5,841
Views
125
CrossRef citations to date
0
Altmetric
Reviews

Recent developments of artificial intelligence in drying of fresh food: A review

, &

References

  • Achata, E., C. Esquerre, C. O'Donnell, and A. Gowen 2015. A study on the application of near infrared hyperspectral chemical imaging for monitoring moisture content and water activity in low moisture systems. Molecules 20 (2):2611–21. doi:10.3390/molecules20022611.
  • Aghbashlo, M., S. Hosseinpour, and M. Ghasemi-Varnamkhasti 2014. Computer vision technology for real-time food quality assurance during drying process. Trends in Food Science & Technology 39 (1):76–84. doi:10.1016/j.tifs.2014.06.003.
  • Aghbashlo, M., S. Hosseinpour, and A. S. Mujumdar 2015. Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. Drying Technology 33 (12):1397–462. doi:10.1080/07373937.2015.1036288.
  • Aghbashlo, M., H. Mobli, S. Rafiee, and A. Madadlou 2013. An artificial neural network for predicting the physiochemical properties of fish oil microcapsules obtained by spray drying. Food Science and Biotechnology 22 (3):677–85. doi:10.1007/s10068-013-0131-8.
  • Aghilinategh, N., S. Rafiee, S. Hosseinpour, M. Omid, and S. S. Mohtasebi 2016. Real-time color change monitoring of apple slices using image processing during intermittent microwave convective drying. Food Sci Technol Int 22 (7):634–46. doi:10.1177/1082013216636263.
  • Al-Mahasneh, M., F. Alkoaik, A. Khalil, A. Al-Mahasneh, A. El-Waziry, R. Fulleros, and T. Rababah 2014. A Generic Method for Determining Moisture Sorption Isotherms of Cereal Grains and Legumes Using Artificial Neural Networks. Journal of Food Process Engineering 37 (3):308–16. doi:10.1111/jfpe.12087.
  • Arvin, F., S. Doraisamy, and M. Javanmard 2011. Utilization of Fuzzy Controller for Laboratory Scale Convective Fruit Dryers. Journal of Applied Sciences 11 (5):867–872. doi:10.3923/jas.2011.867.872.
  • Atthajariyakul, S., and T. Leephakpreeda 2006. Fluidized bed paddy drying in optimal conditions via adaptive fuzzy logic control. Journal of Food Engineering 75 (1):104–14. doi:10.1016/j.jfoodeng.2005.03.055.
  • Azadbakht, M., H. Aghili, A. Ziaratban, and M. V. Torshizi 2017. Application of artificial neural network method to exergy and energy analyses of fluidized bed dryer for potato cubes. Energy 120:947–58. doi:10.1016/j.energy.2016.12.006.
  • Azadeh, A., N. Neshat, A. Kazemi, and M. Saberi 2011. Predictive control of drying process using an adaptive neuro-fuzzy and partial least squares approach. The International Journal of Advanced Manufacturing Technology 58 (5-8):585–96. doi:10.1007/s00170-011-3415-2.
  • Bahmani, A., S. M. Jafari, S.-A. Shahidi, and D. Dehnad 2016. Mass Transfer Kinetics of Eggplant during Osmotic Dehydration by Neural Networks. Journal of Food Processing and Preservation 40 (5):815–27. doi:10.1111/jfpp.12435.
  • Balbay, A., Y. Kaya, and O. Sahin 2012. Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine. Energy 44 (1):352–57. doi:10.1016/j.energy.2012.06.022.
  • Banakar, A., and S. R. Karimi Akandi 2012. A Comparison of Mathematical and Artificial Neural Network Modeling for Rosa Petals Using Hot Air Drying Method. International Journal of Computational Intelligence and Applications 11 (02):1250014. doi:10.1142/S1469026812500149.
  • Barié, N., M. Bücking, and M. Rapp 2006. A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring. Sensors and Actuators B: Chemical 114 (1):482–88. doi:10.1016/j.snb.2005.06.051.
  • Barroca, M. J., R. P. F. Guiné, A. R. P. Calado, P. M. R. Correia, and M. Mendes 2017. Artificial neural network modelling of the chemical composition of carrots submitted to different pre-drying treatments. Journal of Food Measurement and Characterization 11 (4):1815–26. doi:10.1007/s11694-017-9563-9.
  • Barzegar, M., D. Zare, and R. L. Stroshine 2015. An integrated energy and quality approach to optimization of green peas drying in a hot air infrared-assisted vibratory bed dryer. Journal of Food Engineering 166:302–15. doi:10.1016/j.jfoodeng.2015.06.026.
  • Khazaei, B., T. N., G. T., K. H., M. H., and A. Banakar 2013. Applied machine vision and artificial neural network for modeling and controlling of the grape drying process. Computers and Electronics in Agriculture 98:205–13. doi:10.1016/j.compag.2013.08.010.
  • Benalia, S., S. Cubero, J. M. Prats-Montalbán, B. Bernardi, G. Zimbalatti, and J. Blasco 2016. Computer vision for automatic quality inspection of dried figs (Ficus carica L.) in real-time. Computers and Electronics in Agriculture 120:17–25. doi:10.1016/j.compag.2015.11.002.
  • Chayjan, R. A. 2014. Modeling some drying characteristics of sour cherry (Prunus cerasus L.) under infrared radiation using mathematical models and artificial neural networks. Agric Eng Int: CIGR Journal 16 (1):265–79.
  • Chayjan, R. A., M. Kaveh, and S. Khayati 2014. Modeling some drying characteristics of sour cherry (Prunus cerasus L.) under infrared radiation using mathematical models and artificial neural networks. Agricultural Engineering International Cigr Journal 16 (1):265–79.
  • Chen, Y., and A. Martynenko 2013. Computer Vision for Real-Time Measurements of Shrinkage and Color Changes in Blueberry Convective Drying. Drying Technology 31 (10):1114–23. doi:10.1080/07373937.2013.775587.
  • Dai, A., X. Zhou, and X. Liu 2017. Design and Simulation of a Genetically Optimized Fuzzy Immune PID Controller for a Novel Grain Dryer. IEEE Access 5 (99):14981–90. doi:10.1109/ACCESS.2017.2733760.
  • Rosa, D., A. R., F. Leone, F. Cheli, and V. Chiofalo 2017. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment – A review. Journal of Food Engineering 210:62–75. doi:10.1016/j.jfoodeng.2017.04.024.
  • Du, C. J., and D. W. Sun 2004. Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology 15 (5):230–49. doi:10.1016/j.tifs.2003.10.006.
  • Echeverría, J., and R. Tabarés 2016. Artificial Intelligence, Cybercities and Technosocieties. Minds and Machines 27 (3):473–93. doi:10.1007/s11023-016-9412-3.
  • Fazaeli, M., Z. Emam-Djomeh, M. Omid, and A. Kalbasi-Ashtari 2011. Prediction of the Physicochemical Properties of Spray-Dried Black Mulberry (Morus nigra) Juice using Artificial Neural Networks. Food and Bioprocess Technology 6 (2):585–90. doi:10.1007/s11947-011-0648-x.
  • Fernández, L., C. Castillero, and J. M. Aguilera 2005. An application of image analysis to dehydration of apple discs. Journal of Food Engineering 67 (1-2):185–93. doi:10.1016/j.jfoodeng.2004.05.070.
  • Fuangkhon, P. 2017. Parallel Distance-Based Instance Selection Algorithm for Feed-Forward Neural Network. Journal of Intelligent Systems 26 (2):335–358. doi:10.1515/jisys-2015-0039.
  • Gao, K., L. Zhou, J. Bi, J. Yi, X. Wu, and M. Xiao 2017a. Research on the nonenzymatic browning reactions in model systems based on apple slices dried by instant controlled pressure drop drying. Drying Technology 35 (11):1302–11. doi:10.1080/07373937.2017.1319856.
  • Gao, K., L. Zhou, J. Bi, J. Yi, X. Wu, M. Zhou, X. Wang, and X. Liu 2017b. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC. J Sci Food Agric 97 (8):2533–40. doi:10.1002/jsfa.8070.
  • Gershman, S. J. 2016. Empirical priors for reinforcement learning models. Journal of Mathematical Psychology 71:1–6. doi:10.1016/j.jmp.2016.01.006.
  • Ghaderi, S. 2012. Comparison of mathematical models and artificial neural networks for prediction of drying kinetics of mushroom in microwave-vacuum drier. Chemical Industry & Chemical Engineering Quarterly. 18 (2):283–93. doi:10.2298/CICEQ110823005G.
  • Giovagnoli-Vicuña, C., N. O. Moraga, V. Briones-Labarca, and P. Pacheco-Pérez 2017. Quality Assessment and Mathematical Modeling of Hot-Air Convective Drying of Persimmon (Diospyros kaki L.) Fruit. International Journal of Food Engineering 13 (7). doi:10.1515/ijfe-2016-0333.
  • Golpour, I. 2015. Prediction of paddy moisture content during thin layer drying using machine vision and artificial neural networks. Computers and Electronics in Agriculture 137.
  • Guiné, R. P. F., A. C. Cruz, and M. Mendes 2014. Convective Drying of Apples: Kinetic Study, Evaluation of Mass Transfer Properties and Data Analysis using Artificial Neural Networks. International Journal of Food Engineering 10 (2):281–299. doi:10.1515/ijfe-2012-0135.
  • Guine, R. P., M. J. Barroca, F. J. Goncalves, M. Alves, S. Oliveira, and M. Mendes 2015. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chem 168:454–59. doi:10.1016/j.foodchem.2014.07.094.
  • Guzzo da Silva, B., A. M. Frattini Fileti, and O. Pereira Taranto 2014. Drying of Brazilian Pepper-Tree Fruits (Schinus terebinthifoliusRaddi): Development of Classical Models and Artificial Neural Network Approach. Chemical Engineering Communications 202 (8):1089–97. doi:10.1080/00986445.2014.901220.
  • Hacihafizoglu, O., A. Cihan, and K. Kahveci 2008. Mathematical modelling of drying of thin layer rough rice. Food and Bioproducts Processing 86 (C4):268–75. doi:10.1016/j.fbp.2008.01.002.
  • Hosseinpour, S., S. Rafiee, M. Aghbashlo, and S. S. Mohtasebi 2014. Computer Vision System (CVS) for In-Line Monitoring of Visual Texture Kinetics During Shrimp (PenaeusSpp.) Drying. Drying Technology 33 (2):238–54. doi:10.1080/07373937.2014.947513.
  • Hosseinpour, S., S. Rafiee, and S. S. Mohtasebi 2011. Application of Image Processing to Analyze Shrinkage and Shape Changes of Shrimp Batch during Drying. Drying Technology. 29 (12):1416–38. doi:10.1080/07373937.2011.587620.
  • Hosseinpour, S., S. Rafiee, S. S. Mohtasebi, and M. Aghbashlo 2013. Application of computer vision technique for on-line monitoring of shrimp color changes during drying. Journal of Food Engineering 115 (1):99–114. doi:10.1016/j.jfoodeng.2012.10.003.
  • Huang, B., and A. S. Mujumdar 1993. Use of Neural Network to Predict Industrial Dryer Performance. Drying Technology 11 (3):525–41. doi:10.1080/07373939308916842.
  • Husna, M., and A. Purqon 2016. Prediction of Dried Durian Moisture Content Using Artificial Neural Networks. Journal of Physics: Conference Series 739:012077.
  • Huang, Z., F. Marra, J. Subbiah, and S. Wang 2016. Computer simulation for improving radio frequency (RF) heating uniformity of food products: A review. Crit Rev Food Sci Nutr 58 (6):1033–1057. doi:10.1080/10408398.2016.1253000.
  • Jafari, S. M., M. Ganje, D. Dehnad, and V. Ghanbari 2016a. Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion. Journal of Food Processing and Preservation 40 (2):329–39. doi:10.1111/jfpp.12610.
  • Jafari, S. M., V. Ghanbari, M. Ganje, and D. Dehnad 2016b. Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer. Journal of Food Quality 39 (2):98–108. doi:10.1111/jfq.12180.
  • Jena, S., and A. Sahoo 2013. ANN modeling for diffusivity of mushroom and vegetables using a fluidized bed dryer. Particuology 11 (5):607–13. doi:10.1016/j.partic.2012.07.015.
  • Jiang, H., Z. Liu, and S. Wang 2017. Microwave processing: Effects and impacts on food components. Crit Rev Food Sci Nutr 1–14. https://doi.org/10.1080/10408398.2017.1319322.
  • Jiang, H., M. Zhang, A. S. Mujumdar, and R.-X. Lim 2015. Drying uniformity analysis of pulse-spouted microwave–freeze drying of banana cubes. Drying Technology 34 (5):539–46. doi:10.1080/07373937.2015.1061000.
  • Jiang, H., M. Zhang, Z. Fang, A. S. Mujumdar, and B. Xu 2016. Effect of different dielectric drying methods on the physic-chemical properties of a starch–water model system. Food Hydrocolloids 52:192–200. doi:10.1016/j.foodhyd.2015.06.021.
  • Kamiński, W., E. Tomczak, and P. Strumill 1998. Neurocomputing Approaches to Modelling of Drying Process Dynamics. Drying Technology 16 (6):967–92. doi:10.1080/07373939808917450.
  • Kara, A., and I. Dogan 2018. Reinforcement learning approaches for specifying ordering policies of perishable inventory systems. Expert Systems with Applications 91:150–58. doi:10.1016/j.eswa.2017.08.046.
  • Kaveh, M., and R. Amiri Chayjan 2017. Modeling Thin-Layer Drying of Turnip Slices Under Semi-Industrial Continuous Band Dryer. Journal of Food Processing and Preservation 41 (2):e12778. doi:10.1111/jfpp.12778.
  • Kaveh, M., and R. A. Chayjan 2014. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks. Acta Scientiarum Polonorum Technologia Alimentaria 13 (1):65. doi:10.17306/J.AFS.2014.1.6.
  • Khawas, P., K. K. Dash, A. J. Das, and S. C. Deka 2015. Modeling and optimization of the process parameters in vacuum drying of culinary banana (MusaABB) slices by application of artificial neural network and genetic algorithm. Drying Technology 34 (4):491–503. doi:10.1080/07373937.2015.1060605.
  • Kiani, S., S. Minaei, and M. Ghasemi-Varnamkhasti 2016. Fusion of artificial senses as a robust approach to food quality assessment. Journal of Food Engineering 171:230–39. doi:10.1016/j.jfoodeng.2015.10.007.
  • Kondakci, T., and W. Zhou 2016. Recent Applications of Advanced Control Techniques in Food Industry. Food and Bioprocess Technology 10 (3):522–42. doi:10.1007/s11947-016-1831-x.
  • Krishna Murthy, T. P., and B. Manohar 2012. Microwave drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modelling and artificial neural network. International Journal of Food Science & Technology 47 (6):1229–36. doi:10.1111/j.1365-2621.2012.02963.x.
  • Laurienzo, P., G. Cammarota, M. Di Stasio, G. Gentile, C. Laurino, and M. G. Volpe 2013. Microstructure and olfactory quality of apples de-hydrated by innovative technologies. Journal of Food Engineering 116 (3):689–94. doi:10.1016/j.jfoodeng.2013.01.002.
  • Li, Z., G. S. V. Raghavan, N. Wang, and Y. Gariepy 2009. Real-time, volatile-detection-assisted control for microwave drying. Computers and Electronics in Agriculture 69 (2):177–84. doi:10.1016/j.compag.2009.08.002.
  • Liu, X., D. Ning, H. Deng, and J. Wang 2011. The Application Research of Neural Network in Embedded Intelligent Detection, vol 347. Berlin, Heidelberg: Springer
  • Lutfy, O. F., S. B. Mohd Noor, M. H. Marhaban, and K. A. Abbas 2011. Non-linear modelling and control of a conveyor-belt grain dryer utilizing neuro-fuzzy systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 225 (5):611–22.
  • Lv, W., M. Zhang, B. Bhandari, L. Li, and Y. Wang 2017. Smart NMR Method of Measurement of Moisture Content of Vegetables During Microwave Vacuum Drying. Food and Bioprocess Technology 10 (12):2251–60. doi:10.1007/s11947-017-1991-3.
  • Lv, W., M. Zhang, B. Bhandari, Z. Yang, and Y. Wang 2016. Analysis of drying properties and vacuum-impregnated qualities of edamame (Glycine max (L.) Merrill). Drying Technology 35 (9):1075–84. doi:10.1080/07373937.2016.1231201.
  • Mahjoorian, A., M. Mokhtarian, N. Fayyaz, F. Rahmati, S. Sayyadi, and P. Ariaii 2017. Modeling of drying kiwi slices and its sensory evaluation. Food Sci Nutr 5 (3):466–73. doi:10.1002/fsn3.414.
  • Martynenko, A. 2017. Computer Vision for Real-Time Control in Drying. Food Engineering Reviews 9 (2):91–111. doi:10.1007/s12393-017-9159-5.
  • Martynenko, A. I. 2006. Computer-Vision System for Control of Drying Processes. Drying Technology 24 (7):879–88. doi:10.1080/07373930600734067.
  • Miljkovi, Z., M. Marko, M. Lazarevi, and B. Bojan (2013. Neural network Reinforcement Learning for visual control of robot manipulators. Expert Systems with Applications 40 (5):1721–36. doi:10.1016/j.eswa.2012.09.010.
  • Mohd Adnan, M. R. H., A. Sarkheyli, A. Mohd Zain, and H. Haron 2013. Fuzzy logic for modeling machining process: a review. Artificial Intelligence Review 43 (3):345–79. doi:10.1007/s10462-012-9381-8.
  • Momenzadeh, L. 2012. Applying Artificial Neural Network for Drying Time Prediction of Green Pea in a Microwave Assisted Fluidized Bed Dryer. J Agr Sci Tech 14:513–22.
  • Momenzadeh, L., A. Zomorodian, and D. Mowla 2012. Applying artificial neural network for shrinkage prediction of shelled corn in a microwave assisted fluidized bed dryer. Journal of Agricultural Science & Technology 14 (3):150–55.
  • Monroy, R., G. Arroyo-Figueroa, L. E. Sucar, and J. H. S. Azuela 2006. MICAI 2004: Advances in Artificial Intelligence, Third Mexican International Conference on Artificial Intelligence. In: Mexican International Conference on Artificial Intelligence.
  • Murthy, T. P., and B. Manohar 2014. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network. J Food Sci Technol 51 (12):3712–21. doi:10.1007/s13197-013-0941-y.
  • Nadian, M. H., M. H. Abbaspour-Fard, A. Martynenko, and M. R. Golzarian 2017. An intelligent integrated control of hybrid hot air-infrared dryer based on fuzzy logic and computer vision system. Computers and Electronics in Agriculture 137:138–49. doi:10.1016/j.compag.2017.04.001.
  • Nadian, M. H., M. H. Abbaspour-Fard, H. Sadrnia, M. R. Golzarian, and M. Tabasizadeh 2016a. Optimal pretreatment determination of kiwifruit drying via online monitoring. J Sci Food Agric. 96 (14):4785–96. doi:10.1002/jsfa.7856.
  • Nadian, M. H., M. H. Abbaspour‐Fard, H. Sadrnia, M. R. Golzarian, M. Tabasizadeh, and A. Martynenko 2016b. Improvement of kiwifruit drying using computer vision system (CVS) and ALM clustering method. Drying Technology 35 (6):709–23. doi:10.1080/07373937.2016.1208665.
  • Nadian, M. H., S. Rafiee, M. Aghbashlo, S. Hosseinpour, and S. S. Mohtasebi 2015. Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food and Bioproducts Processing 94:263–74. doi:10.1016/j.fbp.2014.03.005.
  • Nadian, M. H., S. Rafiee, and M. R. Golzarian 2016c. Real-time monitoring of color variations of apple slices and effects of pre-treatment and drying air temperature. Journal of Food Measurement and Characterization 10 (3):493–506. doi:10.1007/s11694-016-9328-x.
  • Nahimana, H., and M. Zhang 2011. Shrinkage and Color Change during Microwave Vacuum Drying of Carrot. Drying Technology 29 (7):836–47. doi:10.1080/07373937.2011.573753.
  • Nazghelichi, T., M. Aghbashlo, M. H. Kianmehr, and M. Omid 2011. Prediction of Energy and Exergy of Carrot Cubes in a Fluidized Bed Dryer by Artificial Neural Networks. Drying Technology 29 (3):295–307. doi:10.1080/07373937.2010.494237.
  • Nikbakht, A. M., A. Motevali, and S. Minaei 2014. Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. Journal of the Saudi Society of Agricultural Sciences 13 (2):81–91. doi:10.1016/j.jssas.2013.01.005.
  • Niv, Y., and A. Langdon 2016. Reinforcement learning with Marr. Curr Opin Behav Sci 11:67–73. doi:10.1016/j.cobeha.2016.04.005.
  • Onwude, D. I., N. Hashim, K. Abdan, R. Janius, and G. Chen 2017. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying. J Sci Food Agric 98(4):1310–1324. doi: 10.1002/jsfa.8595.
  • Özdemir, M. B., M. Aktaş, S. Şevik, and A. Khanlari 2017. Modeling of a convective-infrared kiwifruit drying process. International Journal of Hydrogen Energy 42 (28):18005–13. doi:10.1016/j.ijhydene.2017.01.012.
  • Pei, F., W. Yang, N. Ma, Y. Fang, L. Zhao, X. An, Z. Xin, and Q. Hu 2016. Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose. LWT – Food Science and Technology 72:343–50. doi:10.1016/j.lwt.2016.05.004.
  • Polat, K., and V. Kirmaci 2011. A Novel Data Preprocessing Method for the Modeling and Prediction of Freeze-Drying Behavior of Apples: Multiple Output–Dependent Data Scaling (MODDS). Drying Technology 30 (2):185–96. doi:10.1080/07373937.2011.630496.
  • Raghavan, G. S. V., Z. Li, N. Wang, and Y. Gariépy 2010. Control of Microwave Drying Process Through Aroma Monitoring. Drying Technology 28 (5):591–99. doi:10.1080/07373931003788049.
  • Ramakrishna, S., T.-Y. Zhang, W.-C. Lu, Q. Qian, J. S. C. Low, J. H. R. Yune, D. Z. L. Tan, S. Bressan, S. Sanvito, and S. R. Kalidindi 2018. Materials informatics. Journal of Intelligent Manufacturing. doi:10.1007/s10845-018-1392-0.
  • Samadi, S. H., B. Ghobadian, G. Najafi, A. Motevali, and S. Faal 2013. Drying of Apple Slices in Combined Heat and Power (CHP) Dryer: Comparison of Mathematical Models and Neural Networks. Chemical Product and Process Modeling 8 (1):41–52. doi:10.1515/cppm-2013-0009.
  • Njikam, S., A. N., and H. Zhao 2016. A novel activation function for multilayer feed-forward neural networks. Applied Intelligence 45 (1):75–82. doi:10.1007/s10489-015-0744-0.
  • Sampson, D. J., Y. K. Chang, H. P. V. Rupasinghe, and Q. U. Z. Zaman 2014. A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. Journal of Food Engineering 127:49–57. doi:10.1016/j.jfoodeng.2013.11.016.
  • Saraceno, A., M. Aversa, and S. Curcio 2010. Advanced Modeling of Food Convective Drying: A Comparison Between Artificial Neural Networks and Hybrid Approaches. Food and Bioprocess Technology 5 (5):1694–705. doi:10.1007/s11947-010-0477-3.
  • Shahabi, M., S. Rafiee, S. S. Mohtasebi, and S. Hosseinpour 2014. Image analysis and green tea color change kinetics during thin-layer drying. Food Sci Technol Int 20 (6):465–76. doi:10.1177/1082013213492524.
  • Shi, L. 2009. Intelligent Control Theory and Applications. Beijing: Tsinghua University Press.
  • Shi, Z. Z., and N. N. Zheng 2006. Progress and Challenge of Artificial Intelligence. Journal of Computer Science and Technology (English Edition) 21 (5):810. https://doi.org/10.1007/s11390-006-0810-5.
  • Su, Y., M. Zhang, and A. S. Mujumdar 2014. Recent Developments in Smart Drying Technology. Drying Technology 33 (3):260–76. doi:10.1080/07373937.2014.985382.
  • Sun, D. W. 2004. Computer vision – An objective, rapid and non-contact quality evaluation tool for the food industry. Journal of Food Engineering 61 (1):1–2. doi:10.1016/S0260-8774(03)00182-1.
  • Tavakolipour, H., and M. Mokhtarian 2012. Neural Network Approaches for Prediction of Pistachio Drying Kinetics. International Journal of Food Engineering 8 (3):1039–58. doi:10.1515/1556-3758.2481.
  • Tavakolipour, H., M. Mokhtarian, and A. Kalbasi-Ashtari 2014. Intelligent Monitoring of Zucchini Drying Process Based on Fuzzy Expert Engine and ANN. Journal of Food Process Engineering 37 (5):474–81. doi:10.1111/jfpe.12101.
  • Udomkun, P., M. Nagle, D. Argyropoulos, B. Mahayothee, and J. Müller 2016. Multi-sensor approach to improve optical monitoring of papaya shrinkage during drying. Journal of Food Engineering 189:82–89. doi:10.1016/j.jfoodeng.2016.05.014.
  • Udomkun, P., M. Nagle, D. Argyropoulos, A. N. Wiredu, B. Mahayothee, and J. Müller 2017. Computer vision coupled with laser backscattering for non-destructive colour evaluation of papaya during drying. Journal of Food Measurement and Characterization 11 (4):2142–50. doi:10.1007/s11694-017-9598-y.
  • Villarrubia, G., J. F. De Paz, P. Chamoso, and F. D. la Prieta 2018. Artificial neural networks used in optimization problems. Neurocomputing 272:10–16. doi:10.1016/j.neucom.2017.04.075.
  • Wagner, W. P. 2017. Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies. Expert Systems with Applications 76:85–96. doi:10.1016/j.eswa.2017.01.028.
  • Wang, D., A. Martynenko, K. Corscadden, and Q. He 2016. Computer vision for bulk volume estimation of apple slices during drying. Drying Technology 35 (5):616–24. doi:10.1080/07373937.2016.1196700.
  • Wang, L., B. Xu, B. Wei, and R. Zeng 2018. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason Sonochem 40 (Pt A):619–28. doi:10.1016/j.ultsonch.2017.08.005.
  • Xu, J. C., M. Zhang, A. S. Mujumdar, and B. Adhikari 2017. Recent developments in smart freezing technology applied to fresh foods. Crit Rev Food Sci Nutr 57 (13):2835–43. doi:10.1080/10408398.2015.1074158.
  • Yadollahinia, A., and M. Jahangiri 2009. Shrinkage of potato slice during drying. Journal of Food Engineering 94 (1):52–58. doi:10.1016/j.jfoodeng.2009.02.028.
  • Yaghoubi, M., B. Askari, M. Mokhtarian, H. Tavakolipour, A. H. Elhamirad, A. Jafarpour, and S. Heidarian 2013. Possibility of using neural networks for moisture ratio prediction in dried potatoes by means of different drying methods and evaluating physicochemical properties. Agricultural Engineering International: The CIGR e-journal 15 (4):258–69.
  • Yousefi, G., Z. Emam-Djomeh, M. Omid, and G. R. Askari 2013. Prediction of Physicochemical Properties of Raspberry Dried by Microwave-Assisted Fluidized Bed Dryer Using Artificial Neural Network. Drying Technology 32 (1):4–12. doi:10.1080/07373937.2013.801849.
  • Zakaria, M. 2017. Modelling of Turmeric (Curcuma Domestica Val.) Drying Using Machine Vision and Artificial Neural Network. Journal Teknologi Pertanian 18 (1):11–20.
  • Zhang, M., H. Jiang, and R.-X. Lim 2010. Recent Developments in Microwave-Assisted Drying of Vegetables, Fruits, and Aquatic Products—Drying Kinetics and Quality Considerations. Drying Technology 28 (11):1307–16. doi:10.1080/07373937.2010.524591.
  • Zhang, M., J. Tang, A. S. Mujumdar, and S. Wang 2006. Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology 17 (10):524–34. doi:10.1016/j.tifs.2006.04.011.
  • Zhang, W., H. Ma, and S. X. Yang 2015. A neuro-fuzzy decoupling approach for real-time drying room control in meat manufacturing. Expert Systems with Applications 42 (3):1039–49. doi:10.1016/j.eswa.2014.09.013.
  • Zheng, C. X., D. W. Sun, and L. Y. Zheng 2006. Recent developments and applications of image features for food quality evaluation and inspection – a review. Trends in Food Science & Technology 17 (12):642–55. doi:10.1016/j.tifs.2006.06.005.
  • Zielinska, M., P. Zapotoczny, O. Alves, T. M. Eikevik, and W. Blaszczak 2013. A multi-stage combined heat pump and microwave vacuum drying of green peas. Journal of Food Engineering 115 (3):347–56. doi:10.1016/j.jfoodeng.2012.10.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.