Y. Soysal, and O. Esturk. 2012. Drying characteristics and quality parameters of microwave-dried grated carrots. Food and Bioprocess Technology 5 (8):3217–3229. doi: 10.1007/s11947-011-0682-8.
  • Arslan, D., and M. M. Özcan. 2011. Drying of tomato slices: changes in 1040 drying kinetics, mineral contents, antioxidant activity and color parameters Secado de rodajas de tomate: cambios en cinéticos del secado, contenido en minerales, actividad antioxidante y parámetros de color. CyTA –Journal of Food 9 (Karina Di Scala):229–236. doi: 10.1080/19476337.2010.522734.
  • Balakrishnan, M., G. S. V. Raghavan, V. V. Sreenarayanan, and R. Viswanathan. 2011. Batch Drying Kinetics of Cardamom in a Two-Dimensional Spouted Bed. Drying Technology 29 (11):1283–1290. doi: 10.1080/07373937.2011.591714.
  • Barsa, C., M. Normand, and M. Peleg. 2012. On Models of the Temperature Effect on the Rate of Chemical Reactions and Biological Processes in Foods. Food Engineering Reviews 4 (4):191–202. doi: 10.1007/s12393-012-9056-x.
  • Başlar, M., S. Karasu, M. Kiliçli, A. A. Us, and O. Sağdiç. 2014. Degradation kinetics of bioactive compounds and antioxidant activity of pomegranate arils during the drying process. International Journal of Food Engineering 10 (4):839–848. doi: 10.1515/ijfe-2014-0080.
  • Beaudry, C., G. Raghavan, and T. Rennie. 2003. Microwave finish drying of osmotically dehydrated cranberries. Drying Technology 21 (9):1797–1810. Retrieved from doi: 10.1081/DRT-120025509.
  • Bernstein, A., and C. P. Z. Noreña. 2014. Study of thermodynamic, structural, and quality properties of yacon (Smallanthus sonchifolius) during drying. Food and Bioprocess Technology 7 (1):148–160.doi: 10.1007/s11947-015-1643-4 doi: 10.1007/s11947-012-1027-y.
  • Boekel, v T. 2008. Kinetic Modeling of Food Quality: A Critical Review. Comprehensive reviews in food science and food safety 7 (1):144–158. doi: 10.1111/j.1541-4337.2007.00036.x.
  • Brasiello, A., G. Adiletta, P. Russo, S. Crescitelli, D. Albanese, and M. Di Matteo. 2013. Mathematical modeling of eggplant drying: Shrinkage effect. Journal of Food Engineering 114 (1):99–105. doi: 10.1016/j.jfoodeng.2012.07.031.
  • Carmo, J. E. F. D., A. G. B. de Lima, and C. Silva. 2012. Continuous and intermittent drying (tempering) of oblate spheroidal bodies: modeling and simulation. Int. J. Food Eng 8 ( Karina Di Scala):20. doi: 10.1515/1556-3758.1430.
  • Chafe, S. C. ( Singer-songwriter). 1995. Preheating and Continuous and Intermittent Drying in Boards of Eucalyptus regnans F. Muell. I. Effect on Internal Checking, Shrinkage and Collapse. On Holzforschung – International Journal of the Biology, Chemistry, Physics and Technology of Wood.
  • Chen, J., K. Pitchai, S. Birla, M. Negahban, D. Jones, and J. Subbiah. 2014. Heat and Mass Transport during Microwave Heating of Mashed Potato in Domestic Oven—Model Development, Validation, and Sensitivity Analysis. Journal of Food Science 79 (10):E1991–E2004. doi: 10.1111/1750-3841.12636.
  • Chong, C. H., A. Figiel, C. L. Law, and A. WojdyAo. 2014. Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques. Food and Bioprocess Technology 7 (4):975–989. doi: 10.1007/s11947-013-1123-7.
  • Chong, C. H., and C. L. Law. 2011. Application of Intermittent Drying of Cyclic Temperature and Step-Up Temperature in Enhancing Textural Attributes of Dehydrated Manilkara zapota. Drying Technology 29 (2):245–252. doi: 10.1080/07373937.2010.488781.
  • Chou, S. K., K. J. Chua, A. S. Mujumdar, M. N. A. Hawlader, and J. C. Ho. 2000. On the Intermittent Drying of an Agricultural Product. Food and Bioproducts Processing 78 (4):193–203. doi: 10.1205/09603080051065296.
  • Chua, K. J., and S. K. Chou. 2005. A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science & Technology 40 (1):23–39. doi: 10.1111/j.1365-2621.2004.00903.x.
  • Chua, K. J., S. K. Chou, J. C. Ho, A. S. Mujumdar, and M. N. A. Hawlader. 2000. Cyclic Air Temperature Drying of Guava Pieces: Effects on Moisture and Ascorbic Acid Contents. Food and Bioproducts Processing 78 (2):72–78. doi: 10.1205/096030800532761.
  • Chua, K. J., A. S. Mujumdar, S. K. Chou, M. N. A. Hawlader, and J. C. Ho. 2000. Convective drying of banana, guava and potato pieces: Effect of cyclical variations of air temperature on drying kinetics and color change. Drying Technology 18 (4):907–936. doi: 10.1080/07373930008917744.
  • Chua, K. J., A. S. Mujumdar, M. N. A. Hawlader, S. K. Chou, and J. C. Ho. 2001. Batch drying of banana pieces — effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Research International 34 (8):721–731. doi: 10.1016/S0963-9969(01)00094-1.
  • Cisse, M., F. Vaillant, O. Acosta, D.-M. Claudie, and M. Dornier. 2009. Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models. Journal of Agricultural and Food Chemistry 57 (14):6285–6291. doi: 10.1021/jf900836b.
  • Cui, Z.-W., S.-Y. Xu, and D.-W. Sun. 2004. Effect of Microwave-Vacuum Drying on the Carotenoids Retention of Carrot Slices and Chlorophyll Retention of Chinese Chive Leaves. Drying Technology 22 ( Karina Di Scala):563–575. doi: 10.1081/DRT-120030001.
  • Curcio, S., M. Aversa, V. Calabrò, and G. Iorio. 2015. Modeling of Microbial Spoilage and Color Degradation Occurring in Convective Drying of Vegetables: A Route to Process Optimization. Journal of Food Process Engineering 38 (1):76–92. doi: 10.1111/jfpe.12129.
  • De Roos, K. B. 2003. Effect of texture and microstructure on flavour retention and release. International Dairy Journal 13 (8):593–605. doi: 10.1016/S0958-6946(03)00108-0.
  • Defraeye, T. 2016. Towards more efficient intermittent drying of fruit: Insights from combined hygrothermal-quality modelling. Innovative Food Science & Emerging Technologies 38, Part A:262–271. doi: 10.1016/j.ifset.2016.10.003.
  • Del Valle, J., T. Cuadros, and J. Aguilera. 1998. Glass transitions and shrinkage during drying and storage of osmosed apple pieces. Food Research International 31 ( Karina Di Scala):191–204. doi: 10.1016/S0963-9969(98)00059-3.
  • Demiray, E., Y. Tulek, and Y. Yilmaz. 2013. Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT – Food Science and Technology 50 (1):172–176. doi: 10.1016/j.lwt.2012.06.001.
  • Devahastin, S., and C. Niamnuy. 2010. Modelling quality changes of fruits and vegetables during drying: A review. International Journal of Food Science and Technology 45 (9):1755–1767. doi: 10.1111/j.1365-2621.2010.02352.x.
  • Di Scala, K., and G. Crapiste. 2008. Drying kinetics and quality changes during drying of red pepper. LWT – Food Science and Technology 41 ( Karina Di Scala):789–795. doi: 10.1016/j.lwt.2007.06.007.
  • Diop Ndiaye, N., C. Dhuique-Mayer, M. Cisse, and M. Dornier. 2011. Identification and thermal degradation kinetics of chlorophyll pigments and ascorbic acid from ditax nectar (Detarium senegalense J.F. Gmel). Journal of Agricultural and Food Chemistry 59 (22):12018–12027. doi: 10.1021/jf203582k.
  • Dong, R., Z. Lu, Z. Liu, Y. Nishiyama, and W. Cao. 2009. Moisture distribution in a rice kernel during tempering drying. Journal of Food Engineering 91 (1):126–132. doi: 10.1016/j.jfoodeng.2008.08.012.
  • Esturk, O. 2012. Intermittent and Continuous Microwave-Convective Air-Drying Characteristics of Sage (Salvia officinalis) Leaves. Food and Bioprocess Technology 5 ( Karina Di Scala):1664–1673. doi: 10.1007/s11947-010-0462-x.
  • Fathi, M., M. Mohebbi, and S. M. A. Razavi. 2011. Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit. Food and Bioprocess Technology 4 (8):1357–1366. doi: 10.1007/s11947-009-0222-y.
  • Faulks, R. M., and S. Southon. 2005. Challenges to understanding and measuring carotenoid bioavailability. Biochimica et biophysica acta-molecular basis of disease 1740 (2):95–100. doi: 10.1016/j.jbbadis.2004.11.012.
  • Fernandes, F. A. N., S. Rodrigues, C. L. Law, and A. S. Mujumdar. 2011. Drying of Exotic Tropical Fruits: A Comprehensive Review. Food and Bioprocess Technology 4 (2):163–185. doi: 10.1007/s11947-010-0323-7.
  • Frías, J. M., and J. C. Oliveira. 2001. Kinetic models of ascorbic acid thermal degradation during hot air drying of maltodextrin solutions. Journal of Food Engineering 47 (4):255–262. doi: 10.1016/S0260-8774(00)00125-4.
  • Fu, M., Q. Qu, X. Yang, and X. Zhang. 2016. Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT - Food Science and Technology 65:1126–1132. doi: 10.1016/j.lwt.2015.10.002.
  • Gao, Q.-H., C.-S. Wu, M. Wang, B.-N. Xu, and L.-J. Du. 2012. Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-carotene, and phenolic compounds. Journal of Agricultural and Food Chemistry 60 (38):9642. doi: 10.1021/jf3026524.
  • Goula, A. M., and K. G. Adamopoulos. 2006. Retention of Ascorbic Acid during Drying of Tomato Halves and Tomato Pulp. Drying Technology 24 (1):57–64. doi: 10.1080/07373930500538709.
  • Greve, L. C., R. N. McArdle, J. R. Gohlke, and J. M. Labavitch. 1994. Impact of Heating on Carrot Firmness: Changes in Cell Wall Components. Journal of Agricultural and Food Chemistry 42 (12):2900–2906 doi: 10.1021/jf00048a048.
  • Ho, J. C., S. K. Chou, K. J. Chua, A. S. Mujumdar, and M. N. A. Hawlader. 2002. Analytical study of cyclic temperature drying: effect on drying kinetics and product quality. Journal of Food Engineering 51 (1):65–75. doi: 10.1016/S0260-8774(01)00038-3.
  • Ho, J. C., S. K. Chou, A. S. Mujumdar, M. N. A. Hawlader, and K. J. Chua. 2001. An optimisation framework for drying of heat-sensitive products. Applied Thermal Engineering 21 (17):1779–1798. doi: 10.1016/S1359-4311(01)00047-3.
  • Holowaty, S. A., L. A. Ramallo, and M. E. Schmalko. 2012. Intermittent drying simulation in a deep bed dryer of yerba maté. Journal of Food Engineering 111 (1):110–114. doi: 10.1016/j.jfoodeng.2012.01.019 .
  • Jangam, S. V. 2011. An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Drying Technology 29 (12):1343–1357. doi: 10.1080/07373937.2011.594378.
  • Jayaraman, K., D. D. Gupta, and N. Rao. 1990. Effect of pretreatment with salt and sucrose on the quality and stability of dehydrated cauliflower. International journal of food science & technology 25 (1):47–60. doi: 10.1111/j.1365-2621.1990.tb01058.x.
  • Jiang, L., H. Zheng, and H. Lu. 2014. Use of Linear and Weibull Functions to Model Ascorbic Acid Degradation in Chinese Winter Jujube during Postharvest Storage in Light and Dark Conditions. Journal of Food Processing and Preservation 38 ( Karina Di Scala):856–863. doi: 10.1111/jfpp.12040.
  • Joardder, M. U. H., A. Karim, and C. Kumar. 2013. Effect of Temperature Distribution on Predicting Quality Of Microwave Dehydrated Food. Journal of mechanical engineering and sciences 5:562–568. doi: 10.15282/jmes.5.2013.2.0053.
  • Joardder, M. U. H., C. Kumar, and M. A. Karim. 2017. Food Structure: Its Formation and Relationships with Other Properties. Critical reviews in food science and nutrition. doi: 10.1080/10408398.2014.971354
  • Jumah, R., E. Al-Kteimat, A. Al-Hamad, and E. Telfah. 2007. Constant and Intermittent Drying Characteristics of Olive Cake. Drying Technology 25 (9):1421–1426. doi: 10.1080/07373930701536668.
  • Junqueira, J.RdJ., J. L. G. Corrêa, and D. B. Ernesto. 2017. Microwave, convective, and intermittent microwave-convective drying of pulsed vacuum osmodehydrated pumpkin slices: JUNQUEIRA et al. Journal of Food Processing and Preservation e13250. doi: 10.1111/jfpp.13250.
  • Kaminski, W., and E. Tomczak. 2000. Degradation of ascorbic acid in drying process -a comparison of description methods. Drying Technology 18 ( Karina Di Scala):777–790. doi: 10.1080/07373930008917737.
  • Karaaslan, M., F. M. Yilmaz, Ö. Cesur, H. Vardin, A. Ikinci, and A. C. Dalgiç. 2014. Drying kinetics and thermal degradation of phenolic compounds and anthocyanins in pomegranate arils dried under vacuum conditions. International Journal of Food Science & Technology 49 (2):595–605. doi: 10.1111/ijfs.12342.
  • Karim, M. A., and M. N. A. Hawlader. 2005. Drying characteristics of banana: theoretical modelling and experimental validation. Journal of Food Engineering 70 (1):35–45. doi: 10.1016/j.jfoodeng.2004.09.010.
  • Kerdpiboon, S., S. Devahastin, and W. L. Kerr. 2007. Comparative fractal characterization of physical changes of different food products during drying. Journal of Food Engineering 83 (4):570–580. doi: 10.1016/j.jfoodeng.2007.03.039.
  • Khan, M. I. H., R. M. Wellard, S. A. Nagy, M. U. H. Joardder, and M. A. Karim. 2017a. Experimental investigation of bound and free water transport process during drying of hygroscopic food material. International Journal of Thermal Sciences 117:266–273. doi: 10.1016/j.ijthermalsci.2017.04.006.
  • Khan, M. I. H., and M. A. Karim. 2017b. Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Research International 99:1–14. doi: 10.1016/j.foodres.2017.06.037.
  • Khraisheh, M. A. M., W. A. M. McMinn, and T. R. A. Magee. 2004. Quality and structural changes in starchy foods during microwave and convective drying. Food Research International 37 ( Karina Di Scala):497–503. doi: 10.1016/j.foodres.2003.11.010.
  • Kowalski, S., and J. Szadzińska. 2014a. Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification 82:65–70. doi: 10.1016/j.cep.2014.05.006.
  • Kowalski, S., and J. Szadzińska. 2014b. Kinetics and quality aspects of beetroots dried in non-stationary conditions. Drying Technology 32 (11):1310–1318. doi: 10.1080/07373937.2014.915555.
  • Kowalski, S., J. Szadzińska, and A. Pawłowski. 2015. Ultrasonic-assisted osmotic dehydration of carrot followed by convective drying with continuous and intermittent heating. Drying Technology 33 (13):1570–1580. doi: 10.1080/07373937.2015.1012265.
  • Kowalski, S. J., J. Szadzińska, and J. Łechtańska. 2013. Non-stationary drying of carrot: Effect on product quality. Journal of Food Engineering 118 (4):393–399. doi: 10.1016/j.jfoodeng.2013.04.028.
  • Kumar, C., M. U. H. Joardder, T. W. Farrell, G. J. Millar, and M. A. Karim. 2015. Mathematical model for intermittent microwave convective drying of food materials. Drying Technology 34 (8):962–973. doi: 10.1080/07373937.2015.1087408.
  • Kumar, C., M. A. Karim, and M. U. H. Joardder. 2014. Intermittent drying of food products: A critical review. Journal of Food Engineering 121:48. doi: 10.1016/j.jfoodeng.2013.08.014.
  • Kyi, T. M., W. R. W. Daud, A. B. Mohammad, M. Wahid Samsudin, A. A. H. Kadhum, and M. Z. M. Talib. 2005. The kinetics of polyphenol degradation during the drying of Malaysian cocoa beans. International Journal of Food Science & Technology 40 ( Karina Di Scala), 323–331. doi: 10.1111/j.1365-2621.2005.00959.x.
  • Lee, D.-J., S. Jangam, and A. S. Mujumdar. 2012. Some recent advances in drying technologies to produce particulate solids. KONA Powder and Particle Journal 30:69–83. Retrieved from doi: 10.14356/kona.2013010.
  • Lespinard, A. R., S. M. Goñi, P. R. Salgado, and R. H. Mascheroni. 2009. Experimental determination and modelling of size variation, heat transfer and quality indexes during mushroom blanching. Journal of Food Engineering 92 (1):8–17. doi: 10.1016/j.jfoodeng.2008.10.025 .
  • Liu, K., Z. Lu, Z. Yan, J. Zhao, W. Jiao, and X. Li. 2011, 27–29 May 2011. Degradation kinetics of vitamin C in Chinese jujube during drying process. In New Technology of Agricultural Engineering (López-Berenguer et al.), 2011 International Conference on (pp. 784–788).
  • Madamba, P. S. 2002. The response surface methodology: An application to optimize dehydration operations of selected agricultural crops. LWT – Food Science and Technology 35 (7):584–592. doi: 10.1016/S0023-6438(02)90914-X.
  • Madamba, P. S., and R. P. Yabes. 2005. Determination of the optimum intermittent drying conditions for rough rice (Oryza sativa, L.). LWT – Food Science and Technology 38 (2):157–165. doi: 10.1016/j.lwt.2004.04.018.
  • Maskan, M. 2001. Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering 48 (2):177–182. doi: 10.1016/S0260-8774(00)00155-2.
  • McMinn, W., and T. Magee. 1997a. Physical characteristics of dehydrated potatoes—Part I. Journal of Food Engineering 33 (1-2):37–48. doi: 10.1016/S0260-8774(97)00039-3.
  • McMinn, W., and T. Magee. 1997b. Physical characteristics of dehydrated potatoes—Part II. Journal of Food Engineering 33 (1-2):49–55. doi: 10.1016/S0260-8774(97)00040-X.
  • Milly, A. P., P. Zhongli, G. A. Griffiths, S. Gary, and F. T. James. 2013. Drying characteristics and quality of bananas under infrared radiation heating. International Journal of Agricultural and Biological Engineering 6 ( Karina Di Scala):58–70.
  • Mishkin, M., I. Saguy, and M. Karel. 1984. A Dynamic Test for Kinetic Models of Chemical Changes During Processing: Ascorbic Acid Degradation in Dehydration of Potatoes. Journal of Food Science 49 ( Karina Di Scala):1267–1270. doi: 10.1111/j.1365-2621.1984.tb14967.x.
  • Mogol, B. A., and V. Gokmen. 2013. Kinetics of Furan Formation from Ascorbic Acid during Heating under Reducing and Oxidizing Conditions. Journal of Agricultural and Food Chemistry 61 (42):10191–10196. doi: 10.1021/jf402941t.
  • Nawirska, A., A. Figiel, A. Z. Kucharska, A. Sokół-Łętowska, and A. Biesiada. 2009. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering 94 (1):14–20. doi: 10.1016/j.jfoodeng.2009.02.025.
  • Nicoleti, J. F., V. Silveira, J. Telis-Romero, and V. R. N. Telis. 2007. Influence of Drying Conditions on Ascorbic Acid during Convective Drying of Whole Persimmons. Drying Technology 25 ( Karina Di Scala):891–899. doi: 10.1080/07373930701370365.
  • Omolola, A. O., A. I. O. Jideani, and P. F. Kapila. 2015. Quality Properties of Fruits as Affected by Drying Operation. Critical Reviews in Food Science and Nutrition 00–00. doi: 10.1080/10408398.2013.859563
  • Ong, S. P., and C. L. Law. 2011. Drying Kinetics and Antioxidant Phytochemicals Retention of Salak Fruit under Different Drying and Pretreatment Conditions. Drying Technology 29 (4):429–441. doi: 10.1080/07373937.2010.503332.
  • Ong, S. P., C. L. Law, and C. L. Hii. 2012. Optimization of Heat Pump-Assisted Intermittent Drying. Drying Technology 30 (15):1676. doi: 10.1080/07373937.2012.703741.
  • Orphanides, A., V. Goulas, and V. Gekas. 2016. Drying Technologies: Vehicle to High-Quality Herbs. Food Engineering Reviews 8 (2):164–180. doi: 10.1007/s12393-015-9128-9.
  • Paengkanya, S., S. Soponronnarit, and A. Nathakaranakule. 2015. Application of microwaves for drying of durian chips. Food and bioproducts processing 96:1–11. doi:10.1016/j.fbp.2015.06.001
  • Pan, Y. K., L. J. Zhao, Z. X. Dong, A. S. Mujumdar, and T. Kudra. 1999. Intermittent drying of carrot in a vibrated fluid bed: effect on product quality. Drying Technology 17 (10):2323–2340. doi: 10.1080/07373939908917686.
  • Pan, Y. K., L. J. Zhao, and W. B. Hu. 1998. The effect of tempering-intermittent drying on quality and energy of plant materials. Drying Technology 17 (9):1795–1812. doi: 10.1080/07373939908917653.
  • Parada, J., and J. M. Aguilera. 2007. Food microstructure affects the bioavailability of several nutrients. Journal of Food Science 72 (2):R21–R32. doi: 10.1111/j.1750-3841.2007.00274.x .
  • Pimpaporn, P., S. Devahastin, and N. Chiewchan. 2007. Effects of combined pretreatments on drying kinetics and quality of potato chips undergoing low-pressure superheated steam drying. Journal of Food Engineering 81 (2):318–329. doi: 10.1016/j.jfoodeng.2006.11.009.
  • Prothon, F., L. Ahrné, and I. Sjöholm. 2003. Mechanisms and prevention of plant tissue collapse during dehydration: a critical review.
  • Ramallo, L. A., N. N. Lovera, and M. E. Schmalko. 2010. Effect of the application of intermittent drying on Ilex paraguariensis quality and drying kinetics. Journal of Food Engineering 97 (2):188–193. doi: 10.1016/j.jfoodeng.2009.10.008.
  • Ratti, C. 1994. Shrinkage during drying of foodstuffs. Journal of Food Engineering 23 (1):91–105. Retrieved from http://QUT.eblib.com.au/patron/FullRecord.aspx?p = 427079 doi: 10.1016/0260-8774(94)90125-2.
  • Reyes, A., P. I. Alvarez, and F. H. Marquardt. 2002. Drying of carrots in a fluidized bed. I. Effects of drying conditions and modelling. Drying Technology 20 (7):1463–1483. doi: 10.1081/DRT-120005862.
  • Razavi, M. A., H. R. Poreza, M. S. Zenoozian, S. Devahastin, and F. Shahidi. 2007. Use of Artificial Neural Network and Image Analysis to Predict Physical Properties of Osmotically Dehydrated Pumpkin. Drying Technology 26 (1):132–144. doi: 10.1080/07373930701781793.
  • Sablani, S. 2006. Drying of Fruits and Vegetables: Retention of Nutritional/Functional Quality. Drying Technology 24 (2):123–135. doi: 10.1080/07373930600558904.
  • Senadeera, W. 2008. The drying constant and its effect on the shrinkage constant of different-shaped food particulates. Int J Food Eng 4:1–16. doi: 10.2202/1556-3758.1219.
  • Setiady, D., J. Tang, F. Younce, B. A. Swanson, B. A. Rasco, and C. D. Clary. 2009. Porosity, Color, Texture, and Microscopic Structure of Russet Potatoes Dried Using Microwave Vacuum, Heated Air, and Freeze Drying. 25 ( Karina Di Scala). doi: 10.13031/2013.28844
  • Sjöholm, I., and V. Gekas. 1995. Apple shrinkage upon drying. Journal of food engineering 25 (1):123–130. doi: 10.1016/0260-8774(94)00001-P.
  • Soysal, Y., M. Arslan, and M. Keskin. 2009a. Intermittent Microwave-convective Air Drying of Oregano. Food Science and Technology International 15 (4):397–406. doi: 10.1177/1082013209346588 doi: 10.1177/1082013209346588.
  • Soysal, Y., Z. Ayhan, O. Eştürk, and M. Arıkan. 2009b. Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems Engineering 103 (4):455–463. doi: 10.1016/j.biosystemseng.2009.05.010.
  • Steffe, J. F., and R. P. Singh. 1980. Theoretical and Practical Aspects of Rough Rice Tempering. 23 ( Karina Di Scala). doi: 10.13031/2013.34661
  • Szadzińska, j. 2014. Influence of convective-intermittent drying on the kinetics, energy consumption and quality of green pepper. A research project; No 32–444/14 DS-BP sponsored by the Poznań University of Technology.
  • Tapia, M. S., S. M. Alzamora, and J. Chirife. 2008. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods (pp. 239–271). Blackwell Publishing Ltd.
  • Telis, V., J. Telis-Romero, and A. Gabas. 2005. Solids rheology for dehydrated food and biological materials. Drying Technology 23 (4):759–780. doi: 10.1081/DRT-200054190.
  • Thomkapanich, O., P. Suvarnakuta, and S. Devahastin. 2007. Study of Intermittent Low-Pressure Superheated Steam and Vacuum Drying of a Heat-Sensitive Material. Drying Technology 25 (1):205–223. doi: 10.1080/07373930601161146.
  • Torreggiani, D. 1993. Osmotic dehydration in fruit and vegetable processing. Food Research International 26 (1):59–68. doi: 10.1016/0963-9969(93)90106-S.
  • Tuberoso, C. I. G., A. Rosa, E. Bifulco, M. P. Melis, A. Atzeri, F. M. Pirisi, and M. A. Dessì. 2010. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chemistry 123 (4):1242–1251. doi: 10.1016/j.foodchem.2010.05.094.
  • Uribe, E., A. Vega-Gálvez, K. Di Scala, R. Oyanadel, J. Saavedra Torrico, and M. Miranda. 2011. Characteristics of Convective Drying of Pepino Fruit (Solanum muricatum Ait.): Application of Weibull Distribution. Food and Bioprocess Technology 4 (8):1349–1356. doi: 10.1007/s11947-009-0230-y.
  • Valdramidis, V. P., P. S. Taoukis, N. G. Stoforos, and J. F. M. Van Impe. 2012. Chapter 14 – Modeling the Kinetics of Microbial and Quality Attributes of Fluid Food During Novel Thermal and Non-Thermal Processes. In P. J. C.K T. P. Valdramidis ( Ed.), Novel Thermal and Non-Thermal Technologies for Fluid Foods ( pp. 433–471). San Diego: Academic Press.
  • Van Boekel, M. A. J. S. 2002. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology 74 (1–2):139–159. doi: 10.1016/S0168-1605(01)00742-5.
  • Van Schie, P., and L. Young. 2000. Biodegradation of Phenol: Mechanisms and Applications. Bioremediation Journal 4 (1):1–18. doi: 10.1080/10588330008951128.
  • Vega-Mercado, H., M. Marcela Góngora-Nieto, and G. V. Barbosa-Cánovas. 2001. Advances in dehydration of foods. Journal of Food Engineering 49 (4):271–289. doi: 10.1016/S0260-8774(00)00224-7.
  • Vega‐Gálvez, A., R. San Martín, M. Sanders, M. Miranda, and E. Lara. 2010. Characteristics and mathematical modeling of convective drying of quinoa (chenopodium quinoa willd.): Influence of temperature on the kinetic parameters. Journal of Food Processing and Preservation 34 (6):945–963. doi: 10.1111/j.1745-4549.2009.00410.x.
  • Verbeyst, L., R. Bogaerts, I. Van der Plancken, M. Hendrickx, and A. Van Loey. 2013. Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food and Bioprocess Technology 6 (4):1015–1023. doi: 10.1007/s11947-012-0784-y.
  • Walker, J. R. L. 1995. Enzymatic browning in fruits – its biochemistry and control. In ( Vol. 600, pp. 8–22). WASHINGTON: Amer chemical soc.
  • Wang, N., and J. Brennan. 1995. Changes in structure, density and porosity of potato during dehydration. Journal of Food Engineering 24 (1):61–76. doi: 10.1016/0260-8774(94)P1608-Z.
  • Wang, Y., M. Zhang, A. S. Mujumdar, K. J. Mothibe, and S. M. R. Azam. 2013. Study of Drying Uniformity in Pulsed Spouted Microwave-Vacuum Drying of Stem Lettuce Slices with Regard to Product Quality. Drying Technology 31 (1):91 doi: 10.1080/07373937.2012.721431.
  • Xie, L., A. S. Mujumdar, X.-M. Fang, J. Wang, J.-W. Dai, Z.-L. Du, … Z.-J. Gao. 2017. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry (Lycium barbarum L.): Effects on drying kinetics and quality attributes. Food and Bioproducts Processing 102:320–331. doi: 10.1016/j.fbp.2017.01.012.
  • Yang, J., Q. Di, Q. Jiang, and J. Zhao. 2010. Application of Pore Size Analyzers in Study of Chinese Angelica Slices Drying. Drying Technology 28 (2):214–221. doi: 10.1080/07373930903526731.
  • Zhang, M., H. Chen, A. S. Mujumdar, J. Tang, S. Miao, and Y. Wang. 2015. Recent Developments in High-quality Drying of Vegetables, Fruits and Aquatic Products. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2014.979280
  • Zhang, N., Z. Yang, A. G. Chen, and S. S. Zhao. 2014. Effects of intermittent heat treatment on sensory quality and antioxidant enzymes of cucumber. Scientia horticulturae 170:39–44. doi: 10.1016/j.scienta.2014.02.032.
  • Zhao, D., K. An, S. Ding, L. Liu, Z. Xu, and Z. Wang. 2014. Two-Stage Intermittent Microwave Coupled with Hot-Air Drying of Carrot Slices: Drying Kinetics and Physical Quality. Food and Bioprocess Technology 7 (8):2308–2318. doi: 10.1007/s11947-014-1274-1.
  • Zheng, H., and H. Lu. 2011. Use of kinetic, Weibull and PLSR models to predict the retention of ascorbic acid, total phenols and antioxidant activity during storage of pasteurized pineapple juice. LWT - Food Science and Technology 44 (Karina Di Scala):1273–1281. doi:10.1016/j.lwt.2010.12.023.
  • Zhu, Y., Z. Pan, T. H. McHugh, and D. M. Barrett. 2010. Processing and quality characteristics of apple slices processed under simultaneous infrared dry-blanching and dehydration with intermittent heating. Journal of Food Engineering 97 (1):8–16. doi:10.1016/j.jfoodeng.2009.07.021.
  • Zielinska, M., and M. Markowski. 2012. Color Characteristics of Carrots: Effect of Drying and Rehydration. International Journal of Food Properties 15 (2):450–466. doi: 10.1080/10942912.2010.489209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.