1,396
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension

&

References

  • Abadir, P. M., J. D. Walston, R. M. Carey, and H. M. Siragy. 2011. Angiotensin II type-2 receptors modulate inflammation through signal transducer and activator of transcrip- tion proteins 3 phosphorylation and TNF production. J Interferon Cytokine Res 31:471–474.
  • Abubakar, A., T. Saito, H. Kitazawa, Y. Kawai, and T. Itoh. 1998. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J Dairy Sci 81:3131–3138.
  • Acharya, K. R., E. D. Sturrock, J. F. Riordan, and M. R. Ehlers. 2003. ACE revisited: a new target for structure-based drug design. Nat Rev Drug Discov 2:891–902.
  • Adessi, C. and C. Soto. 2002. Converting a peptide into a drug: Strategies to improve stability and bioavailability. Curr Med Chem 9:963–978.
  • Ahn, C. B., Y. J. Jeon, Y. T. Kim, and J. Y. Je. 2012. Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochem 47:2240–2245.
  • Aihara, K., O. Kajimoto, H. Hirata, R. Takahashi, and Y. Nakamura. 2005. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. Jam Coll Nutr 24:257–265.
  • Aleman, A., E. Perez-Santin, S. Bordenave-Juchereau, I. Arnaudin, M. C. Gomez-Guillen, and P. Montero. 2011. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int 44:1044–1051.
  • Al-Gburi, S., A. Deussen, R. Galli, M. H. Muders, B. Zatschler, A. Neisser, B. Müller, and I. Kopaliani. 2017. Sex-specific differences in age-dependent progression of aortic dysfunction and related cardiac remodeling in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 312:R835–R849.
  • Anthony, C. S., G. Masuyer, E. D. Sturrock, and K. R. Acharya. 2012. Sturcture based drug design of angiotensin-I converting enzyme inhibitors. Curr Med Chem 19:845–855.
  • Arihara, K., Y. Nakashima, T. Mukai, T. Iahikawa, and M. Itoh. 2001. Peptide inhibitors for angiotensin I–converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci 57:319–324.
  • Astawan, M., M. Wahyuni, T. Yasuhara, K. Yamada, T. Tadokoro, and A. Maekawa. 1995. Effects of angiotensin I–converting enzyme inhibitory substances derived from Indonesian dried-salted fish on blood pressure of rats. Biosci Biotech Biochem 59:425–429.
  • Balti, R., A. Bougatef, A. Sila, D. Guillochon, P. Dhulster, and N. Nedjar-Arroume. 2015. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem 170:519–525.
  • Balti, R., N. Nedjar-Arroume, E. Y. Adjé, D. Guillochon, and M. Nasri. 2010. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. J Agric Food Chem 58:3840–3846.
  • Barba de la Rosa, A. P., A. B. Montoya, P. Marinez-Cuevas, B. Hernandez-Ledesma, M. F. Leon-Galvan, A. De Leon-Rodriguez, and C. Gonzalez. 2010. Tryptic amaranth glutelin digests induce endothelial nitric oxid production through inhibition of ACE: antihypertensive role of amaranth peptide. Nitric Oxide: Biol Chem 23:106–111.
  • Benzing, T., I. Fleming, A. Blaukat, W. Müller-Esterl, and R. Busse. 1999. Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequestration of the B2 kinin receptor within the plasma membrane of native endothelial cells. Circulation 99:2034–2040.
  • Bernstein, K. E., F. S. Ong, W.-L. B. Blackwell, K. H. Shah, J. F. Giani, R. A. Gonzalez-Villalobos, X. Z. Shen, S. Fuchs, and R. M. Touyz. 2013. A modern understanding of the traditional and nontraditional biological functions of Angiotensin-converting enzyme. Pharmacol Rev 65:1–46.
  • Bernstein, K. E., X. Z. Shen, R. A. Gonzalez-Villalobos, S. Billet, D. Okwan-Duodu, F. S. Ong, and S. Fuchs. 2011. Different in vivo functions of the two catalytic domains of angiotensin- converting enzyme (ACE). Curr Opin Pharmacol 11:105–111.
  • Borghi, C. and F. Rossi. 2015. Role of the Renin-Angiotensin-Aldosterone System and Its Pharmacological Inhibitors in Cardiovascular Diseases: Complex and Critical Issues. High Blood Pressure {&} Cardiovascular Prevention 22:429–444.
  • Brandsch, M., I. Knütter, and E. Bosse-Doenecke. 2008. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 60:543–585.
  • Boelsma, E. and J. Kloek. 2010. IPP-rich milk protein hydrolysate lowers blood pressure in subjects with stage 1 hypertension, a randomized controlled trial. Nutr J 9:52–59.
  • Cadée, J. A., C. Y. Chang, C. W. Chen, C. N. Huang, S. L. Chen, and C. K. Wang. 2007. Bovine casein hydrolysate (C12 Peptide) reduces blood pressure in prehypertensive subjects. Am J Hypertens 20:1–5.
  • Carey, R. M. and H. M. Siragy. 2003. Newly recognized components of the renin–angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 24:261–271.
  • Chen, G. W., J. S. Tsai, B. Sun Pan. 2007. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. Int Dairy J 17:641–647.
  • Chen, J., S. Liu, R. Ye, G. Cai, B. Ji, and Y. Wu. 2013. Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: Purification and characterization. J Funct Foods 5:1684–1692.
  • Chen, J., Y. Wang, Q. Zhong, Y. W, and W. Xia. 2012. Purification and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 33:52–58.
  • Cheng, Z. J., T. Vaskonen, I. Tikkanen, K. Nurminen, H. Ruskoaho, H. Vapaatalo, D. Muller, J. Park, F. C. Luft, E. M. A. Mervaala. 2001. Endothelial dysfunction and salt- sensitive hypertension in spontaneously diabetic Goto–Kakizaki rats. Hypertension 37:433–439.
  • Cheung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo, D. W. Cushman. 1980. Binding of peptide substrates and inhibtiors of angiotensin-converting enzyme: importance of the COOH-terminal dipeptide sequence. J Biol Chem 255:401–407.
  • Chobanian, A. V., G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo, Jr, D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright, Jr and E. J. Roccella. 2003. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572.
  • Cicero, A. F., F. Aubin, V. Azais-Braesco, and C. Borghi. 2013. Do the lactotripeptides isoleucine-proline-proline and valine-proline-proline reduce systolic blood pressure in European subjects A meta-analysis of randomized controlled trials. Am J Hypertens 26:442–449.
  • Cicero, A. F. G., M. Rosticci, B. Gerocarni, S. Bacchelli, M. Veronesi, E. Strocchi, and C. Borghi. 2011. Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomised double-blind clinical trial. Hypertens Res 34:1035–1040.
  • Coates, D. 2003. The angiotensin converting enzyme (ACE). Int J Biochem Cell Biol 35:769–773.
  • Collier, S. and M. Landram. 2012. Treatment of prehypertension: lifestyle and/or medication. Vasc Health Risk Manag 8:613–619.
  • Conrad, C. H., W. W. Brooks, J. A. Hayes, S. Sen, K. G. Robinson, and O. Bing. 1995. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91:161–170.
  • Cushman, D. W., H. S. Cheung. 1971. Spectophotometric assay and properties of the angiotensin I-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648.
  • Daniel, H. 2004. Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 6:361–384.
  • Deddish, P. A., B. M. Marcic, F. Tan, H. L. Jackman, Z. L. Chen, E. G. Erdös. 2002. Neprilysin inhibitors potentiate effects of bradykinin on B2 receptor. Hypertension 39:619–623.
  • Deddish, P. A., B. Marcic, H. L. Jackman, H. Z. Wang, R. A. Skidgel, E. G. Erdös. 1998. N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme: angiotensin-(1–7) and keto-ACE. Hypertension 31:912–917.
  • Ding, L., L. Wang, Z. Yu, T. Zhang, and J. Liu. 2016. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers. Int J Food Sci Nutr 67:111–116.
  • Ding, L., Y. Zhang, Y. Jiang, L. Wang, B. Liu, and J. Liu. 2014. Transport of Egg White ACE-Inhibitory Peptide, Gln-Ile-Gly-Leu-Phe, in Human Intestinal Caco-2 Cell Monolayers with Cytoprotective Effect. J Agric Food Chem 62, 3177–3182.
  • Ehlers, M. R., E. A. Fox, D. J. Strydom, J. F. Riordan. 1989. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci USA 86:7741–7745.
  • Enari, H., Y. Takahashi, M. Kawarasaki, M. Tada, and K. Tatsuta. 2008. Identification of angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect. Fisheries Science 74:911–920.
  • Engberink, M. F., E. G. Schouten, F. J. Kok, L. A. van Mierlo, I. A. Brouwer, J. M. Geleijnse. 2008. Lactotripeptides show no effect on human blood pressure: results from a double-blind randomized controlled trial. Hypertension 51:399–405.
  • Engel, S. L., T. R. Schaeffer, M. H. Waugh, and B. Rubin. 1973. Effects of the nonapeptide SQ 20,881 on blood pressure of rats with experimental renovascular hypertension. Proc Soc Exp Biol Med 143:483–481973.
  • Escudero, E., L. Mora, F. Toldrá. 2014. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chem 161:305–311.
  • Fanelli, C. and R. Zatz. 2011. Linking oxidative stress, the renin-angiotensin system and hypertension. Hypertension 57:373–374.
  • Fernandez-Musoles, R., J. B. Salom, D. Martinez-Maqueda, J. J. Lopez-Diez, I. Recio, and P. Manzanares. 2013. Antihypertensive effects of lactoferrin hydrolyzates: inhibition of angiotensin- and endothelin-converting enzymes. Food Chem 139:994–1000.
  • Ferreira, S. H., D. C. Bartelt, L. J. Greene. 1970. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochem 9:2583–2593.
  • FitzGerald, R. J. and H. Meisel. 2000. Milk protein-derived peptide inhibitors of angiotensin-I- converting enzyme. Br J Nutr 84:33–37.
  • Foltz, M., L. van Buren, W. Klake, and G. S. M. J. E. Duchateau. 2009. Modeling of the relationship between dipeptide structure and dipeptide stability, permeability, and ACE inhibitory activity. J Food Sci 74:243–251.
  • Foltz, M., A. Cerstiaens, A. van Meensel, R. Mols, P.C. van der Pijl, G. Duchateau, and P. Augustijns. 2008. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models. Peptides 29 (Suppl):1312–1320.
  • Foltz, M., E. E. Meynen, V. Bianco, C. van Platerink, T. Koning, and J. Kloek. 2007. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J Nutr 137:953–958.
  • Fox, KM. 2003. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 362:782–788.
  • Fuchs, S., H. D. Xiao, C. Hubert, A. Michaud, D. J. Campbell, J. W. Adams, M. R. Capecchi, P. Corvol, K. E. Bernstein. 2008. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension 51:267–274.
  • Fujita, H., T. Yamagami, and K. Ohshima. 2001. Effects of an ACE-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutr Res 21:1149–1158.
  • Fujita, H., K. Yokoyama, and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I–converting enzyme inhibitory peptides derived from food proteins. J Food Sci 65:564–569.
  • Fujita, H. and M. Yoshikawa. 1999. LKPNM: A prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharm 44:123–127.
  • Fujita, H., H. Usui, and M. Kurahashi. 1995. Isolation and characterization of ovokinin, a bradykinin B1 agonist peptide derived from ovalbumin. Peptide 16:785–790.
  • Ganapathy, V. and F. H. Leibach. 1999. Protein digestion and assimilation. In In Textbook of Gastroenterology ed. T. Yamada, 456–467 Philadelpia, PA: Lippincott Williams &Wilkins.
  • Ganong WF Section, V. 1997. Gastrointestinal function. In Review of Medical Physiology pp. 437–481. Stamford, CT: Appleton & Lange.
  • Garcia-Tejedor, A., M. Castello-Ruiz, J. V. Gimeno-Alcaniz, P. Manzanares, J. B. Salom. 2015. In vivo antihypertensive mechanism of lactoferrin-derived peptides: Reversion of angiotensin I- and angiotensin II-induced hypertension in Wistar rats. J Funct Foods 15:294–300.
  • Garcia-Tejedor, A., M. Sanchez-Rivera L Castello-Ruiz, I. Recio, J. B. Salom, and P. Manzanares. 2014. Novel Antihypertensive Lactoferrin-Derived Peptides Produced by Kluyveromyces marxianus: Gastrointestinal Stability Profile and In Vivo Angiotensin I-Converting Enzyme (ACE) Inhibition. J Agric Food Chem 62:1609–1616.
  • Georgiadis, D., F. Beau, B. Czamy, J. Cotton, A. Yiotakis, and V. Dive. 2003. Roles of the two acitve sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin: insights from selective inhibitors. Circ Res 93:148–154.
  • Ghassem, M., K. Arihara, A. S. Babji. 2012. Isolation, purification and characterisation of angiotensin I- converting enzyme–inhibitory peptides derived from catfish (Clarias batrachus) muscle protein thermolysin hydrolysates. Int J Food Sci Technol 47:2444–2451.
  • Girgih, A. T., C. C. Udenigwe, H. Li, A. P. Adebiyi, R. E. Aluko. 2014. Preventive and treatment effects of a hemp seed (Cannabis sativa L.) mealprotein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur J Nutr 53:1237–1246.
  • Gobbetti, M., P. Ferranti, E. Smacchi, F. Goffredi, and F. Addeo. 2000. Production of angiotensin-I–converting-enzyme–inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl Environ Microbiol 66:3898–3904.
  • Gomez-Ruiz, J. A., M. Ramos, and I. Recio. 2004. Angiotensin converting enzyme inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. Int Dairy J 14:1075–1080.
  • Gouda KG, M., L. R. Gowda, A. G. P. Rao, and V. Prakash. 2006. Angiotensin I-converting enzyme inhibitory peptide derived from Glycinin, the 11S Globulin of soybean (Glycine max). J Agric Food Chem 54:4568–4573.
  • Griendling, K. K., T. J. Murphy, R. W. Alexander. 1993. Molecular biology of the renin–angiotensin system. Circulation 87:1816–1828.
  • Groneberg, D. A., F. Döring, P. R. Eynott, A. Fischer, and H. Daniel. 2001. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1. Am J Physiol Gastrointest Liver Physiol 281:697–704.
  • Gu, Y. and J. Wu. 2013. LC-MS/MS Coupled with QSAR Modeling in Characterising of Angiotensin I-Converting Enzyme Inhibitory Peptides from Soybean Proteins. Food Chem 141:2682–2690.
  • Hata, Y., M. Yamamoto, M. Ohni, K. Nakajima, Y. Nakamura, and T. Takano. 1996. A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 64:767–771.
  • He, R., R. E. Aluko, X. R. Ju. 2014. Evaluating Molecular Mechanism of Hypotensive Peptides Interactions with Renin and Angiotensin Converting Enzyme. PLoS One 9:e91051.
  • Hernandez-Ledesma, B., M. del Mar Contreras, and I. Recio. 2011. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165:23–35.
  • Hernandez-Ledesma, B., L. Amigo, M. Ramos, and I. Recio. 2004. Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J Agr Food Chem 52:1504–1510.
  • Hernandez-Ledesma, B., I. Recio, M. Ramos, and L. Amigo. 2002. Preparation of ovine and caprine β-lactoglobulin hydrolysates with ACE-inhibitory activity. Identification of active peptides from caprine β-lactoglobulin hydrolysed with thermolysin. Int Dairy J 12:805–812.
  • Hirata, H., Y. Nakamura, H. Yada, S. Moriguchi, O. Kajimoto, and T. Takahashi. 2002. Clinical effects of new sour milk drink on mild or moderate hypertensive subjects. J New Rem Clin 51:61–69.
  • Hirota, T., K. Ohki, R. Kawagishi, Y. Kajimoto, S. Mizuno, Y. Nakamura, and M. Kitakaze. 2007. Casein hydrolysate containing the antihypertensive tripeptides Val-Pro-Pro and Ile-Pro-Pro improves vascular endothelial function independent of blood pressure-lowering effects: contribution of the inhibitory action of angiotensin-converting enzyme. Hypertens Res 30:489–496.
  • Hong, F., L. Ming, S. Yi, L. Zhanxia, W. Yongquan, and L. Chi. 2008. The antihypertensive effect of peptides: A novel alternative to drugs? Peptides 29:1062–1071.
  • Hooper, N. M., E. H. Karran, A. J. Turner. 1997. Membrane protein secretases. Biochem J 321:265–279.
  • Hooper, NM. 1994. Families of zinc metalloproteases. FEBS Lett 354:1–6.
  • Horiuchi, M., M. Akishita, V. J. Dzau. 1999. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–21.
  • Husein, A., M. Li, R. M. Graham. 2003. Do studies with ACE N- and C-domain-selective inhibitors provide evidence for a non-ACE, non-chymase angiotensin II-forming pathway? Circ Res 93:91–93.
  • Inoue, K., T. Shirai, H. Ochiai, M. Kasao, K. Hayakawa, M. Kimura, and H. Sansawa. 2003. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Europ J Clin Nutr 57:490–495.
  • Itakura, H., S. Ikemoto, S. Terada, and K. Kondo. 2001. The effect of sour milk on blood pressure in untreated hypertensive and normotensive subjects. J Jap Soc Clin Nutr 23:26–31.
  • Jakubczyk, A., M. Karas, B. Baraniak, and M. Pietrzak. 2013. The Impact of Fermentation and in Vitro Digestion on Formation Angiotensin Converting Enzyme (ACE). Inhibitory Peptides from Pea Proteins. Food Chem 141:3774–3780.
  • Jao, C. L., S. L. Huang, K. C. Hsu. 2012. Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. BioMed 2:130–136.
  • Jappar, D., S. P. Wu, Y. Hu, D. E. Smith. 2010. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and Pept1 knockout mice. Drug Metab Dispos 38:1740–1746.
  • Jaspard, E., L. Wei, F. Alhenc-Gelas. 1993. Differences in the properties and enzymatic specicities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J Bio Chem 268:9496–9503.
  • Jauhiainen, T., M. Rönnback, H. Vapaatalo, K. Wuolle, H. Kautiainen, P. H. Groop, and R. Korpela. 2010. Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. Eur J Clin Nutr 64:424–431.
  • Jauhiainen, T., and R. Korpela. 2007. Milk peptides and blood pressure. J Nutr 137:825–829.
  • Jauhiainen, T., H. Vapaatalo, T. Poussa, S. Kyrönpalo, M. Rasmussen, and R. Korpela. 2005. Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am J Hypertens 18:1600–1605.
  • Jäkälä, P., A. Hakal, A. M. Turpeinen, R. Korpela, and H. Vapaatalo. 2009a. Casein-derived bioactive tripeptides Ile-Pro-Pro and Val-Pro-Pro attenuate the development of hypertension and improve endothelial function in salt-loaded Goto–Kakizaki rats. J Funct Foods 1:366–374.
  • Jäkälä, P., T. Jauhiainen, R. Korpela, and H. Vapaatalo. 2009b. Milk protein-derived bioactive tripeptides Ile-Pro-Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J Funct Foods 1:266–273.
  • Jia, J., H. Ma, W. Zhao, Z. Wang, W. Tian, L. Luo, and R. He. 2010. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem 119:336–342.
  • Jiang, Z., B. Tian, A. Brodkorb, and G. Huo. 2010. Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein. Food Chem 123:779–786.
  • Jung, M. H., S. H. Ihmb, D. H. Lee, W. B. Chung, H. O. Jung, H. J. Youn. 2017. Prehypertension is associated with early complications of atherosclerosis but not with exercise capacity. Int J Cardiol 227:387–392.
  • Junot, C., M. F. Gonzales, E. Ezan, J. Cotton, G. Vazeux, A. Michaud, M. Azizi, S. Vassiliou, A. Yiotakis, P. Corvol, and V. Dive. 2001. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no e ect on angiotensin I hydrolysis. The J Pharmacol Exp Ther 297:606–611.
  • Kaiser, S., M. Martin, D. Lunow, S. Rudolph, S. Mertten, U. Möckel, A. Deußen, and T. Henle. 2016. Tryptophan-containing dipeptides are bioavailable and inhibit plasma human angiotensin-converting enzyme in vivo. Int Dairy J 52:107–114.
  • Kajimoto, O., T. Kurosaki, J. Mizutani, N. Ikeda, K. Kaneko, K. Aihara, M. Yabune, and Y. Nakamura. 2002. Antihypertensive effects of liquid yogurts containing “lactotripeptides (VPP, IPP)” in mild hypertensive subjects. J Nutr Food 5:55–66.
  • Kajimoto, O., Y. Nakamura, H. Yada, S. Moriguchi, H. Hirata, and T. Takahashi. 2001. Hypotensive effects of sour milk in subjects with mild or moderate hypertension. J Jpn Soc Nutr Food Sci 54:347–354.
  • Kawasaki, T., E. Seki, K. Osajima, M. Yoshida, K. Asada, T. Matsui, and Y. Osajima. 2000. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. J Human Hypertens 14:519–523.
  • Kato, H., and T. Suzuki. 1971. Bradykinin-potentiating peptides from the venom of Akistrodon halysblomhof fii: isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochem 10:972–980.
  • Kedzierske, R. M. and M. Yanagisawa. 2001. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41:851–876.
  • Khedr, S., A. Deussen, I. Kopaliani, B. Zatschler, and M. Martin. 2017. Effects of tryptophan-containing peptides on angiotensin converting enzyme activity and vessel tone ex vivo and in vivo. Eur J Nutr. 1–9.
  • Khedr, S., M. Martin, and A. Deussen. 2015. Inhibitory Efficacy and Biological Variability of Tryptophan Containing Dipeptides on Human Plasma Angiotensin Converting Enzyme Activity. J Hypertens 4:2.
  • Kim, S. M., S. Park, and R. Choue. 2010. Effects of Fermented Milk Peptides Supplement on Blood Pressure and Vascular Function in Spontaneously Hypertensive Rats. Food Sci Biotechnol 19:1409–1413.
  • Kim, S. K., H. G. Byun, P. J. Park, and F. Shahidi. 2001. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J Agric Food Chem 49:2992–2997.
  • Kim, Y. K. and B. H. Chung. 1999. A novel angiotensin-I–converting enzyme inhibitory peptide from human αS1-casein. Biotechnol Lett 21:575–578.
  • Kohmura, M., N. Nio, K. Kubo, Y. Minoshma, E. Munekata, and E. Ariyosh. 1989. Inhibition of angiotensin-converting enzyme by synthetic peptides of human αS1-casein. Agric Biol Chem 53:2107–2114.
  • Kopaliani, I., M. Martin, B. Zatschler, B. Müller, and A. Deussen. 2016. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta. Peptides 82:52–59.
  • Korhonen, H. and A. Pihlanto. 2006. Bioactive peptides: Production and functionality. Int Dairy J 16:945–96.
  • Kwon, Y. S., H. G. Lee, H. K. Shin, C. B. Yang. 2000. Purification and identification of angiotensin-I converting enzyme inhibitory peptide from small red bean protein hydrolyzate. Food Sci Biotechnol 9:292–296.
  • Kröger, W. L., R. G. Douglas, H. G. O'Neill, V. Dive, E. D. Sturrock. 2009. Investigating the domain specificity of phosphinic inhibitors RXPA380 and RXP407 in angiotensin- converting enzyme. Biochem 48:8405–8412.
  • Kuba, M., C. Tana, S. Tawata, and M. Yasuda. 2005. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochem 40:2191–2196.
  • Law, M. R., N. J. Wald, J. K. Morris, R. E. Jordan. 2003. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. Br Med J 326:1427–1431.
  • Lee, S. H., Z. J. Qian, S. K. Kim. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 118:96–102.
  • Lee, J. E., I. Y. Bae, H. G. Lee, C. B. Yang. 2006. Tyr-Pro-Lys, an angiotensin I-converting enzyme inhibitory peptide derived from broccoli (Brassica oleracea Italica). Food Chem 99:143–148.
  • Lee, J. R., D. Y. Kwon, H. K. Shin, C. B. Yang. 1999. Purification and identification of angiotensin-I converting enzyme inhibitory peptide from kidney bean protein hydrolysate. Food Sci Biotechnol 8:172–178.
  • Levitt, D. G., R. C. Schoemaker. 2006. Human physiologically based pharmacokinetic model for ACE inhibitors: ramipril and ramiprilat. BMC Clin Pharmacol 6:1–27.
  • Li, H. and R. E. Aluko. 2010. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J Agric Food Chem 58:11471–11476.
  • Li, C. H., T. Matsui, K. Matsumoto, R. Yamasaki, and T. Kawasaki. 2002. Latent production of angiotensin I–converting enzyme inhibitors from buckwheat protein. J Pept Sci 8:267–274.
  • Li, G. H., M. R. Qu, J. Z. Wan, J. M. You. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac J Clin Nutr 16(Suppl 1):275–280.
  • Li, G. H., L. Guo-Wei, S. Yong-Hui, and S. Sunda. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24:469–486.
  • Liu, M., M. Du, Y. Zhang, W. Xu, C. Wang, K. Wang, and L. Zhang. 2013. Purification and identification of an ACE inhibitory peptide from walnut protein. J Agric Food Chem 61:4097–4100.
  • Liu, J. B., Z. Yu, W. Zhao, S. Lin, E. Wang, Y. Zhang, H. Hao, Z. Wang, and F. Chen. 2010. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates. Food Chem 122:1159–1163.
  • Lu, J., D. F. Ren, Y. L. Xue, Y. Sawano, T. Miyakawa, and M. Tanokura. 2010. Isolation of an antihypertensive peptide from Alcalase digest of Spirulina platensis. J Agric Food Chem 58:7166–7171.
  • Lunow, D., S. Kaiser, J. Rückriemen, C. Pohl, and T. Henle. 2015. Tryptophan-containing dipeptides are C-domain selective inhibitors of angiotensin converting enzyme. Food Chem 166:596–602.
  • Ma, M. S., I. Y. Bae, H. G. Lee, C. B. Yang. 2006. Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chem 96:36–42.
  • Maeno, M., N. Yamamoto, and T. Takano. 1996. Identification of an antihypertensive peptide from casein hydrolysaste produced by a proteinase from Lactobacillus helveticus CP790. J Dairy Sci 79:1316–1321.
  • Maes, W., J. Van Camp, V. Vermeirssen, M. Hemeryck, J. M. Ketelslegers, J. Schrezenmeir, P. Van Oostveldt, and A. Huyghebaert. 2004. Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Regul Pept 118:105–109.
  • Majumder, K. and J. Wu. 2010. A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Research International 43:1371–1378.
  • Marcic, B. M. and E. G. Erdös. 2000. Protein kinase C and phosphatase inhibitors block the ability of angiotensin I-converting enzyme inhibitors to resensitize the receptor to bradykinin without altering the primary effects of bradykinin. J Pharmacol Exp Ther 294:605–612.
  • Marcic, BM., P. A. Deddish, H. L. Jackman, EG. Erdös. 1999. Enhancement of bradykinin and resensitization of its B2 receptor. Hypertension 33:835–843.
  • Martin, M., I. Kopaliani, A. Jannasch, C. Mund, V. Todorov, T. Henle, and A. Deussen. 2015. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate. Acta Physiol (Oxf) 215:167–176.
  • Martin, M., A. Wellner, I. Ossowski, and T. Henle. 2008. Identification and quantification of inhibitors for Angiotensin-converting enzyme in hypoallergenic infant milk formulas. J Agric Food Chem 56:6333–6338.
  • Marutama, S., S. Miyoshi, T. Kaneko, and H. Tanaka. 1989. Angiotensin I–converting enzyme inhibitory activities of synthetic peptides related to the tandem repeated sequence of a maize endosperm protein. Agric Biol Chem 51:1077–1081.
  • Masuda, O., Y. Nakamura, and T. Takano. 1996. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 126:3063–3068.
  • Matsufuji, H., S. Matsui T Ohshige, T. Kawasaki, K. Osajima, and Y. Osajima. 1995. Antihypertensive effects of angiotensin fragments in SHR. Biosci Biotechnol Biochem 59:1398–1401.
  • Matsui, T., M. Imamura, H. Oka, K. Osajima, K-I. Kimoto, T. Kawasaki, and K. Masumoto. 2004. Tissue Distribution of Antihypertensive Dipeptide, Val-Tyr, after its Single Oral Administration to Spontaneously Hypertensive Rats. J Peptide Sci 10:535–545.
  • Matsui, T., K. Tamaya, E. Seki, K. Osajima, K. Matsomoto, and T. Kawasaki. 2002a. Absorption of Val-Tyr with in Vitro Angiotensin I-Converting Enzyme Inhibitory Activity into the Circulating Blood System of Mild Hypertensive Subjects. Biol Pharm Bull 25:1228–1230.
  • Matsui, T., K. Tamaya, E. Seki, K. Osajima, K. Matsumoto, and T. Kawasaki. 2002b. Val-Tyr as a natural antihypertensive dipeptide can be absorbed into the human circulatory blood system. Clin Exp Pharmacology and Physiology 29:204–208.
  • Matsui, T., C. H. Li, T. Tanaka, T. Maki, Y. Osajima, and K. Matsumoto. 2000. Depressor effect of wheat germ hydrolysate and its novel angiotensin I–converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biol Pharm Bull 23:427–431.
  • Matsui, T., C. H. Li, and Y. Osajima. 1999. Preparation and characterization of novel bioactive peptides responsible for angiotensin I–converting enzyme inhibition from wheat germ. J Pept Sci 5:289–297.
  • Matsui, T., H. Matsufuji, E. Seki, K. Osajima, M. Nakashima, and Y. Osajima. 1994. Angiotensin I–converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Biosci Biotech Biochem 58:2244–2245.
  • Matsui, T., H. Matsufuji, E. Seki, K. Osajima, M. Nakashima, and Y. Osajima. 1993. Inhibition of angiotensin I–converting enzyme by Bacillus licheniformis alkaline protease hydrolysates derived from sardine muscle. Biosci Biotech Biochem 57:922–925.
  • Matsumura, N., M. Fujii, Y. Takeda, K. Sugita, and T. Shimizu. 1993. Angiotensin I–converting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci Biotech Biochem 57:695–697.
  • Meisel, H., D. J. Walsh, B. A. Murray, R. J. FitzGerald. 2006. ACE Inhibitory Peptides. In: Mine, Y., and F. Shahidi. (ed.) Nutraceutical proteins and peptides in health and disease. New York: CRC Press, Taylor and Francis Group 269–315.
  • Meisel, H. and R. J. FitzGerald. 2000. Opioid peptides encrypted in intact milk protein sequences. Br J Nutr 1:27–31.
  • Meisel, H. 1997. Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers 43:119–128.
  • Michaud, A., T. A. Williams, M. T. Chauvet, and P. Corvol. 1997. Substrate dependence of angiotensin I-converting enzyme inhibition: captopril displays a partial selectivity for inhi- bition of N-acetyl-seryl-aspartyl-lysyl-proline hydrolysis compared with that of angiotensin I. Mol Pharmacol 51:1070–1076.
  • Miguel, M., J. A. Gomez-Ruiz, I. Recio, and A. Aleixandre. 2010. Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats. Mol Nutr Food Res 54:1422–1427.
  • Miguel, M. and A. Aleixandre. 2006. Antihypertensive peptides derived from egg proteins. J Nutr 136:1457–1460.
  • Miguel, M., M. A. Aleixandre, M. Ramos, R. López-Fandiño. 2006. Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. J Agri Food Chem 54:726–731.
  • Miguel, M., R. Lopez-Fandino, M. Ramos, and A. Aleixandre. 2006. Long-term intake of egg white hydrolysate attenuates the development of hypertension in spontaneously hypertensive rats. Life Sci 78:2960–2296.
  • Miguel, M., R. Lopez-Fandino, M. Ramos, and A. Aleixandre. 2005. Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats. Br J Nutr 94:731–737.
  • Minshall, R. D., F. Tan, F. Nakamura, S. F. Rabito, R. P. Becker, B. Marcic, E. G. Erdös. 1997. Potentiation of the actions of bradykinin by angiotensin I-converting enzyme inhibitors. The role of expressed human bradykinin B2 receptors and angiotensin I-converting enzyme in CHO cells. Circ Res 81:848–856.
  • Miyoshi, S., H. Ishikawa, T. Kaneko, F. Fukui, H. Tanaka, and S. Marutama. 1991. Structures and activity of angiotensin converting enzyme inhibitors in α-zein hydrolysate. Agric Biol Chem 55:1313–1318.
  • Mizushima, S., K. Ohshige, J. Watanabe, M. Kimura, T. Kadowaki, and Y. Nakamura. 2004. Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men. Am J Hypertens 17:701–706.
  • Motoi, H., and T. Kodama. 2003. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Food 47:354–358.
  • Muguerza, B., M. Ramos, E. Sanchez, M. A. Manso, M. Miguel, A. Aleixandre, M. A. Delgado, and I. Recio. 2006. Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. Int Dairy J 16:61–69.
  • Mullally, M. M., H. Meisel, R. J. FitzGerald. 1997. Identification of a novel angiotensin-I converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine lactoglobulin. FEBS Lett 402:99–101.
  • Mullally, M. M., H. Meisel, R. J. FitzGerald. 1996. Synthetic peptides corresponding to alpha-lactalbumin and beta-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity. Biol Chem Hoppe Seyler 377:259–260.
  • Muruyama, S., H. Mitachi, H. Tanaka, N. Tomizuka, and H. Suzuki. 1987. Studies on the active site and antihypertensive activity of angiotensin I–converting enzyme inhibitors derived from casein. Agric Biol Chem 51:1581–1586.
  • Muruyama, S., and H. Suzuki. 1982. A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agric Biol Chem 46:1393–1394.
  • Nakamura, T., J. Mizutani, K. Sasaki, N. Yamamoto, and K. Takazawa. 2009. Beneficial potential of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro on central blood pressure and hemodynamic index: A preliminary study. J Med Food 12:1–6.
  • Nakamura, Y., O. Kajimoto, K. Kaneko, K. Aihara, J. Mizutani, N. Ikeda, A. Nishimura, and Y. Kajimoto. 2004. Effects of the liquid yogurts containing “lactotripeptide (VPP, IPP)” on high-normal blood pressure. J Nutr Food 7:123–137.
  • Nakamura, Y., O. Masuda, and T. Takano. 1996. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Biosci Biotechnol Biochem 60:488–489.
  • Nakamura, Y., N. Yamamoto, K. Sakai, and T. Takano. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78:1253–1257.
  • Nakano, D., K. Ogura, M. Miyakoshi, F. Ishii, H. Kawanishi, D. Kurumazuka, C. J. Kwak, K. Ikemura, M. Takaoka, S. Moriguchi, T. Jino, A. Kusumoto, S. Asami, H. Shibata, Y. Kiso, and Y. Matsumura. 2006. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Biosci Biotechnol Biochem 70:1118–1126.
  • Nakashima, Y., K. Arihara, H. Mio, and M. Itoh. 2002. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J Food Sci 67:434–437.
  • Neves, A. C., P. A. Harnedy, M. B. O'Keeffe, R. J. FitzGerald. 2017. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem 218:396–405.
  • Nguyen Dinh Cat, A., R. M. Touyz. 2011. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13:122–128.
  • Nurminen, M. L., M. Sipola, H. Kaarto, A. Pihlanto-Leppala, K. Piilola, R. Korpela, O. Tossavainen, H. Korhonen, and H. Vapaatalo. 2000. Alphalactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats. Life Sci 66:1535–1543.
  • Ondetti, M. A., B. Rubin, D. W. Cushman. 1977. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196:441–444.
  • Ondetti, M. A., N. J. Williams, E. F. Sabo, J. Pluvec, E. R. Weaver, and O. Kocy. 1971. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca: isolation, elucidation of structure and synthesis. Biochem 10:4033–4039.
  • Onuh, J. O., A. T. Girgih, S. A. Malomo, R. E. Aluko, and M. Aliani. 2015. Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. J Funct Foods 14:133–143.
  • Oppong, S. Y., N. M. Hooper. 1993. Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane. Biochem J 292:597–603.
  • Oshima, G., H. Shimabukuro, and K. Nagasawa. 1979. Peptide inhibitors of angiotensin I -converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta 566:128–137.
  • Pfeffer, M. A., J. J. V. McMurray, E. J. Velazquez, J. L. Rouleau, L. Køber, P. Aldo, M. D. Maggioni, S. Solomon, K. Swedberg, F. Van de Werf, and H. White. 2003. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893–1906.
  • Pihlanto-Leppälä, A. 2001. Bioactive peptides derived from bovine proteins: opioid and ACE-inhibitory peptides. Trends Food Sci Technol 11:347–356.
  • Pihlanto-Leppälä, A., P. Koskinen, K. Piilola, T. Tupasela, and H. Korhonen. 2000. Angiotensin-I converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res 67:53–64.
  • Pihlanto-Leppälä, A., T. Rokka, and H. Korhonen. 1998. Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int Dairy J 8:325–331.
  • Pins, J. J. and J. M. Keenan. 2003. The antihypertensive effects of a hydrolysed whey protein isolate supplement (BioZate® 1): a pilot study. FASEB J 17:A1110.
  • Pinto, Y. M., M. Paul, and D. Ganten. 1998. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovas Res 39:77–88.
  • Pripp, AH. 2008. Effect of peptides derived from food proteins on blood pressure: a meta-analysis of randomized controlled trials. Food Nutr Res 52.
  • Qian, Z. J., W. K. Jung, S. H. Lee, H. G. Byun, S. K. Kim. 2007. Antihypertensive effect of an angiotensin I- converting enzyme inhibitory peptide from bullfrog (Rana catesbeiana Shaw) muscle protein in spontaneously hypertensive rats. Process Biochem 42:1443–1448.
  • Qian, Z. J., J. Y. Je, S. K. Kim. 2007. Antihypertensive effect of angiotensin I converting enzyme-inhibitory peptide from hydrolysates of big eye tuna dark muscle, Thunnus obesus. J Agric Food Chem 55:8398–8403.
  • Quiros, A., M. Ramos, B. Muguerza, M. Delgado, M. Miguel, A. Aleixandre, and I. Recio. 2007. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int Dairy J 17:33–41.
  • Rao, S. Q., T. Ju, J. Sun, Y. J. Su, R. R. Xu, Y. J. Yang. 2012. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysate of hen egg white lysozyme. Food Res Int 46:127–134.
  • Rodríguez-Figueroa, J. C., A. F. Gonzalez-Cordova, H. Astiazaran-Garcia, H. Hernandez-Mendoza, B. Vallejo-Cordoba. 2013. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains. J Dairy Sci 96:4094–4099.
  • Rodríguez-Figueroa, J. C., A. F. Gonzalez-Cordova, M. J. Torres-Lanez, H. S. Garcia, B. Vallejo-Cordoba. 2012. Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. J Dairy Sci 95:5536–5543.
  • Rousseau, A., A. Michaud, M. T. Chauvet, M. Lenfant, and P. Corvol. 1995. The hemoregulatory peptide N-Acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem 270:3656–3661.
  • Rubio-Aliaga, I., and H. Daniel. 2008. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 38:1022–1042.
  • Rudolph, S., D. Lunow, S. Kaiser, and T. Henle. 2017. Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins. Food Chem 224:19–25.
  • Ruiz-Giménez, P., J. B. Salom, J. F. Marcos, S. Vallés, D. Martínez-Maqueda, I. Recio, G. Torregrosa, E. Alborch, and P. Manzanares. 2012. Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate: Identification of novel active peptides. Food Chem 131:266–273.
  • Sanchez-Rivera, L., I. Ares, B. Miralles, J. A. Gomez-Ruiz, I. Recio, M. R. Martinez-Larranaga, A. Anadon, M. A. Martinez. 2014. Bioavailability and kinetics of the antihypertensive casein-derived peptide HLPLP in rats. J Agric Food Chem 62:1869–1875.
  • Saiga, A., K. Iwai, T. Hayakawa, Y. Takahata, S. Kitamura, T. Nishimura, and F. Morimatsu. 2008. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J Agric Food Chem 56:9586–9591.
  • Saito, Y., K. Wanezaki, A. Kawato, and S. Imayasu. 1994. Structure and Activity of Angiotensin I Converting Enzyme Inhibitory Peptides from Sake and Sake Lees. Biosci Biotechnol Biochem 58:812–816.
  • Santos R, A. S., A. Ferreira J, T. Verano-Braga, and M. Bader. 2013. Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin–angiotensin system. J Endocrinology 216:1–17.
  • Sarsuna, K. 1998. Isolation and characterization of angiotensin I–converting enzyme inhibitor dipeptide derived from Allium sativum L. (garlic). J Nutr Biochem 9:415–419.
  • Sarro, Y., K. Wanezaki, A. Kawato, and S. Imayasu. 1994. Antihypertensive effects of peptides in sake and it's by-products on spontaneously hypertensive rats. Biosci Biotech Biochem 58:812–816.
  • Sato, M., T. Hoskawa, T. Yamaguchi, T. Nakano, K. Muramoto, T. Kahara, K. Funayama, A. Kobayashi, and T. Nakano. 2002. Angiotensin I–converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem 50:6245–6252.
  • Savoia, C., F. Tabet, G. Yao, E. L. Schiffrin, R. M. Touyz. 2005. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J Hypertens 23:1037–1045.
  • Scruggs, P., C. M. Filipeanu, J. Yang, J. K. Chang, N. J. Dun. 2004. Interaction of ovokinin (2–7) with vascular bradykinin 2 receptors. Regulatory Peptides 120:85–91.
  • Seppo, L., T. Jauhiainen, T. Poussa, and R. Korpela. 2003. A fermented milk high in bioactive peptides has a blood pressure–lowering effect in hypertensive subjects. Am J Clin Nutr 77:326–330.
  • Seppo, L., O. Kerojoki, and T. Suomalainen. 2002. The effect of a Lactobacillus helveticus LBK-16H fermented milk on hypertension – a pilot study on humans. Milchwissenschaft 57:124–127.
  • Sheih, I. C., T. J. Fang, T. K. Wu. 2009. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste. Food Chem 115:279–284.
  • Shimizu, M. 1999. Modulation of intestinal functions by food substances. Nahrung 43:154–158.
  • Shin, Z. I., R. Yu, S. A. Park, D. K. Chung, H. S. Nam, K. S. Kim, H. J. Lee. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem 49:3004–3009.
  • Shin, Z. I., C. W. Ahn, H. S. Nam, H. J. Lee, H. J. Lee, T. H. Moon. 1995. Fractionation of angiotensin converting enzyme inhibitory peptide from soybean paste. Korean J Food Sci Technol 27:230–234.
  • Sipola, M., P. Finckenberg, R. Korpela, H. Vapaatalo, and M. Nurminen. 2002. Effect of long-term intake of milk products on blood pressure in hypertensive rats. J Dairy Res 69:103–111.
  • Sipola, M., P. Finckenberg, J. Santisteban, R. Korpela, H. Vapaatalo, and M. Nurminen. 2001. Long term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J Physiol Pharmacol 52:745–754.
  • Smith, D. E., B. Clémençon, M. A. Hediger. 2013. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 34:323–336.
  • So, P. B. T., P. Rubio, S. Lirio, A. P. Macabeo, H. Y. Huang, M. J. A. T. Corpuz, O. B. Villaflores. 2016. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haekel (box jellyfish) venom hydrolysate. Toxicon 119:77–83.
  • Soubrier, F., F. Alhenc-Gelas, C. Hubert, J. Allegrini, M. John, G. Tregear, and P. Corvol. 1988. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386–9390.
  • Suetsuna, K., J. R. Chen. 2001. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Marine Biotechnol (NY) 3:305–309.
  • Suetsuna, K. and T. Nakano. 2000. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J Nutr Biochem 11:450–454.
  • Suetsuna, K. 1998. Purification and identification of angiotensin I–converting enzyme inhibitors from the red algae Porphyra yezoensis. J Marine Biotechnol 6:163–167.
  • Suh, H. J., J. H. Whang, Y. S. Kim, S. H. Bae, D. O. Noh. 2003. Preparation of angiotensin I converting enzyme inhibitor from corn gluten. Process Biochem 38:1239–1244.
  • Suh, H. J. and J. H. Whang. 1999. A peptide from corn gluten hydrolysate that is inhibitory toward angiotensin I–converting enzyme. Biotechnol Lett 21:1055–1058.
  • Sun, H., D. Liu, S. Li, and Z. Quin. 2009. Transepithelial transport characteristics of the antihypertensive peptide, Lys-Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 73:293–298.
  • Tanaka, M., M. Tokuyasu, T. Matsui, and K. Matsumoto. 2008. Endothelium-independent vasodilation effect of di- and tri-peptides in thoracic aorta of Spague-Dawley rats. Life Sci 82:869–875.
  • Tanzadehpanah, H., A. Asoodeh, M. R. Saberi, and J. Chamani. 2013. Identification of a novel angiotensin-I converting enzyme inhibitory peptide from ostrich egg white and studying its interactions with the enzyme. Innov Food Sci Emerg Technol 18:212–219.
  • Tao, C., Y. Dahai, V. Cornelius, Q. Rui, C. Yamei, J. Zhixin, and Z. Zhanzheng. 2017. Potential health impact and cost-effectiveness of drug therapy for prehypertension. Int J Cardiol 240:403–408.
  • Tauzin, J., L. Miclo, J-L. Gaillard. 2002. Angiotensin-I–converting enzyme inhibitory peptides from tryptic hydrolysate of bovine s2-casein. FEBS Lett 531:369–374.
  • Tavares, T., M. del Mar Contreras, M. Amorim, M. Pintado, I. Recio, F. X. Malcata. 2011. Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides 32:1013–1019.
  • Udenigwe, C. C., Y. S. Lin, W. C. Hou, R. E. Aluko. 2009. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J Func Foods 1:199–207.
  • Usinger, L., C. Reimer, and H. Ibsen. 2012. Fermented milk for hypertension. Cochrane Database of Systematic Reviews Issue 4. Art. No.: CD008118.
  • Usinger, L., H. Ibsen, A. Linneber, M. Azizi, B. Flambard, L. T. Jensen. 2010. Human in vivo study of the renin-angiotensin-aldosterone system and the sympathetic activity after 8 weeks daily intake of fermented milk. Clin Physiol Funct Imaging 30:162–168.
  • van der Pijl, P., A. K. Kies, G. A. M. Ten Have, G. S. M. J. E. Duchateau, E. P. Deutz. 2008. Pharmacokinetics of proline-rich tripeptides in the pig. Peptides 29:2196–2202.
  • Vermeirssen, V., Verstraete W. Van Camp J. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptide. Br J Nutr 92:357–366.
  • Vermeirssen, V., J. Van Camp, J. Devos, and W. Verstraete. 2003. Release of Angiotensin I Converting Enzyme (ACE) inhibitory activity during in vitro gastrointestinal digestion: from batch experiment to semi-continuous model. J Agri Food Chem 51:5680–5687.
  • Wako, Y., S. Ishikawa, and K. Muramoto. 1996. Angiotensin I–converting enzyme inhibitors in autolysates of liver and mantle muscle. Biosci Biotech Biochem 60:1353–1355.
  • Walsh, D. J., H. Bernard, B. A. Murray, J. MacDonald, A. K. Pentzien, G. A. Wright, J. M. Wal, A. D. Struthers, H. Meisel, R. J. FitzGerald. 2004. In vitro generation and stability of the lactokinin β-lactoglobulin fragment (142–148). J Dairy Sci 87:3845–3857.
  • Wang, Z., S. Watanabe, Y. Kobayashi, M. Tanaka, and T. Matsui. 2010. Trp-His, a vasorelaxant dipeptide, can inhibit extracellular Ca2+ entry to rat vascular smooth muscle cells through blockade of dihydropyridine-like L-type Ca2+ channels. Peptides 31:2060–2066.
  • Wang, Y. K., H. L. He, X. L. Chen, C. Y. Sun, Y. Z. Zhang, B. C. Zhou. 2008. Production of novel angiotensin I-converting enzyme inhibitory peptides by fermentation of marine shrimp Acetes chinensis with Lactobacillus fermentum SM 605. Appl Microbiol Biotechnol 79:785–791.
  • Watermeyer, J. M., W. L. Kröger, H. G. O'Neill, B. T. Sewell, E. D. Sturrock. 2008. Probing the Basis of Domain-Dependent Inhibtion Using Novel Ketone Inhibitors of Angiotensin-Converting Enzyme. Biochem 47:5942–5950.
  • Wei, L., F. Alhenc-Gelas, F. Soubrier, A. Michaud, P. Corvol, and E. Clauser. 1991. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem 266:5540–5546.
  • World Health Organization (WHO). 2014. Global Status Report on Noncommunicable Diseases 2014; WHO: Geneve, Switzerland p. 176.
  • Wu, J. and X. Ding. 2001. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem 49:501–506.
  • Wu, J., R. E. Aluko, and S. Nakai. 2006a. Structural requirements of angiotensin 1-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J Agri Food Chem 54:732–738.
  • Wu, J., R. E. Aluko, and S. Nakai. 2006b. Structural requirements of angiotensin 1-converting enzyme Inhibitory peptides: quantitative structure-activity relationship modelling of peptides containing 4–10 amino acid residues. QSAR Comb Sci 25:873–880.
  • Wu, H., H. L. He, X. L. Chen, C. Y. Sun, Y. Z. Zhang, B. C. Zhou. 2008. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochem 43:457–461.
  • Wuerzner, G., S. Peyrard, A. Blanchard, F. Lalanne, and M. Azizi. 2009. The lactotripeptides isoleucine-proline-proline and valine-proline-proline do not inhibit the N-terminal or C-terminal angiotensin converting enzyme active sites in humans. J Hypertens 27:1404–1409.
  • Xu, J. Y., L. Q. M. S. M. Qin, P. Y. Wang, W. Li, and C. Chang. 2008. Effect of milk tripeptides on blood pressure: a meta-analysis of randomized controlled trials. Nutrition 24:933–940.
  • Xue, L., X. Wang, Z. Hu, Z. Wu, L. Wang, H. Wang, and M. Yang. 2017. Identification and characterization of an angiotensin-converting enzyme inhibitory peptide derived from bovine casein. Peptides https://doi.org/10.1016/j.peptides.2017.09.021.
  • Yamamoto, N., A. Akino, and T. Takano. 1994. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci 77:917–22.
  • Yang, Y., G. Tao, P. Liu, and J. Liu. 2008. Peptide with angiotensin I-converting enzyme inhibitor activity from hydrolyzed corn gluten meal. J Agric Food Chem 55:7891–7895.
  • Yang, Y., E. D. Marczak, M. Yokoo, H. Usui, and M. Yoshikawa. 2003. Isolation and antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from spinach Rubisco. J Agric Food Chem 51:4897–4902.
  • Yano, S., K. Suzuki, and G. Funatsu. 1996. Isolation from α-zein of thermolysin peptides with angiotensin-I converting enzyme inhibitory activity. Biosci Biotech Biochem 60:661–663.
  • Yasuda, K., K. Aihara, K. Komazaki, M. Mochii, and Y. Nakamura. 2001. Effect of large high intake of tablets containing ‘lactotripeptides (VPP, IPP)’ on blood pressure, pulse rate and clinical parameters in healthy volunteers. J Nutr Food 4:63–72.
  • Yokoyama, H., H. Chiba, and M. Yoshikawa. 1992. Peptide inhibitors for angiotensin I–converting enzyme from thermolysin digest of dried bonito. Biosci Biotech Biochem 56:1541–1545.
  • Yoshii, H., N. Tachi, R. Ohba, O. Sakamura, H. Takeyama, and T. Itani. 2001. Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks. Comp Biochem Physiol 128:27–33.
  • Yusuf, S., P. Sleight, J. Pogue, J. Bosch, R. Davies, and G. Dagenais. 2000. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153.
  • Zhao, H., H. Usui, K. Ohinata, and M. Yoshikawa. 2007. Met-Arg-Trp derived from Rubisco lowers blood pressure via prostaglandin D2-dependent vasorelaxation in spontaneously hypertensive rats. Peptides 9:345–349.
  • Zhu, X., K. Watanabe, K. Shiraishi, T. Ueki, Y. Noda, T. Matsui, and K. Matsumoto. 2008. Identificaton of ACE-inhibitory peptides in salt-free soy sauce that are transportable across caco-2 cell monolayers. Peptides 29:338–344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.