2,430
Views
71
CrossRef citations to date
0
Altmetric
Reviews

Bacterial spore inactivation induced by cold plasma

, , , , , & show all

References

  • Becker, K., A. Koutsospyros, S. M. Yin, C. Christodoulatos, N. Abramzon, J. C. Joaquin, and G. Brelles-Marino. 2005. Environmental and biological applications of microplasmas. Plasma Physics and Controlled Fusion 4712B (SI):B513–23. doi:10.1088/0741-3335/47/12B/S37.
  • Ben Belgacem, Z., G. Carre, E. Charpentier, F. Le-Bras, T. Maho, E. Robert, J. Pouvesle, F. Polidor, S. C. Gangloff, M. Boudifa, et al. 2017. Innovative non-thermal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms. Plos One 12 (6):e0180183. doi:10.1371/journal.pone.0180183.
  • Berendsen, E. M., M. H. Zwietering, O. P. Kuipers, and M. H. J. Wells-Bennik. 2015. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties. Food Microbiology 45 (A):18–25. doi:10.1016/j.fm.2014.04.009.
  • Black, E. P., P. Setlow, A. D. Hocking, C. M. Stewart, A. L. Kelly, and D. G. Hoover. 2007. Response of spores to high-pressure processing. Comprehensive Reviews in Food Science and Food Safety 6 (4):103–19. doi:10.1111/j.1541-4337.2007.00021.x.
  • Borch-Pedersen, K., H. Mellegard, K. Reineke, P. Boysen, R. Sevenich, T. Lindback, and M. a Aspholm. 2017. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation. Applied and Environmental Microbiology 83 (14):e00503–17. doi:10.1128/AEM.00503-17.
  • Borge, G., M. Skeie, T. Sorhaug, T. Langsrud, and P. E. Granum. 2001. Growth and toxin profiles of Bacillus cereus isolated from different food sources. The International Journal of Food Microbiology 69 (3):237–46. doi:10.1016/S0168-1605(01)00500-1.
  • Boudam, M. K., M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, and F. Massines. 2006. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D: Applied Physics 39 (16):3494–507. doi:10.1088/0022-3727/39/16/S07.
  • Bussiahn, R., R. Gesche, S. Kuehn, and K. Weltmann. 2012. Integrated microwave atmospheric plasma source (IMAPlaS): Thermal and spectroscopic properties and antimicrobial effect on B. atrophaeus spores. Plasma Sources Science and Technology 21 (6):065011. doi:10.1088/0963-0252/21/6/065011.
  • Butscher, D., T. Schlup, C. Roth, N. Mueller-Fischer, C. Gantenbein-Demarchi, and P. R. von Rohr. 2015. Inactivation of microorganisms on granular materials: Reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. Journal of Food Engineering 159:48–56. doi:10.1016/j.jfoodeng.2015.03.009.
  • Byrer, D. E., F. A. Rainey, and J. Wiegel. 2000. Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Archi. Microbiol. 99:557.
  • Connor, M., P. B. Flynn, D. J. Fairley, N. Marks, P. Manesiotis, W. G. Graham, B. F. Gilmore, and J. W. McGrath. 2017. Evolutionary clade affects resistance of Clostridium difficile spores to cold atmospheric plasma. Scientific Reports-Uk 7:41814. doi:10.1038/srep41814.
  • Deng, X., J. Shi, and M. G. Kong. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Transactions on Plasma Science 34 (42):1310–16. doi:10.1109/TPS.2006.877739.
  • Dobrynin, D., G. Fridman, Y. V. Mukhin, M. A. Wynosky-Dolfi, J. Rieger, R. F. Rest, A. F. Gutsol, and A. Fridman. 2010. Cold Plasma Inactivation of Bacillus cereus and Bacillus anthracis (Anthrax) Spores. IEEE Transactions on Plasma Science 38 (82):1878–84. doi:10.1109/TPS.2010.2041938.
  • Douki, T., B. Setlow, and P. Setlow. 2005. Photosensitization of dna by dipicolinic acid, a major component of spores of Bacillus species. Photochemical & Photobiological Sciences 4 (8):591–97. doi:10.1039/b503771a.
  • Eto, H., Y. Ono, A. Ogino, and M. Nagatsu. 2008. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge. Applied Physics Letters 93 (22):1–221. doi:10.1063/1.3039808.
  • Fiebrandt, M., J. Lackmann, M. Raguse, R. Moeller, P. Awakowicz, and K. Stapelmann. 2017. VUV absorption spectroscopy of bacterial spores and DNA components. Plasma Physics and Controlled Fusion 59 (1):014010. doi:10.1088/0741-3335/59/1/014010.
  • Hertwig, C., K. Reineke, J. Ehlbeck, D. Knorr, and O. Schlueter. 2015a. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 55:221–29. doi:10.1016/j.foodcont.2015.03.003.
  • Hertwig, C., K. Reineke, C. Rauh, and O. Schlueter. 2017. Factors involved in Bacillus spore's resistance to cold atmospheric pressure plasma. Innovative Food Science and Emerging 43:173–81. doi:10.1016/j.ifset.2017.07.031.
  • Hertwig, C., V. Steins, K. Reineke, A. Rademacher, M. Klocke, C. Rauh, and O. Schlueter. 2015b. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Frontiers in Microbiology 6 (1):774.
  • Hury, S., D. R. Vidal, F. Desor, J. Pelletier, and T. Lagarde. 1998. A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Letters in Applied Microbiology 26 (6):417–21. doi:10.1046/j.1472-765X.1998.00365.x.
  • Jeon, J., T. G. Klaempfl, J. L. Zimmermann, G. E. Morfill, and T. Shimizu. 2014. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities. New Journal of Physics 16 (10):103007. doi:10.1088/1367-2630/16/10/103007.
  • Kawamura, K., A. Sakuma, Y. Nakamura, T. Oguri, N. Sato, and N. Kido. 2012. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization. Microbiology and Immunology 56 (7):431–40. doi:10.1111/j.1348-0421.2012.00457.x.
  • Kim, J. E., H. Choi, D. Lee, and S. C. Min. 2017a. Effects of processing parameters on the inactivation of Bacillus cereus spores on red pepper (Capsicum annum L.) flakes by microwave-combined cold plasma treatment. International Journal of Food Microbiology 263:61–66. doi:10.1016/j.ijfoodmicro.2017.09.014.
  • Kim, J. E., D. Lee, and S. C. Min. 2014. Microbial decontamination of red pepper powder by cold plasma. Food Microbiology 38:128–36. doi:10.1016/j.fm.2013.08.019.
  • Kim, J. E., Y. J. Oh, M. Y. Won, K. Lee, and S. C. Min. 2017b. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology 62:112–23. doi:10.1016/j.fm.2016.10.006.
  • Klaempfl, T. G., G. Isbary, T. Shimizu, Y. Li, J. L. Zimmermann, W. Stolz, J. Schlegel, G. E. Morfill, and H. Schmidt. 2012. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Applied and Environmental Microbiology 78 (15):5077–82. doi:10.1128/AEM.00583-12.
  • Klaempfl, T. G., T. Shimizu, S. Koch, M. Balden, S. Gemein, Y. Li, A. Mitra, J. L. Zimmermann, J. Gebel, G. E. Morfill, et al. 2014. Decontamination of nosocomial bacteria including Clostridium difficile spores on Dry inanimate surface by cold atmospheric plasma. Plasma Processes and Polymers 11 (10):974–84. doi:10.1002/ppap.201400080.
  • Koval'Ova, Z., K. Tarabova, K. Hensel, and Z. Machala. 2013. Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges. The European Physical Journal Applied Physics 61 (2):81–86.
  • Laroussi, M., O. Minayeva, F. C. Dobbs, and J. Woods. 2006. Spores survivability after exposure to low-temperature plasmas. IEEE Transactions on Plasma Science 34 (42):1253–56. doi:10.1109/TPS.2006.876502.
  • Liang, J., S. Zheng, and S. Ye. 2012. Inactivation of Penicillium aerosols by atmospheric positive corona discharge processing. Journal of Aerosol Science 54:103–12. doi:10.1016/j.jaerosci.2012.07.009.
  • Liao, X., D. Liu, Q. Xiang, J. Ahn, S. Chen, X. Ye, and T. Ding. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 75:83–91. doi:10.1016/j.foodcont.2016.12.021.
  • Los, A., D. Ziuzina, D. Boehm, P. J. Cullen, and P. Bourke. 2017. The potential of atmospheric air cold plasma for control of bacterial contaminants relevant to cereal grain production. Innovative Food Science and Emerging Technologies 44:36–45. doi:10.1016/j.ifset.2017.08.008.
  • Melly, E., P. C. Genest, M. E. Gilmore, S. Little, D. L. Popham, A. Driks, and P. Setlow. 2002. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. Journal of Applied Microbiology 92 (6):1105–15. doi:10.1046/j.1365-2672.2002.01644.x.
  • Misra, N. N., O. Schlüter, and P. J. Cullen. 2016. Cold plasma in food and agriculture: Fundamentals and applications. 1st ed. Amsterdam, The Netherlands: Academic Press.
  • Muranyi, P., J. Wunderlich, and M. Heise. 2008. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma. Journal of Applied Microbiology 104 (6):1659–66. doi:10.1111/j.1365-2672.2007.03691.x.
  • Muranyi, P., J. Wunderlich, and H. C. Langowski. 2010. Modification of bacterial structures by a low-temperature gas plasma and influence on packaging material. Journal of Applied Microbiology 109 (6):1875–85. doi:10.1111/j.1365-2672.2010.04815.x.
  • Okull, D. O., A. Demirci, D. Rosenberger, and L. F. LaBorde. 2006. Susceptibility of Penicillium explansum spores to sodium hypochlorite, electrolyzed oxidizing water, and chlorine dioxide solutions modified with nonionic surfactants. Journal of Food Protection 69 (8):1944–48. doi:10.4315/0362-028X-69.8.1944.
  • Opretzka, J., J. Benedikt, P. Awakowicz, J. Wunderlich, and A. von Keudell. 2007. The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus. The Journal of Physics D: Applied Physics 40 (9):2826. doi:10.1088/0022-3727/40/9/024.
  • Orsburn, B., S. B. Melville, and D. L. Popham. 2008. Factors contributing to heat resistance of Clostridium perfringens endospores. Applied and Environmental Microbiology 74:3328–35. doi:10.1128/AEM.02629-07.
  • Ouf, S. A., A. H. Basher, and A. H. Mohamed. 2015. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. The Journal of the Science of Food and Agriculture 95 (15):3204–10. doi:10.1002/jsfa.7060.
  • Patil, S., T. Moiseev, N. N. Misra, P. J. Cullen, J. P. Mosnier, K. M. Keener, and P. Bourke. 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. Journal of Hospital Infection 88 (3):162–69. doi:10.1016/j.jhin.2014.08.009.
  • Raguse, M., M. Fiebrandt, B. Denis, K. Stapelmann, P. Eichenberger, A. Driks, P. Eaton, P. Awakowicz, and R. Moeller. 2016. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization. The Journal of Physics D: Applied Physics 49 (28):285401. doi:10.1088/0022-3727/49/28/285401.
  • Rao, L., X. Bi, F. Zhao, J. Wu, X. Hu, and X. Liao. 2016. Effect of high-pressure CO2 processing on bacterial spores. Critical Reviews in Food Science 56 (11):1808–25. doi:10.1080/10408398.2013.787385.
  • Reineke, K., A. Mathys, V. Heinz, and D. Knorr. 2013. Mechanisms of endospore inactivation under high pressure. Trends in Microbiology 21 (6):296–304. doi:10.1016/j.tim.2013.03.001.
  • Reineke, K., K. Langer, C. Hertwig, J. R. Ehlbeck, and O. Schlüter. 2015. The impact of different process gas compositions on the inactivation effect of an atmospheric pressure plasma jet on Bacillus spores. Innovative Food Science and Emerging 30:112–18. doi:10.1016/j.ifset.2015.03.019.
  • Roth, S., J. Feichtinger, and C. Hertel. 2010. Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. Journal of Applied Microbiology 108 (2):521–31. doi:10.1111/j.1365-2672.2009.04453.x.
  • Scheldeman, P., L. Herman, S. Foster, and M. Heyndrickx. 2006. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. Journal of Applied Microbiology 101 (3):542–55. doi:10.1111/j.1365-2672.2006.02964.x.
  • Setlow, P. 2007. I will survive: DNA protection in bacterial spores. Trends in Microbiology 15 (4):172–80. doi:10.1016/j.tim.2007.02.004.
  • Setlow, P. 2012. Dynamics of the assembly of a complex macromolecular structure – the coat of spores of the bacterium Bacillus subtilis. Molecular Microbiology 83:241–44. doi:10.1111/j.1365-2958.2011.07948.x.
  • Shapiro, R. L., C. Hatheway, and D. L. Swerdlow. 1998. Botulism in the United States: A clinical and epidemiologic review. Annals of Internal Medicine 129 (3):221–28. doi:10.7326/0003-4819-129-3-199808010-00011.
  • Silva, F., and P. Gibbs. 2001. Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends in Food Science & Technology 12 (2):68–74. doi:10.1016/S0924-2244(01)00070-X.
  • Sohbatzadeh, F., S. Mirzanejhad, H. Shokri, and M. Nikpour. 2016. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. Journal of Theoretical and Applied Physics 10 (2):99–106. doi:10.1007/s40094-016-0206-z.
  • Song, Y., D. Liu, L. Ji, W. Wang, J. Niu, and X. Zhang. 2012a. Plasma inactivation of Candida albicans by an atmospheric cold plasma brush composed of hollow fibers. IEEE Transactions on Plasma Science 40 (4):1098–102. doi:10.1109/TPS.2012.2183622.
  • Song, Y., D. Liu, L. Ji, W. Wang, P. Zhao, C. Quan, J. Niu, and X. Zhang. 2012b. The inactivation of resistant Candida albicans in a sealed package by cold atmospheric pressure plasmas. Plasma Processes and Polymers 9 (1):17–21. doi:10.1002/ppap.201100075.
  • Sun, P., H. Wu, N. Bai, H. Zhou, R. Wang, H. Feng, W. Zhu, J. Zhang, and J. Fang. 2012. Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Processes and Polymers 9 (2):157–64. doi:10.1002/ppap.201100041.
  • Tewari, A., and S. Abdullah. 2015. Bacillus cereus food poisoning: International and Indian perspective. Journal of Food Science and Technology Mysore 52 (5):2500–11. doi:10.1007/s13197-014-1344-4.
  • Tseng, S., N. Abramzon, J. O. Jackson, and W. Lin. 2012. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores. Applied Microbiology and Biotechnology 93 (6):2563–70. doi:10.1007/s00253-011-3661-0.
  • Van Bokhorst-van De Veen, H., H. Xie, E. Esveld, T. Abee, H. Mastwijk, and M. N. Groot. 2015. Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen cold atmospheric plasma evokes distinct changes in morphology and integrity of spores. Food Microbiology 45 (A):26–33. doi:10.1016/j.fm.2014.03.018.
  • Wang, S., C. J. Doona, P. Setlow, and Y. Li. 2016. Use of raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma inactivation of individual bacterial spores. Applied and Environmental Microbiology 82 (19):5775–84. doi:10.1128/AEM.01669-16.
  • Wells-Bennik, M. H. J., R. T. Eijlander, H. M. W. den Besten, E. M. Berendsen, A. K. Warda, A. O. Krawczyk, M. N. N. Groot, Y. Xiao, M. H. Zwietering, O. P. Kuipers, et al. 2016. Bacterial spores in food: Survival, emergence, and outgrowth. The Annual Review of Food Science and Technology 7 (1):457–82. doi:10.1146/annurev-food-041715-033144.
  • Yeong, J. O., L. Hanna, E. K. Jung, H. L. Seok, Y. C. Hyung, and C. M. Sea. 2015. Cold plasma treatment application to improve microbiological safety of infant milk powder and onion powder. Korean Journal of Food Science and Technology 47 (4):486–91. doi:10.9721/KJFST.2015.47.4.486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.