2,038
Views
64
CrossRef citations to date
0
Altmetric
Reviews

Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications

, , &

References

  • Ade-Omowaye, B. I. O., N. K. Rastogi, A. Angersbach, and D. Knorr. 2003. Combined effects of pulsed electric field pre-treatment and partial osmotic dehydration on air drying behaviour of red bell pepper. Journal of Food Engineering 60 (1):89–98. doi:10.1016/S0260-8774(03)00021-9.
  • Aguiló-Aguayo, I., I. Odriozola-Serrano, L. J. Quintão-Teixeira, and O. Martín-Belloso. 2008. Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chem 107 (2):949–55. doi:10.1016/j.foodchem.2007.08.057.
  • Amami, E., E. Vorobiev, and N. Kechaou. 2006. Modelling of mass transfer during osmotic dehydration of apple tissue pre-treated by pulsed electric field. LWT – Food Science and Technology 39 (9):1014–21. doi:10.1016/j.lwt.2006.02.017.
  • Ammar, J. B., J. L. Lanoisellé, N. I. Lebovka, E. van Hecke, and E. Vorobiev. 2010. Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue. Food Biophysics 5 (3):247–54. doi:10.1007/s11483-010-9167-y.
  • Bai, Y.-X., M. Qu, Z.-Q. Luan, X.-J. Li, and Y.-X. Yang. 2013. Electrohydrodynamic drying of sea cucumber (Stichopus japonicus). LWT – Food Science and Technology 54 (2):570–6. doi:10.1016/j.lwt.2013.06.026.
  • Bansal, V., A. Sharma, C. Ghanshyam, M. L. Singla, and K.-H. Kim. 2015. Influence of pulsed electric field and heat treatment on Emblica officinalis juice inoculated with Zygosaccharomyces bailii. Food and Bioproducts Processing 95:146–54. doi:10.1016/j.fbp.2015.05.005.
  • Barbosa-Cánovas, G. V., and B. Altunakar. 2006. Pulsed Electric Fields Processing of Foods: An Overview. In Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications, eds. J. Raso and V. Heinz, 3–26. Boston, MA: Springer US.
  • Bateni, A., S. S. Susnar, A. Amirfazli, and A. W. Neumann. 2004. Development of a new methodology to study drop shape and surface tension in electric fields. Langmuir 20 (18):7589–97. doi:10.1021/la0494167.
  • Bermúdez-Aguirre, D., C. P. Dunne, and G. V. Barbosa-Cánovas. 2012. Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. International Dairy Journal 24 (1):13–21. doi:10.1016/j.idairyj.2011.11.003.
  • Boulton, R. 2001. The Copigmentation of Anthocyanins and Its Role in the Color of Red Wine: A Critical Review. American Journal of Enology and Viticulture 52 (2):67–87.
  • Bouras, M., N. Grimi, O. Bals, and E. Vorobiev. 2016. Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Industrial Crops and Products 80:50–58. doi:10.1016/j.indcrop.2015.10.051.
  • Cao, W., Y. Nishiyama, and S. Koide. 2004. Electrohydrodynamic drying characteristics of wheat using high voltage electrostatic field. Journal of Food Engineering 62 (3):209–13. doi:10.1016/S0260-8774(03)00232-2.
  • Cheng, J.-H., D.-W. Sun, and H. Pu. 2016. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen-thawed fish muscle. Food Chemistry 197:855–863.
  • Chen, J., R. B. Zhang, X. Q. Wang, W. Luo, M. B. Mo, L. M. Wang, and Z. C. Guan. 2010. Effects of pulsed electric fields on phenols and colour in young red wine. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 30 (1):206–9.
  • Cheng, L., D.-W. Sun, Z. Zhu, and Z. Zhang. 2017. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Critical Reviews in Food Science and Nutrition 57:769–781.
  • Cregenzán-Alberti, O., R. M. Halpin, P. Whyte, J. G. Lyng, and F. Noci. 2015. Study of the suitability of the central composite design to predict the inactivation kinetics by pulsed electric fields (PEF) in Escherichia coli, Staphylococcus aureus and Pseudomonas fluorescens in milk. Food and Bioproducts Processing 95:313–22. doi:10.1016/j.fbp.2014.10.012.
  • Dalvi-Isfahan, M., N. Hamdami, and A. Le-Bail 2016. Effect of freezing under electrostatic field on the quality of lamb meat. Innovative Food Science & Emerging Technologies 37:68–73. doi:10.1016/j.ifset.2016.07.028.
  • Delgado, A. E., and D.-W. Sun. 2002. Desorption isotherms and glass transition temperature for chicken meat. Journal of Food Engineering 55:1–8.
  • Desmond, E. M., T. A. Kenny, P. Ward, and D.-W. Sun. 2000. Effect of rapid and conventional cooling methods on the quality of cooked ham joints. Meat Science 56:271–277.
  • Donsì, F., G. Ferrari, M. Fruilo, and G. Pataro. 2011. Pulsed Electric Fields – assisted vinification. Procedia Food Science 1:780–5. doi:10.1016/j.profoo.2011.09.118.
  • El Darra, N., M. F. Turk, M. A. Ducasse, N. Grimi, R. G. Maroun, N. Louka, and E. Vorobiev. 2016. Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments. Food Chem 194:944–50. doi:10.1016/j.foodchem.2015.08.059.
  • Espachs-Barroso, A., A. Van Loey, M. Hendrickx, and O. Martín-Belloso. 2006. Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science & Emerging Technologies 7 (1–2):40–48. doi:10.1016/j.ifset.2005.07.002.
  • Ganeva, V., B. Galutzov, and J. Teissié. 2003. High yield electroextraction of proteins from yeast by a flow process. Analytical Biochemistry 315 (1):77–84. doi:10.1016/S0003-2697(02)00699-1.
  • Garde-Cerdán, T., A. R. Marsellés-Fontanet, M. Arias-Gil, C. Ancín-Azpilicueta, and O. Martín-Belloso. 2008. Effect of storage conditions on the volatile composition of wines obtained from must stabilized by PEF during ageing without SO2. Innovative Food Science & Emerging Technologies 9 (4):469–76. doi:10.1016/j.ifset.2008.05.002.
  • Giner-Seguí, J., P. Elez-Martínez, and O. Martín-Belloso. 2009. Modeling within the Bayesian framework, the inactivation of pectinesterase in gazpacho by pulsed electric fields. Journal of Food Engineering 95 (3):446–52. doi:10.1016/j.jfoodeng.2009.06.006.
  • Golberg, A., J. Fischer, and B. Rubinsky. 2010. The Use of Irreversible Electroporation in Food Preservation. In Irreversible Electroporation, Ed. B. Rubinsky, 273–312. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Guderjan, M., P. Elez-Martínez, and D. Knorr. 2007. Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innovative Food Science & Emerging Technologies 8 (1):55–62. doi:10.1016/j.ifset.2006.07.001.
  • He, X.-L., G.-L. Jia, E. Tatsumi, and H.-J. Liu. 2016. Effect of corona wind, current, electric field and energy consumption on the reduction of the thawing time during the high-voltage electrostatic-field (HVEF) treatment process. Innovative Food Science & Emerging Technologies 34:135–40. doi:10.1016/j.ifset.2016.01.006.
  • He, X.-L., R. Liu, S. Nirasawa, D.-J. Zheng, and H.-J. Liu. 2013. Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of frozen pork tenderloin meat. Journal of Food Engineering 115 (2):245–50. doi:10.1016/j.jfoodeng.2012.10.023.
  • Hogan, E., A. L. Kelly, and D.-W. Sun. 2005. High Pressure Processing of Foods: An Overview. In Emerging Technologies for Food Processing, Book Series: Food Science and Technology-International Series, ed. D.-W. Sun, 3–32.
  • Hossain, M. B., I. Aguiló-Aguayo, J. G. Lyng, N. P. Brunton, and D. K. Rai. 2015. Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. Innovative Food Science & Emerging Technologies 29:9–14. doi:10.1016/j.ifset.2014.10.014.
  • Hsieh, C.-W., and W.-C. Ko. 2008. Effect of high-voltage electrostatic field on quality of carrot juice during refrigeration. LWT – Food Science and Technology 41 (10):1752–7. doi:10.1016/j.lwt.2008.01.009.
  • Huang, K., T. T. Jiang, W. Wang, L. Gai, and J. P. Wang. 2014. A Comparison of Pulsed Electric Field Resistance for Three Microorganisms with Different Biological Factors in Grape Juice via Numerical Simulation. Food and Bioprocess Technology 7 (7):1981–95.
  • Hu, F., D.-W. Sun, W. Gao, Z. Zhang, X. Zeng, and Z. Han. 2013. Effects of Pre-Existing Bubbles on Ice Nucleation and Crystallization During Ultrasound Assisted Freezing of Water and Sucrose Solution. Innovative Food Science and Emerging Technologies 20:161–166.
  • Jaeger, H., N. Meneses, and D. Knorr. 2014. Food Technologies: Pulsed Electric Field Technology. In Encyclopedia of Food Safety, ed. Y. Motarjemi, 239–44. 3rd Edn. Waltham: Academic Press.
  • Jalté, M., J.-L. Lanoisellé, N. I. Lebovka, and E. Vorobiev. 2009. Freezing of potato tissue pre-treated by pulsed electric fields. LWT – Food Science and Technology 42 (2):576–80. doi:10.1016/j.lwt.2008.09.007.
  • James, C., G. Purnell, and S. J. James. 2015. A Review of Novel and Innovative Food Freezing Technologies. Food and Bioprocess Technology 8 (8):1616–34.
  • Janda, M., R. P. Joshi, L. Krasnoperov, Z. Machala, and S. M. Thagard. 2016. Electrical Discharges. In Encyclopedia of Physical Organic Chemistry, eds. Z. Wang, U. Wille, and E. Juaristi. vol. 5, 2957–3010. John Wiley & Sons, Inc.
  • Kiani, H., D.-W. Sun, A. Delgado, and Z. Zhang. 2012. Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials. Ultrasonics Sonochemistry 19:576–581
  • Kiani, H., Z. Zhang, A. Delgado, and D.-W. Sun. 2011. Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Research International 44:2915–2921.
  • Knoerzer, K. 2016. Nonthermal and Innovative Food Processing Technologies. In Reference Module in Food Science: Food Process Engineering, ed. G. W. Smithers. Elsevier. doi:10.1016/B978-0-08-100596-5.03414-4.
  • Knoerzer, K., R. Buckow, F. J. Trujillo, and P. Juliano. 2015. Multiphysics Simulation of Innovative Food Processing Technologies. Food Engineering Reviews 7 (2):64–81. doi:10.1007/s12393-014-9098-3.
  • López, N., E. Puértolas, P. Hernández-Orte, I. Álvarez, and J. Raso. 2009. Effect of a pulsed electric field treatment on the anthocyanins composition and other quality parameters of Cabernet Sauvignon freshly fermented model wines obtained after different maceration times. LWT – Food Science and Technology 42 (7):1225–31. doi:10.1016/j.lwt.2009.03.009.
  • Lebovka, N. I., I. Praporscic, and E. Vorobiev. 2004. Combined treatment of apples by pulsed electric fields and by heating at moderate temperature. Journal of Food Engineering 65 (2):211–7. doi:10.1016/j.jfoodeng.2004.01.017.
  • Leong, S. Y., and I. Oey. 2014. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes). Food Chem 146:538–47. doi:10.1016/j.foodchem.2013.09.096.
  • Li, X., and M. Farid. 2016. A review on recent development in non-conventional food sterilization technologies. Journal of Food Engineering 182:33–45. doi:10.1016/j.jfoodeng.2016.02.026.
  • Lieberman, M. A., and A. J. Lichtenberg. 2005. Principles of Plasma Discharges and Materials Processing. 2nd ed. Hoboken, NJ: Wiley-Interscience.
  • Loeffler, M. J. 2006. Generation and Application of High Intensity Pulsed Electric Fields. In Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications, Eds. J. Raso and V. Heinz, 27–72. Boston, MA: Springer US.
  • Loginova, K., M. Loginov, E. Vorobiev, and N. I. Lebovka. 2011. Quality and filtration characteristics of sugar beet juice obtained by “cold” extraction assisted by pulsed electric field. Journal of Food Engineering 106 (2):144–51. doi:10.1016/j.jfoodeng.2011.04.017.
  • Luengo, E., J. M. Martínez, A. Bordetas, I. Álvarez, and J. Raso. 2015. Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innovative Food Science & Emerging Technologies 29:15–22. doi:10.1016/j.ifset.2015.02.012.
  • Ma, J., D.-W. Sun, J.-H. Qu, H. Pu. 2017. Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT-Food Science and Technology 82:377–385.
  • Ma, J., H. Pu, D.-W. Sun, W. Gao, J.-H. Qu, and K.-Y. Ma. 2015. Application of Vis-NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles. International Journal of Refrigeration-Revue Internationale du Froid 50:10–18.
  • Marand, H. L., R. S. Stein, and G. M. Stack. 1988. Isothermal crystallization of poly(vinylidene fluoride) in the presence of high static electric fields. I. Primary nucleation phenomenon. Journal of Polymer Science Part B: Polymer Physics 26 (7):1361–83. doi:10.1002/polb.1988.090260703.
  • Martynenko, A., and W.-W. Zheng. 2016. Electrohydrodynamic drying of apple slices: Energy and quality aspects. Journal of Food Engineering 168:215–22. doi:10.1016/j.jfoodeng.2015.07.043.
  • McDonald, K., D.-W. Sun, and T. Kenny. 2001. The effect of injection level on the quality of a rapid vacuum cooled cooked beef product. Journal of Food Engineering 47:139–147.
  • Medina-Meza, I. G., and G. V. Barbosa-Cánovas. 2015. Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. Journal of Food Engineering 166:268–75. doi:10.1016/j.jfoodeng.2015.06.012.
  • Meneses, N., H. Jaeger, and D. Knorr. 2011. pH-changes during pulsed electric field treatments — Numerical simulation and in situ impact on polyphenoloxidase inactivation. Innovative Food Science & Emerging Technologies 12 (4):499–504. doi:10.1016/j.ifset.2011.07.001.
  • Mohamed, M. E. A., and A. H. A. Eissa. 2012. Pulsed Electric Fields for Food Processing Technology. In Structure and Function of Food Engineering, Ed. A. A. Eissa, ( pp. Ch. 11). Rijeka: InTech.
  • Mok, J. H., W. Choi, S. H. Park, S. H. Lee, and S. Jun. 2015. Emerging pulsed electric field (PEF) and static magnetic field (SMF) combination technology for food freezing. International Journal of Refrigeration 50:137–45. doi:10.1016/j.ijrefrig.2014.10.025.
  • Moody, A., G. Marx, B. G. Swanson, and D. Bermúdez-Aguirre. 2014. A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound. Food Control 37:305–14. doi:10.1016/j.foodcont.2013.09.052.
  • Mosqueda-Melgar, J., R. M. Raybaudi-Massilia, and O. Martin-Belloso. 2008. Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol 25 (3):479–91. doi:10.1016/j.fm.2008.01.002.
  • Mousakhani-Ganjeh, A., N. Hamdami, and N. Soltanizadeh. 2015. Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). Journal of Food Engineering 156:39–44. doi:10.1016/j.jfoodeng.2015.02.004.
  • Mousakhani-Ganjeh, A., N. Hamdami, and N. Soltanizadeh. 2016a. Effect of high voltage electrostatic field thawing on the lipid oxidation of frozen tuna fish (Thunnus albacares). Innovative Food Science & Emerging Technologies 36:42–47. doi:10.1016/j.ifset.2016.05.017.
  • Mousakhani-Ganjeh, A., N. Hamdami, and N. Soltanizadeh. 2016b. Thawing of frozen tuna fish (Thunnus albacares) using still air method combined with a high voltage electrostatic field. Journal of Food Engineering 169:149–54. doi:10.1016/j.jfoodeng.2015.08.036.
  • Mullin, J. W. 2001. 5-Nucleation. In Crystallization (Fourth Edition), Ed. J. W. Mullin,181–215. Oxford: Butterworth-Heinemann. doi:10.1016/B978-075064833-2/50007-3.
  • Orlowska, M., M. Havet, and A. Le-Bail. 2009. Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Research International 42 (7):879–84. doi:10.1016/j.foodres.2009.03.015.
  • Ould Ahmedou, S. A., O. Rouaud, and M. Havet. 2009. Assessment of the Electrohydrodynamic Drying Process. Food and Bioprocess Technology 2 (3): 240–7.
  • Pan, Y., D.-W. Sun, and Z. Han. 2017. Applications of Electromagnetic Fields for Nonthermal Inactivation of Microorganisms in Foods: An Overview. Trends in Food Science & Technology 64:13–22.
  • Pataro, G., R. Bobinaitė, Č. Bobinas, S. Šatkauskas, R. Raudonis, M. Visockis, G. Ferrari, and P. Viškelis. 2017. Improving the Extraction of Juice and Anthocyanins from Blueberry Fruits and Their By-products by Application of Pulsed Electric Fields. Food and Bioprocess Technology 10 (9): 1595–605.
  • Pereira, R. N., J. A. Teixeira, and A. A. Vicente. 2011. Exploring the Denaturation of Whey Proteins upon Application of Moderate Electric Fields: A Kinetic and Thermodynamic Study. J Agric Food Chem 59 (21):11589–97. doi:10.1021/jf201727s.
  • Prescott, S. C. 1927. The treatment of milk by an electrical method. American Journal of Public Health (New York, N.Y.: 1912) 17 (3):221–3. doi:10.2105/AJPH.17.3.221.
  • Puértolas, E., P. Hernández-Orte, G. Sladaña, I. Álvarez, and J. Raso. 2010a. Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Research International 43 (3):761–6. doi:10.1016/j.foodres.2009.11.005.
  • Puértolas, E., N. López, S. Condón, J. Raso, and I. Álvarez. 2009. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int J Food Microbiol 130 (1):49–55. doi:10.1016/j.ijfoodmicro.2008.12.035.
  • Puértolas, E., N. López, G. Saldaña, I. Álvarez, and J. Raso. 2010b. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal of Food Engineering 98 (1):120–5. doi:10.1016/j.jfoodeng.2009.12.017.
  • Puértolas, E., G. Saldaña, I. Álvarez, and J. Raso. 2011. Experimental design approach for the evaluation of anthocyanin content of rosé wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chemistry 126 (3):1482–7. doi:10.1016/j.foodchem.2010.11.164.
  • Pu, H., D.-W. Sun, J. Ma, and J.-H. Cheng. 2015. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis. Meat Science 99:81–88.
  • Pu, Y.-Y., and D.-W. Sun. 2016. Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innovative Food Science & Emerging Technologies 33:348–356.
  • Pu, Y.-Y., and D.-W. Sun. 2017. Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering 156:108–119.
  • Qian, J.-Y., Y.-P. Gu, W. Jiang, and W. Chen. 2014. Inactivating effect of pulsed electric field on lipase in brown rice. Innovative Food Science & Emerging Technologies 22:89–94. doi:10.1016/j.ifset.2014.01.010.
  • Qin, B.-L., Q.-H. Zhang, G. V. Barbosa-Canovas, B. G. Swanson, and P. D. Pedrow. 1994. Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Transactions on Dielectrics and Electrical Insulation 1 (6):1047–57. doi:10.1109/94.368658.
  • Qu, J.-H., D.-W. Sun, J.-H. Cheng, and H. Pu. 2017. Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging. LWT-Food Science and Technology 75:529–536.
  • Ramachandran, M. R., and F. C. Lai. 2010. Effects of porosity on the performance of EHD-enhanced drying. Drying Technology 28 (12):1477–83. doi:10.1080/07373937.2010.482710.
  • Riener, J., F. Noci, D. A. Cronin, D. J. Morgan, and J. G. Lyng. 2008. Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chem 109 (2):402–7. doi:10.1016/j.foodchem.2007.12.059.
  • Samaranayake, C. P., and S. K. Sastry. 2016. Effect of moderate electric fields on inactivation kinetics of pectin methylesterase in tomatoes: The roles of electric field strength and temperature. Journal of Food Engineering 186 17–26. doi:10.1016/j.jfoodeng.2016.04.006.
  • Seratlić, S., B. Bugarski, V. Nedović, Z. Radulović, L. Wadsö, P. Dejmek, and F. G. Galindo. 2013. Behavior of the surviving population of Lactobacillus plantarum 564 upon the application of pulsed electric fields. Innovative Food Science & Emerging Technologies 17:93–98. doi:10.1016/j.ifset.2012.11.011.
  • Sharma, P., I. Oey, P. Bremer, and D. W. Everett. 2014. Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal 39 (1):146–56. doi:10.1016/j.idairyj.2014.06.003.
  • Shevkunov, S. V., and A. Vegiri. 2002. Electric field induced transitions in water clusters. Journal of Molecular Structure: THEOCHEM 593 (1–3):19–32. doi:10.1016/S0166-1280(02)00111-2.
  • Shin, J. K., S. J. Lee, H. Y. Cho, Y. R. Pyun, J. H. Lee, and M. S. Chung. 2010. Germination and subsequent inactivation of Bacillus Subtilis spores by pulsed electric field treatment. Journal of Food Processing and Preservation 34 (1):43–54. doi:10.1111/j.1745-4549.2008.00321.x.
  • Siemer, C., S. Toepfl, and V. Heinz. 2014. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy II. Modeling thermal inactivation of B. subtilis spores during PEF processing in combination with thermal energy. Food Control 39:244–50. doi:10.1016/j.foodcont.2013.09.067.
  • Stan, C. A., S. K. Tang, K. J. Bishop, and G. M. Whitesides. 2011. Externally applied electric fields up to 1.6 x 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water. J Phys Chem B 115 (5):1089–97. doi:10.1021/jp110437x.
  • Sun, D.-W. 1999. Comparison and selection of EMC ERH isotherm equations for rice. Journal of Stored Products Research 35:249–264.
  • Sun, D.-W. 2014. Emerging Technologies for Food Processing. 2nd ed. San Diego, California, USA: Academic Press / Elsevier, 635 pp., ISBN 978-0-12-411479-1.
  • Sun, D.-W. 1997. Solar powered combined ejector vapour compression cycle for air conditioning and refrigeration. Energy Conversion and Management 38:479–491.
  • Sun, D.-W., and I. W. Eames. 1996. Performance characteristics of HCFC-123 ejector refrigeration cycles. International Journal of Energy Research 20:871–885.
  • Sun, D.-W., and J. L. Woods. 1993. The moisture-content relative-humidity equilibrium relationship of wheat - A review. Drying Technology 11:1523–1551.
  • Sun, D.-W., and L. Y. Zheng. 2006. Vacuum cooling technology for the agri-food industry: Past, present and future. Journal of Food Engineering 77:203–214.
  • Sun, W., X.-B. Xu, H. Zhang, and C.-X. Xu. 2008. Effects of dipole polarization of water molecules on ice formation under an electrostatic field. Cryobiology 56 (1):93–99. doi:10.1016/j.cryobiol.2007.10.173.
  • Taghian Dinani, S., and M. Havet. 2015a. Effect of voltage and air flow velocity of combined convective-electrohydrodynamic drying system on the physical properties of mushroom slices. Industrial Crops and Products 70:417–26. doi:10.1016/j.indcrop.2015.03.047.
  • Taghian Dinani, S., and M. Havet. 2015b. The influence of voltage and air flow velocity of combined convective-electrohydrodynamic drying system on the kinetics and energy consumption of mushroom slices. Journal of Cleaner Production 95:203–11. doi:10.1016/j.jclepro.2015.02.033.
  • Tao, Y., and D.-W. Sun. 2015. Enhancement of Food Processes by Ultrasound: A Review. Critical Reviews in Food Science and Nutrition 55 (4):570–594.
  • Tsong, T. Y. 1991. Electroporation of cell membranes. Biophysical Journal 60 (2):297–306. doi:10.1016/S0006-3495(91)82054-9.
  • Wang, L. J., and D.-W. Sun. 2001. Rapid cooling of porous and moisture foods by using vacuum cooling technology. Trends in Food Science & Technology 12:174–184.
  • Wang, L. J., and D.-W. Sun. 2004. Effect of operating conditions of a vacuum cooler on cooling performance for large cooked meat joints. Journal of Food Engineering 61:231–240.
  • Wiktor, A., M. Schulz, E. Voigt, D. Witrowa-Rajchert, and D. Knorr. 2015. The effect of pulsed electric field treatment on immersion freezing, thawing and selected properties of apple tissue. Journal of Food Engineering 146:8–16. doi:10.1016/j.jfoodeng.2014.08.013.
  • Xanthakis, E., M. Havet, S. Chevallier, J. Abadie, and A. Le-Bail. 2013. Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innovative Food Science & Emerging Technologies 20:115–20. doi:10.1016/j.ifset.2013.06.011.
  • Xie, A., D.-W. Sun, Z. Zhu, and H. Pu. 2016. Nondestructive Measurements of Freezing Parameters of Frozen Porcine Meat by NIR Hyperspectral Imaging. Food and Bioprocess Technology 9:1444–1454.
  • Xie, A., D.-W. Sun, Z. Xu, and Z. Zhu. 2015. Rapid detection of frozen pork quality without thawing by Vis-NIR hyperspectral imaging technique. Talanta 139:208–215.
  • Yang, Q., D.-W. Sun, and W. Cheng. 2017. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. Journal of Food Engineering 192:53–60.
  • Yin, Y.-G., Y.-Z. Yuzhu Han, and Y. Han. 2006. Pulsed electric field extraction of polysaccharide from Rana temporaria chensinensis David. International Journal of Pharmaceutics 312 (1–2):33–36.
  • Yu, X., O. Bals, N. Grimi, and E. Vorobiev. 2015. A new way for the oil plant biomass valorization: Polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Industrial Crops and Products 74:309–18. doi:10.1016/j.indcrop.2015.03.045.
  • Zheng L.Y., and D.-W. Sun. 2006. Innovative Applications of Power Ultrasound during Food Freezing Processes - A Review. Trends in Food Science & Technology 17 (1):16–23.
  • Zeng, X.-A., S.-J. Yu, L. Zhang, and X.-D. Chen. 2008. The effects of AC electric field on wine maturation. Innovative Food Science & Emerging Technologies 9 (4):463–8. doi:10.1016/j.ifset.2008.03.002.
  • Zhang, B., X.-A. Zeng, W.-T. Lin, D.-W. Sun, and J.-L. Cai. 2013. Effects of electric field treatments on phenol compounds of brandy aging in oak barrels. Innovative Food Science & Emerging Technologies 20:106–14. doi:10.1016/j.ifset.2013.07.003.
  • Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and electrofusion. In Reviews of Physiology, Biochemistry and Pharmacology, Volume 105, (pp. 175–256). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Zuniga, R. N., A. Tolkach, U. Kulozik, and J. M. Aguilera. 2010. Kinetics of formation and physicochemical characterization of thermally-induced beta-lactoglobulin aggregates. J Food Sci 75 (5):E261–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.