367
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques

, &

References

  • Abeysekar, S., N. A. Khan, and P. Yu. 2017. Relationship between protein molecular structural makeup and metabolizable protein supply to dairy cattle from new cool-season forage corn cultivars. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 191:303–14. doi:10.1016/j.saa.2017.10.022.
  • Anderson, T. J., and B. P., Lamsal. 2011. Zein extraction from corn, corn products, and coproducts and modifications for various applications: A review. Cereal Chemistry 88:159–73. doi:10.1094/CCHEM-06-10-0091.
  • Angold, R. E. 2012. The structural of the cereal grain. In Lipids in cereal technology, eds. P. J. Barnes, 1–10. London. UK:Academic Press Inc. Ltd.
  • Au, F., L. E., McKeown, T. A., McAllister, and A. V., Chaves. 2010. Fermentation characteristics of corn-, triticale-, and wheat-based dried distillers' grains with solubles in barley-based diets determined using continuous and batch culture systems. Journal of the Science of Food and Agriculture 90:2074–82.
  • Aufrère, J., K. Theodoridou, I. Mueller-Harvey, P. Yu, and D. Andueza. 2014. ruminal dry matter and nitrogen degradation in relation to condensed tannin and protein molecular structures in sainfoin and lucerne. Journal of Agricultural Science (Cambridge University Press, SCI) 152 (2):333–45. doi:10.1017/S0021859613000452.
  • Ban, Y, L. L. Pratesa, and P. Yu. 2017. Investigating molecular structures of bio-fuel and bio-oil seeds as predictors to estimate protein bioavailability for ruminants by advanced non-destructive vibrational molecular spectroscopy. Journal of Agricultural and Food Chemistry 65 (41):9147–57. doi:10.1021/acs.jafc.7b02239.
  • Beauchemin, K. A. and K. M., Koenig. 2005. Feedlot cattle diets based on barley or corn supplemented with dry corn gluten feed evaluated using the NRC and CNCPS beef models. Can Journal of Animal Sciences 85:365–375. doi:10.4141/A04-060.
  • Batey, I. L. 2010. The diversity of uses for cereal grains. In Cereal grains: Assessing and managing quality, eds. C. W. Wrigley and I. L. Batey, 45–56. Cambridge, UK:CRC Press.
  • Bell, B. 2003. Wheat for animal feed. [Online] Available: http://www.omafra.gov.on.ca/english/livestock/beef/facts/wheat.htm [2017].
  • Bornet, F. 1993. Technological treatments of cereals. Repercussions on the physiological properties of starch. Carbohydrate Polymers 21:195–203. doi:10.1016/0144-8617(93)90018-Y.
  • Boyer, C. D. and L. C., Hannah. 2001. Kernel mutants of corn. In Specialty corns, eds. A. R. Hallauer, 1–31. Boca Raton, FL:CRC Press.
  • Cai, C., L., Zhao, J., Huang, Y., Chen, and C., Wei. 2014. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize. Carbohydrate Polymers 102:606–14. doi:10.1016/j.carbpol.2013.12.010.
  • Cheeke, P. R. 1991. Applied animal nutrition: Feeds and feeding. New York, NY:Macmillan. 504 pp.
  • Cordain, L. 1999. Cereal grains: Humanity's double-edged sword. In Evolutionary aspects of nutrition and health. Diet, exercise, genetics and chronic diseases, eds. A. P. Simopoulos, vol. 84:19–73. World Rev Nutr Diet
  • Diana Di Mavungu, J., S. V., Malysheva, M., Sanders, D., Larionova, J., Robbens, P., Dubruel, C., Van Petegem, and S., De Saeger. 2012. Development and validation of a new LC–MS/MS method for the simultaneous determination of six major ergot alkaloids and their corresponding epimers. Application to some food and feed commodities. Food And Chemical 135:292–303.
  • Doiron, K. J., P., Yu, J. J., McKinnon, and D. A., Christensen. 2009. Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. Journal of Dairy Science 92:3319–30. doi:10.3168/jds.2008-1946.
  • Eckhoff, S. R. and M. R., Paulsen. 1996. Maize. In Cereal grain quality, eds. R. J. Henry and P. S. Kettlewell, 77–112. London, UK:Chapman and Hall Publishers.
  • Fannon, J. E., R. J., Hauber, and J. N., BeMiller. 1992. Surface pores of starch granules. Cereal Chemistry 69:284–88.
  • Fannon, J. E., J. M., Shull, and J. N., BeMiller. 1993. Interior channels of starch granules. Cereal Chemistry 70:611–13.
  • Firkins, J. L., M. L., Eastridge, N. R., St-Pierre, and S. M., Noftsger. 2001. Effects of grain variability and processing on starch utilization by lactating dairy cattle. Journal of Animal Sciences 79:218–38.
  • Flores-Morales, A., M., Jiménez-Estrada, and R., Mora-Escobedo. 2012. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymer 87:61–68. doi:10.1016/j.carbpol.2011.07.011.
  • Fox, D. G., C. J., Sniffen, J. D., O'Connor, J. B., Russell, and P. J., Van Soest. 1992. A net carbohydrate and protein system for evaluating cattle diets. III. Cattle requirements and diet adequacy. Journal of Animal Science 70:3578–96. doi:10.2527/1992.70113578x.
  • Fox, D. G., L. O., Tedeschi, T. P., Tylutki, J. B., Russell, M. E., Van Amburgh, L. E., Chase, A. N., Pell, and T. R., Overton. 2004. The cornell net carbohydrate and protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology 112:29–78. doi:10.1016/j.anifeedsci.2003.10.006.
  • Gamage, I. H. and P., Yu. 2013. Short communication: Comparison of the newly developed DVE/OEB (2010) system and the National Research Council (2001) model in modeling metabolic characteristics of proteins in dairy cattle. Journal of Dairy Science 96:5908–13. doi:10.3168/jds.2012-6105.
  • Gamage, I.H., A. Jonker, X. Zhang, and P. Yu. 2014. Non-Destructive analysis of the conformational differences among feedstock sources and their relevant co-products from bioethanol production with molecular spectroscopy. Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy (England / Elsevier) 118:407–21. doi:10.1016/j.saa.2013.08.095.
  • Gibbon, B. C., X., Wang, and B. A., Larkins. 2003. Altered starch structure is associated with endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America 100:15329–34. doi:10.1073/pnas.2136854100.
  • Goelema, J. O. 1999. Processing of legume seeds: effects on digestive behaviour in dairy cows. Ph.D Thesis. Wageningen Agricultural University, Wageningen, The Netherlands. 222 pp.
  • Government of Alberta. 2014. Triticale production manual. [Online] Available: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/fcd10535 [2014 Dec. 20].
  • Government of Canada. 2015. Canadian wheat classes. [Online] Available: http://www.grainscanada.gc.ca/wheat-ble/classes/classes-eng.htm [2015 Apr. 12].
  • Government of Saskatchewan. 2011. Triticale production and utilization. [Online] Available: http://www.agriculture.gov.sk.ca/Default.aspx?DN=c041754c-03b9-482c-a4a1-c2bc0ac9394a [2017].
  • Győri, Z. 2010. Corn: characteristics and quality requirements. In Cereal grains: Assessing and managing quality, eds. C. W. Wrigley and I. L. Batey, 183–209. Cambridge, UK:CRC Press.
  • Haig, P. A., T., Mutsvangwa, R., Spratt, and B. W., McBride. 2002. Effects of dietary protein solubility on nitrogen losses from lactating dairy cows and comparison with predictions from the cornell net carbohydrate and protein system. Journal of Dairy Science 85:1208–17. doi:10.3168/jds.S0022-0302(02)74184-2.
  • Higgs, R., L., Chase, D., Ross, and M., Van Amburgh. 2012. Evaluating and refining the CNCPS feed library using commercial laboratory feed databases. Pages 146–156 in Proc. 74th Cornell Nutrition Conference For Feed Manufacturers. Cornell University, Syracuse, NY.
  • Huang, X., N. A. Khan, X. Zhang, and P. Yu. 2015. Effects of canola meal pellet conditioning temperature and time on ruminal and intestinal digestion, hourly effective degradation ratio, and potential n to energy synchronization in dairy cows. Journal of Dairy Science 98:8836–45. doi:10.3168/jds.2014-9295.
  • Jonker, A. and P. Yu. 2017. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion, and absorption in the digestive tract of ruminants. International Journal of Molecular Sciences 218 (1105):1–23. doi:10.3390/ijms18051105.
  • Kent, N. L. and A. D., Evers. 1994. Kent's technology of cereals: An introduction for students of food science. 4th ed. Oxford, UK:Pergamon Press. 335 pp.
  • Khan, M. R., and P. Yu. 2013. Thermal stability and molecular microstructure of heat-induced cereal grains, revealed with Raman molecular microspectroscopy and differential scanning calorimetry. Journal of Agricultural and Food Chemistry 61 (26):6495–504. doi:10.1021/jf401306z.
  • Khan, A., H. Booker, and P. Yu. 2015. Effect of heating method on alteration of protein molecular structure in flaxseed: relationship with changes in protein subfraction profile and digestion in dairy cows. Journal of Agricultural and Food Chemistry 63 (4): 1057–66. doi:10.1021/jf503575y.
  • Lanzas, C., C. J., Sniffen, S., Seo, L. O., Tedeschi, and D. G., Fox. 2007a. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Animal Feed Science and Technology 136:167–90. doi:10.1016/j.anifeedsci.2006.08.025.
  • Lanzas, C., L. O., Tedeschi, S., Seo, and D. G., Fox. 2007b. Evaluation of protein fractionation systems used in formulating rations for dairy cattle. Journal of Dairy Science 90:507–21. doi:10.3168/jds.S0022-0302(07)72653-X.
  • Licitra, G., T. M., Hernandez, and P. J., Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57:347–58. doi:10.1016/0377-8401(95)00837-3.
  • McAllister, T. A., L. M., Rode, K. J., Cheng, and C. W., Forsberg. 1991. Selection of a sterilization method for the study of cereal grain digestion. Journal of Animal Science 69:3039–43. doi:10.2527/1991.6973039x.
  • McAllister, T. A., R. C., Phillippe, L. M., Rode, and K. J., Cheng. 1993. Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. Journal of Animal Science 71:205–12. doi:10.2527/1993.711205x.
  • McKeown, L. E., A. V., Chaves, M., Oba, M. E. R., Dugan, E., Okine, and T. A., McAllister. 2010. Effects of corn-, wheat- or triticale dry distillers' grains with solubles on in vitro fermentation, growth performance and carcass traits of lambs. Canadian Journal of Animal Science 90:99–108. doi:10.4141/CJAS09084.
  • McNiven, M. A., R. M. G., Hamilton, P. H., Robinson, and J. W., deLeeuw. 1994. Effect of flame roasting on the nutritional quality of common cereal grains for non-ruminants and ruminants. Animal Feed Science and Technology 47:31–40. doi:10.1016/0377-8401(94)90157-0.
  • Mehrez, A. Z. and E. R., Ørskov. 1977. A study of the artificial fiber bag technique for determining the digestibility of feeds in the rumen. The Journal of Agricultural Science 88:645–50. doi:10.1017/S0021859600037321.
  • Mohamed, R. and A. S., Chaudhry. 2008. Methods to study degradation of ruminant feeds. Nutrition Research Reviews 21:68–81. doi:10.1017/S0954422408960674.
  • Morris, C. F. and S. P., Rose. 1996. Wheat. In Cereal grain quality, eds. R. J. Henry and P. S. Kettlewell, 1–54. London, UK:Chapman and Hall Publishers.
  • Naguleswaran, S., J., Li, T., Vasanthan, and D., Bressler. 2011. Distribution of granule channels, protein, and phospholipid in triticale and corn starches as revealed by confocal laser scanning microscopy. Cereal Chemistry 88:87–94. doi:10.1094/CCHEM-04-10-0062.
  • Naguleswaran, S., J., Li, T., Vasanthan, D., Bressler, and R., Hoover. 2012. Amylolysis of large and small granules of native triticale, wheat and corn starches using a mixture of α-amylase and glucoamylase. Carbohydrate Polymer 88:864–74. doi:10.1016/j.carbpol.2012.01.027.
  • National Research Council. 1996. Nutrient Requirements of Beef Cattle (7th Rev. Ed.). Washington, DC.: National Academy Press, 232 pp.
  • National Research Council. 2001. Nutrient requirements of dairy cattle (7th Rev. Ed.). Washington, DC:National Academy Press, 381 pp.
  • Nuez-Ortín, W. G. 2010. Variation and availability of nutrients in co-products from bio-ethanol production to ruminants. M.Sc. Thesis, University of Saskatchewan, Saskatoon, SK. 126 pp.
  • Oba, M., G. B., Penner, T. D., Whyte, and K., Wierenga. 2010. Effects of feeding triticale dried distillers grains plus solubles as a nitrogen source on productivity of lactating dairy cows. Journal of Dairy Science 93:2044–52. doi:10.3168/jds.2009-2454.
  • Ørskov, E. R., F. D., DeB Hovell, and F., Mould. 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Tropical Animal Health and Production 5:195–213.
  • Ørskov, E. R. and I., McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science 92:499–503. doi:10.1017/S0021859600063048.
  • Owens, F. N., D. S., Secrist, W. J. Hill, and D. R., Gill. 1997. The effect of grain source and grain processing on performance of feedlot cattle: A review. Journal of Animal Science 75:868–79. doi:10.2527/1997.753868x.
  • Peng, Q., N. A., Khan, Z., Wang, and P., Yu. 2014. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. Journal of Dairy Science 97:446–57. doi:10.3168/jds.2013-7298.
  • Peng, Q., N. A. Khan, Z. Wang, X. Zhang, and P. Yu. 2014a. Effect of thermal processing on estimated metabolizable protein supply to dairy cattle from camelina seeds: Relationship with protein molecular structural changes. Journal of Agricultural and Food Chemistry 62:8263–8273. doi:10.1021/jf5013049.
  • Prates, L.L., B. Refat, Y. Lei, M. L. Prates, and P. Yu. 2018. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain. Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy 188:495–506. doi:10.1016/j.saa.2017.07.042.
  • Prates, L.L. and P. Yu. 2017a. Recent research on molecular structure, physiochemical properties, metabolic characteristics of food & feed-type Avena Sativa oats and processing-induced changes with molecular microspectroscopic techniques. Applied Spectroscopy Reviews 52 (10):850–67. doi:10.1080/05704928.2017.1331447.
  • Prates, LL and P Yu. 2017b. Detect unique molecular structure associated with physiochemical properties in CDC varieties of oat grain with unique nutrient traits [Feed Type vs. Milling Type] in comparison with barley grain using advanced molecular spectroscopy. Journal of Cereal Science 74:37–45. doi:10.1016/j.jcs.2017.01.006.
  • Quin, J. I., J. G., Van Der Wath, and S., Myburgh. 1938. Studies on the alimentary canal of Merino sheep in South Africa. IV. Description of experimental technique. Onderstepoort Journal of Veterinary Science and Animal Industry 11:341–60.
  • Refat, B., L. L. Prates, N. A. Khan, Y. Lei, D.A. Christensen, J.J. McKinnon, and P. Yu*. 2017. Physiochemical characteristics and molecular structures for digestible carbohydrates of silages. Journal of Agricultural and Food Chemistry 65(41):8979–91. doi:10.1021/acs.jafc.7b01032.
  • Richards, C. J. and B., Hicks. 2007. Processing of corn and sorghum for feedlot cattle. Veterinary Clinics of North America: Food Practice 23:207–21.
  • Robinson, P. H. 2007. A new look at energy discounts: Using published studies to calculate discounted net energy values for dairy cows. Canadian Journal of Animal Science 87:57–70. doi:10.4141/A06-030.
  • Rooney, L. W., C. M., McDonough, and R. D., Waniska. 2004. The corn kernel. In Corn: origin, history, technology, and production, eds. C. W. Smith, J. Betran and E. C. A. Runge, 273–303. Hoboken, NJ:John Wiley &Sons, Inc.
  • Russell, J. B., J. D., O'Connor, D. G., Fox, P. J., Van Soest, and C. J., Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets. I. Ruminal fermentation. Journal of Animal Science 70:3551–61. doi:10.2527/1992.70113551x.
  • Samadi,   and Yu, P. 2011. Dry and moist heating-induced changes in protein molecular structure, protein subfraction, and nutrient profiles in soybeans. Journal of Dairy Science 94:6092–102. doi:10.3168/jds.2011-4619.
  • Samadi,   Theodoridou, K., and P., Yu. 2013. Detect the sensitivity and response of protein molecular structure of whole canola seed (yellow and brown) to different heat processing methods and relation to protein utilization and availability using ATR-FT/IR molecular spectroscopy with chemometrics. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 105:304–13. doi:10.1016/j.saa.2012.11.096.
  • Seo, S., L.O., Tedeschi, C.G., Schwab, and D.G., Fox. 2006. Development and evaluation of empirical equations to predict feed passage rate in cattle. Animal Feed Science and Technology 128:67–83. doi:10.1016/j.anifeedsci.2005.09.014.
  • Serna-Saldivar, S. O., M. H., Gomez, and L. W., Rooney. 2001. Food uses of regular and specialty corns and their dry-milled fractions. In Specialty Corns, ed. A. R. Hallauer, 303–37. 2nd ed. Boca Raton, FL:CRC Press LLC.
  • Shewry, P. R. 1996. Cereal grain proteins. In Cereal grain quality, eds. R. J. Henry and P. S. Kettlewell, 227–50. London, UK: Chapman and Hall Publishers.
  • Shi, H. and P. Yu. 2017a. Comparison of grating-based near-infrared (NIR) and Fourier transform mid-infrared spectroscopy (ATR-FT/MIR) based on spectral preprocessing and wavelength selection for the determination of crude protein and moisture content in wheat. Food Control 82:57–65. doi:10.1016/j.foodcont.2017.06.015.
  • Shi, H. and P. Yu. 2017b. Exploring the potential of applying infrared spectroscopy in ergot alkaloids determination area: technique, current status, and Challenges. Applied Spectroscopy Reviews, in press. doi:10.1080/05704928.2017.1363771.
  • Sniffen, C. J., J. D., O'Connor, P. J., Van Soest, D. G., Fox, and J. B., Russell. 1992. A Net Carbohydrate and Protein System for evaluating cattle diets. II. Carbohydrate and protein availability. Journal of Animal Science 70:3562–77. doi:10.2527/1992.70113562x.
  • Sun, B., N. A. Khan, M. Sun, L. L. Prates, and P. Yu. 2018. Curve-linear relationship between altered carbohydrate traits and molecular structure and truly absorbed nutrient supply to dairy cattle in hulless barley (Hordeum Vulgare L.). Animal Feed Science and Technology 235:177–188. doi: 10.1016/j.anifeedsci.2017.11.014.
  • Tamminga, S., G. G., Brandsma, J., Dijksta, G. V., Duinkerken, A. M. V., Vuuren, and M. C., Blok. 2007. Protein evaluation for ruminants: The DVE/OEB 2007 system. CVB documentation report nr. 53. CVB, Wageningen University, the Netherlands. http://library.wur.nl/WebQuery/wurpubs/356855.
  • Tamminga, S., W. M., Van Straalen, A. P. J., Subnel, R. G. M., Meijer, A., Steg, C. J. G., Wever and M. C., Block. 1994. The Dutch protein evaluation system: the DVE/OEB-system. Livestock Production Science 40:139–55. doi:10.1016/0301-6226(94)90043-4.
  • Theodoridou, K. and P., Yu. 2013. Metabolic characteristics of the proteins in yellow-seeded and brown-seeded canola meal and presscake in dairy cattle: comparison of three systems (PDI, DVE, NRC) in nutrient supply and feed milk value (FMV). Journal of Agricultural and Food Chemistry 61:2820–2830. doi:10.1021/jf305171z.
  • Thedoridou, K., S. Vail, and P. Yu. 2014. Explore protein molecular structure in endosperm tissues in newly developed black and yellow type canola seeds by using synchrotron-based fourier transform infrared microspectroscopy. Spectrochimica Acta Part A – Molecular and Biomolecular Spectroscopy. 120:421–27 doi:10.1016/j.saa.2013.10.034.
  • Thedoridou, K., X. Zhang, S. Vail, and P. Yu. 2015. Magnitude differences in bioactive compounds, chemical functional groups, fatty acid profiles, nutrient degradation and digestion, molecular structure, and metabolic characteristics of protein in newly developed yellow-seeded and black-seeded canola lines. Journal of Agricultural and Food Chemistry 63 (22):5476–84. doi:10.1021/acs.jafc.5b01577.
  • Tyrrell, H. F. and P. W., Moe. 1975. Effect of intake on digestive efficiency. Journal of Dairy Science 58:1151–63. doi:10.3168/jds.S0022-0302(75)84694-7.
  • Tylutki, T.P. 2010. What happened to my CPM thinking? a.k.a. Moving from CPMv3 (CNCPSv5.5) to CNCPSv6.1 biology. [Online] Available: https://agmodelsystems.com/AMTS/files/CPMtoCNCPS.pdf (Accessed December 21, 2014).
  • Tylutki, T.P., D. G., Fox, V. M., Durbal, L. O., Tedeschi, J. B., Russell, M. E., Van Amburgh, T. R., Overton, L. E., Chase and A. N., Pell. 2008. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle. Animal Feed Science and Technology 143:174–202. doi:10.1016/j.anifeedsci.2007.05.010.
  • Van Amburgh, M. E., A., Foskolos, E. A., Collao-Saenz, R. J., Higgs and D. A., Ross. 2013. Updating the CNCPS feed library with new feed amino acid profiles and efficiencies of use: evaluation of model predictions – version 6.5. Proc. Cornell Nutrition Conference for Feed Manufacturers, Syracuse, NY.
  • Van Amburgh, M. E., L. E., Chase, T. R., Overton, D. A., Ross, E. B., Recktenwald, R. J., Higgs and T. P., Tylutki. 2010. Updates to the cornell net carbohydrate and protein system v6.1 and implications for ration formulation. Proc. Cornell Nutrition Conference, Syracuse, NY.
  • Van der Poel, A. F. B., J., Blonk, D. J., van Zuilichem and M. G., van Oort. 1990. Thermal inactivation of lectins and trypsin inhibitor activity during steam processing of dry beans (Phaseolus vulgaris) and effects on protein quality. Journal of the Science of Food and Agriculture 53:215–28. doi:10.1002/jsfa.2740530209.
  • Van Duinkerken, G., M. C., Blok, A., Bannink, J. W., Cone, J., Dijkstra, A. M., Van Vuuren and S., Tamminga. 2011. Update of the Dutch protein evaluation system for ruminants: the DVE/OEB2010 system. The Journal of Agricultural Science 149:351–67. doi:10.1017/S0021859610000912.
  • Wanderley, R. C., G. A., Alhadhrami, M., Pessarakli, J. L., Aquino-Ramos and J. T., Huber. 1999. An assessment of the microbial colonization of forage in the rumen of dairy cows and camels. Animal Feed Science and Technology 76:207–18. doi:10.1016/S0377-8401(98)00229-6.
  • Weiss, W.P., H.R., Conrad and N.R., St. Pierre. 1992. A theoretically based model for predicting total digestible nutrient values of forages and concentrates. Animal Feed Science and Technology 39:95–110. doi:10.1016/0377-8401(92)90034-4.
  • Wheat DDGS. 2010. BioEthanol industry status in Canada. [Online] Available: http://www.ddgs.usask.ca/MarketingandTechInfo/EthanolIndustryStatusinWesternCanada.aspx[2017].
  • White, P. J. 2001. Properties of corn starch. In Specialty corns, eds. A. R. Hallauer, 34–62. Boca Raton, FL:CRC Press.
  • Wierenga, K. T., T. A., McAllister, D. J., Gibb, A. V., Chaves and E. K., Okine. 2010. Evaluation of triticale dried distillers grains with solubles as a substitute for barley grain and barley silage in feedlot finighing diets. Journal of Animal Science 88:3018–29. doi:10.2527/jas.2009-2703.
  • Wrigley, C. W. 2010. Cereal-grain morphology and composition. In Cereal grains: Assessing and managing quality, eds. C. W. Wrigley and I. L. Batey, 24–43. Cambridge, UK:CRC Press.
  • Xin, H., K. Theodoridou, and P. Yu* 2014. Implication of modified molecular structure of lipid through heat-related process to fatty acids supply in brassica carinata seed. Industrial Crops and Products 62:204–11. doi:10.1016/j.indcrop.2014.08.025.
  • Xu, N.N., J. Liu, and P. Yu. 2018. Alteration of biomacromolecule in corn by steam flaking in relation to biodegradation kinetics in ruminant systems, revealed with vibrational molecular spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 191:491–97. doi:10.1016/j.saa.2017.10.040.
  • Yan, X., N. A., Khan, F., Zhang, L., Yang, and P., Yu. 2014. Microwave irradiation induced changes in protein molecular structures of barley grains: relationship to changes in protein chemical profile, protein subfractions, and digestion in dairy cows. Journal of Agricultural and Food Chemistry 62:6546–55. doi:10.1021/jf501024j.
  • Yan, X., H., Shi, F., Zhang, Y., Ying, W., Zhang, P., Yu. 2018. Effect of durations of microwave irradiation (3 and 5 min) on truly absorbable nutrient supply of newly developed hulless barley varieties (Hordeum vulgare L.) in comparison with conventional hulled barley variety. Journal of Cereal Science 79:424–30. doi:10.1016/j.jcs.2017.12.003.
  • Yang, L., D. A. Christensen, J.J. McKinnon, A. D. Beattie, and P. Yu*. 2013a. Predicted truly absorbed protein supply from hulless barley (Hordeum vulgare L.) with altered carbohydrate traits. Journal of Cereal Science 58:372–79. doi:10.1016/j.jcs.2013.07.008.
  • Yang, L., D. A. Christensen, J. J. McKinnon, A. D. Beattie, H. Xin, and P. Yu. 2013b. Investigating the molecular structure features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy. Journal of Agricultural and Food Chemistry (USA) 61:11250–11260. doi:10.1021/jf403196z.
  • Yang, L., J.J. McKinnon, D.A. Christensen, A.D. Beattie, and P. Yu. 2014. Characterizing the molecular structure features of newly developed hulless barley cultivars with altered carbohydrate traits (Hordeum Vulgare l.) by Globar-sourced infrared spectroscopy in relation to nutrient utilization and availability. Journal of Cereal Science 60:48–59. doi:10.1016/j.jcs.2013.12.013.
  • Ying, Y and P, Yu. 2017. Structural responses of chemical functional groups in different types of cereal grains to heat-related processing methods revealed with advanced synchrotron and globar-sourced Molecular (Micro)Spectroscopy. In Spectroscopic methods in food analysis, Eds. A. S. Franca and L. M.L. Nollet, 465–85. Boca Raton, FL, USA: Published by CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, 33487-2742.
  • Yu, P. 2004. Application of advanced synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIR) to animal nutrition and feed science: A novel approach. British Journal of Nutrition 92:869–85. doi:10.1079/BJN20041298.
  • Yu, P. 2005a. Prediction of protein supply to ruminants from concentrates: comparison of the NRC-2001 model with the DVE/OEB system. Journal of the Science of Food and Agriculture 85:527–538. doi:10.1002/jsfa.2015.
  • Yu, P. 2010. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: A synchrotron –based molecular structure and nutrition research program. Molecular Nutrition & Food Research 54:1535–45. doi:10.1002/mnfr.201000178.
  • Yu, P. 2011. Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. Journal of Synchrotron Radiation 18:790–801. doi:10.1107/S0909049511023727.
  • Yu, P. 2012. Book Chapter: Synchrotron Soft X-Ray and Infrared Microspectroscopy Contributions to Advances in Feed Chemistry and Feed Science Technology. In Current microscopy contributions to advances in science and technology, microscopy book series volume – number 5, ISBN (13): 978-84-939843-6-6, Ed. A. Méndez-Vilas, Vol. 2, 1504–10. Spain:Published by Formatex Research Center.
  • Yu, G. Q. and P. Yu. 2015. Combining vibrational spectroscopy with chemometric techniques for the study of response and sensitivity of molecular functional groups mainly related to lipid biopolymer to processing applications. Analytical and Bioanalytical Chemistry 407:7245–53. doi:10.1007/s00216-015-8883-z.
  • Yu, P., H., Block, Z., Niu, and K., Doiron. 2007. Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue. Journal of Synchrotron Radiation 14:382–90. doi:10.1107/S0909049507014264.
  • Yu, P., D. A., Christensen, and J. J., McKinnon. 2003a. Comparison of the national research council-2001 Model with the Dutch System (DVE/OEB) in the prediction of nutrient supply to dairy cows from forages. American Dairy Science 86:2178–92. doi:10.3168/jds.S0022-0302(03)73808-9.
  • Yu, P., J. O., Goelema, and S., Tamminga. 2000. Using the DVE/OEB model to determine optimal conditions of pressure toasting on horse beans (Vicia faba) for the dairy feed industry. Animal Feed Science and Technology 86:165–76. doi:10.1016/S0377-8401(00)00171-1.
  • Yu, P., J. A., Meier, D. A., Christensen, B. G., Rossnagel, and J. J., McKinnon. 2003b. Using the NRC-2001 model and the DVE/OEB system to evaluate nutritive values of Harrington (malting-type) and Valier (feed-type) barley for ruminants. Animal Feed Science and Technology 107:45–60. doi:10.1016/S0377-8401(03)00062-2.
  • Yu, G.Q., T. Warkentin, Z. Niu, N. Khan, and P. Yu. 2015. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (pisum sativum l.): a molecular spectroscopic analysis. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 151:980–88. doi:10.1016/j.saa.2015.06.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.