2,363
Views
80
CrossRef citations to date
0
Altmetric
Reviews

Bioactive edible films for food applications: mechanisms of antimicrobial and antioxidant activity

, ORCID Icon &
Pages 3431-3455 | Received 03 May 2018, Accepted 25 Jun 2018, Published online: 10 Sep 2018

References

  • Acevedo-Fani, A., L. Salvia-Trujillo, M. A. Rojas-Graü, and O. Martín-Belloso. 2015. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids 47:168–77. doi:10.1016/j.foodhyd.2015.01.032.
  • Akhtar, M. J., M. Jacquot, J. Jasniewski, C. Jacquot, M. Imran, M. Jamshidian, C. Paris, and S. Desobry. 2012. Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydrate Polymers 89 (4):1150–58. doi:10.1016/j.carbpol.2012.03.088.
  • Akiyama, H., K. Fujii, O. Yamasaki, T. Oono, and K. Iwatsuki. 2001. Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 48 (4):487–91.
  • Albertos, I., D. Rico, A. M. Diez, L. González-Arnáiz, M. J. García-Casas, and I. Jaime. 2015. Effect of edible chitosan/clove oil films and high-pressure processing on the microbiological shelf life of trout fillets. Journal of the Science of Food and Agriculture 95 (14):2858–65. doi:10.1002/jsfa.7026.
  • Alparslan, Y., T. Baygar, T. Baygar, H. Hasanhocaoglu, and C. Metin. 2014. Effects of gelatin-based edible films enriched with laurel essential oil on the quality of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. Food Technology and Biotechnology 52 (3):325–33.
  • Andrade, M. A., R. Ribeiro-Santos, M. C. Costa Bonito, M. Saraiva, and A. Sanches-Silva. 2018. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT – Food Science and Technology 92:497–508. doi:10.1016/j.lwt.2018.02.041.
  • André, C., I. Castanheira, J. M. Cruz, P. Paseiro, and A. Sanches-Silva. 2010. Analytical strategies to evaluate antioxidants in food: A review. Trends in Food Science & Technology 21 (5):229–46. doi:10.1016/j.tifs.2009.12.003.
  • Antolovich, M., P. D. Prenzler, E. Patsalides, S. McDonald, and K. Robards. 2002. Methods for testing antioxidant activity. The Analyst 127 (1):183–98. doi:10.1039/b009171p.
  • Appendini, P., and J. H. Hotchkiss. 2002. Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies 3 (2):113–26.
  • Arcan, I., and A. Yemenicioğlu. 2011. Incorporating phenolic compounds opens a new perspective to use zein films as flexible bioactive packaging materials. Food Research International 44 (2):550–6. doi:10.1016/j.foodres.2010.11.034.
  • Ayranci, E., and S. Tunc. 2003. A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chemistry 80 (3):423–31.
  • Bao, S., S. Xu, and Z. Wang. 2009. Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. Journal of the Science of Food and Agriculture 89 (15):2692–700. doi:10.1002/jsfa.3775.
  • Barzic, A. I., and S. Ioan. 2015. Antibacterial drugs — From basic concepts to complex therapeutic mechanisms of polymer systems, concepts, compounds and the alternatives of antibacterials.
  • Basile, A., S. Sorbo, V. Spadaro, M. Bruno, A. Maggio, N. Faraone, and S. Rosselli. 2009. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules 14 (3):939–52.
  • Bekhit, A. E. D., and C. Faustman. 2005. Metmyoglobin reducing activity. Meat Science 71 (3):407–39. doi:10.1016/j.meatsci.2005.04.032.
  • Benbettaïeb, N., T. Karbowiak, and F. Debeaufort. 2018. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition 17:1–17. doi:10.1080/10408398.2017.1393384.
  • Benbettaïeb, N., C. Tanner, P. Cayot, T. Karbowiak, and F. Debeaufort. 2018. Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chemistry 242:369–77. doi:10.1016/j.foodchem.2017.09.065.
  • Bonilla, J., T. Poloni, R. V. Lourenço, and P. J. A. Sobral. 2018. Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Bioscience 23:107–14. doi:10.1016/j.fbio.2018.03.007.
  • Borges, A., C. Ferreira, M. J. Saavedra, and M. Simoes. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance 19 (4):256–65.
  • Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology 94 (3):223–53. doi:10.1016/j.ijfoodmicro.2004.03.022.
  • Byun, Y., J. B. Hwang, S. H. Bang, D. Darby, K. Cooksey, P. L. Dawson, H. J. Park, and S. Whiteside. 2011. Formulation and characterization of α-tocopherol loaded poly ɛ-caprolactone (PCL) nanoparticles. LWT-Food Science and Technology 44 (1):24–8.
  • Cagri, A., Z. Ustunol, and E. T. Ryser. 2001. Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein-based edible films containing p-Aminobenzoic Or sorbic acids. Journal of Food Science 66 (6):865–70. doi:10.1111/j.1365-2621.2001.tb15188.x.
  • Cha, D. S., and M. S. Chinnan. 2004. Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition 44 (4):223–37. doi:10.1080/10408690490464276.
  • Chi, S., S. Zivanovic, and M. P. Penfield. 2006. Application of chitosan films enriched with oregano essential oil on bologna–active compounds and sensory attributes. Food Science and Technology International 12 (2):111–7.
  • Debeaufort, F., J.-A. Quezada-Gallo, and A. Voilley. 1998. Edible films and coatings: Tomorrow’s packagings: A review. Critical Reviews in Food Science and Nutrition 38 (4):299–313. doi:10.1080/10408699891274219.
  • Dorta, E., M. González, M. G. Lobo, C. Sánchez-Moreno, and B. de Ancos. 2014. Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Research International 57:51–60. doi:10.1016/j.foodres.2014.01.012.
  • Du, W.-X., R. J. Avena-Bustillos, S. S. T. Hua, and H. MHugh Tara. 2011. Antimicrobial volatile essential oils in edible films for food safety. In Science against microbial pathogens: communicating current research and technological advances, ed. A. Mendez-Vilas, 1124–34. Badajoz: FORMATEX.
  • Dzoyem, J. P., H. Hamamoto, B. Ngameni, B. T. Ngadjui, and K. Sekimizu. 2013. Antimicrobial action mechanism of flavonoids from dorstenia species. Drug Discoveries & Therapeutics 7 (2):66–72.
  • Echeverría, I., M. E. López-Caballero, M. C. Gómez-Guillén, A. N. Mauri, and M. P. Montero. 2018. Active nanocomposite films based on soy proteins-montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. International Journal of Food Microbiology 266:142–9. doi:10.1016/j.ijfoodmicro.2017.10.003.
  • Espitia, P. J. P., R. J. Avena-Bustillos, W.-X. Du, B.-S. Chiou, T. G. Williams, D. Wood, T. H. McHugh, and N. F. F. Soares. 2014. Physical and antibacterial properties of açaí edible films formulated with thyme essential oil and apple skin polyphenols. Journal of Food Science 79 (5):M903–M910. doi:10.1111/1750-3841.12432.
  • Fabra, M. J., A. Hambleton, P. Talens, F. Debeaufort, and A. Chiralt. 2011. Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids 25 (6):1441–7. doi:10.1016/j.foodhyd.2011.01.012.
  • Fajardo, P., J. T. Martins, C. Fuciños, L. Pastrana, J. A. Teixeira, and A. A. Vicente. 2010. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. Journal of Food Engineering 101 (4):349–56. doi:10.1016/j.jfoodeng.2010.06.029.
  • Falguera, V., J. P. Quintero, A. Jiménez, J. A. Muñoz, and A. Ibarz. 2011. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology 22 (6):292–303. doi:10.1016/j.tifs.2011.02.004.
  • Fernández-López, J., N. Zhi, L. Aleson-Carbonell, J. A. Pérez-Alvarez, and V. Kuri. 2005. Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Science 69 (3):371–80. doi:10.1016/j.meatsci.2004.08.004.
  • Fernández-Pan, I., X. Carrión-Granda, and J. I. Maté. 2014. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control 36 (1):69–75. doi:10.1016/j.foodcont.2013.07.032.
  • Gálvez, A., H. Abriouel, R. L. López, and N. Ben Omar. 2007. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology 120 (1–2):51–70.
  • Gao, F. H., T. Abee, and W. N. Konings. 1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Applied and Environmental Microbiology 57 (8):2164–70.
  • Genskowsky, E., L. A. Puente, J. A. Pérez-Álvarez, J. Fernandez-Lopez, L. A. Muñoz, and M. Viuda-Martos. 2015. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT - Food Science and Technology 64 (2):1057–62. doi:10.1016/j.lwt.2015.07.026.
  • Gómez-Estaca, J., B. Giménez, P. Montero, and M. C. Gómez-Guillén. 2009. Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering 92 (1):78–85. doi:10.1016/j.jfoodeng.2008.10.024.
  • Gómez-Estaca, J., A. López de Lacey, M. E. López-Caballero, M. C. Gómez-Guillén, and P. Montero. 2010. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology 27 (7):889–96. doi:10.1016/j.fm.2010.05.012.
  • Gómez-Estaca, J., C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá, and R. Gavara. 2014. Advances in antioxidant active food packaging. Trends in Food Science & Technology 35 (1):42–51.
  • Gómez-Estaca, J., P. Montero, B. Giménez, and M. C. Gómez-Guillén. 2007. Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chemistry 105 (2):511–20. doi:10.1016/j.foodchem.2007.04.006.
  • Gulcin, I., D. Berashvili, and A. Gepdiremen. 2005. Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. Journal of Ethnopharmacology 101 (1–3):287–93.
  • Gülçin, İ., M. Elmastaş, and H. Y. Aboul-Enein. 2012. Antioxidant activity of clove oil – A powerful antioxidant source. Arabian Journal of Chemistry 5 (4):489–99. doi:10.1016/j.arabjc.2010.09.016.
  • Guzmán, L. E., D. Acevedo, L. Romero, and J. Estrada. 2015. Elaboración de una película comestible a base de colágeno incorporado con nisina como agente antimicrobiano. Información Tecnológica 26 (3):17–24.
  • Hagerman, A. E., K. M. Riedl, G. A. Jones, K. N. Sovik, N. T. Ritchard, P. W. Hartzfeld, and T. L. Riechel. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry 46 (5):1887–92. doi:10.1021/jf970975b.
  • Han, J. H. 2000. Antimicrobial Food Packaging 54. Food technology 54(3):56–65.
  • Han, Y., M. Yu, and L. Wang. 2018. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life 15:35–42. doi:10.1016/j.fpsl.2017.11.001.
  • Hanušová, K., J. Dobiáš, and K. Klaudisová. 2009. Effect of packaging films releasing antimicrobial agents on stability of food products. Czech Journal of Food Sciences 27:S347–S9.
  • Helal, A., D. Tagliazucchi, A. Conte, and S. Desobry. 2012. Antioxidant properties of polyphenols incorporated in casein/sodium caseinate films. International Dairy Journal 25 (1):10–5. doi:10.1016/j.idairyj.2011.12.002.
  • Hosseini, M. H., S. H. Razavi, and M. A. Mousavi. 2009. Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. Journal of Food Processing and Preservation 33 (6):727–43. doi:10.1111/j.1745-4549.2008.00307.x.
  • Ibarguren, C., M. C. Audisio, E. M. F. Torres, and M. C. Apella. 2010. Silicates characterization as potential bacteriocin-carriers. Innovative Food Science & Emerging Technologies 11 (1):197–202. doi:10.1016/j.ifset.2009.10.002.
  • Ibrahim Sallam, K. 2007. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18 (5):566–75. doi:10.1016/j.foodcont.2006.02.002.
  • Jing, P., S.-J. Zhao, W.-J. Jian, B.-J. Qian, Y. Dong, and J. Pang. 2012. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules 17 (11):12910–24.
  • Kaewprachu, P., N. Rungraeng, K. Osako, and S. Rawdkuen. 2017. Properties of fish myofibrillar protein film incorporated with catechin-Kradon extract. Food Packaging and Shelf Life 13:56–65. doi:10.1016/j.fpsl.2017.07.003.
  • Kamper, S. L., and O. Fennema. 1985. Use of an edible film to maintain water vapor gradients in foods. Journal of Food Science 50 (2):382–84. doi:10.1111/j.1365-2621.1985.tb13408.x.
  • Kashiri, M., J. P. Cerisuelo, I. Domínguez, G. López-Carballo, V. Muriel-Gallet, R. Gavara, and P. Hernández-Muñoz. 2017. Zein films and coatings as carriers and release systems of zataria multiflora boiss. essential oil for antimicrobial food packaging. Food Hydrocolloids 70:260–8. doi:10.1016/j.foodhyd.2017.02.021.
  • Kavas, N., and G. Kavas. 2016. Use of egg white protein powder based films fortified with basil (Ocimum basilicum L.) essential oils in the storage of çökelek cheese. Mljekarstvo 66 (2):99–111.
  • Khorshidian, N., M. Yousefi, E. Khanniri, and A. M. Mortazavian. 2018. Potential application of essential oils as antimicrobial preservatives in cheese. Innovative Food Science & Emerging Technologies 45:62–72. doi:10.1016/j.ifset.2017.09.020.
  • Ko, S., M. E. Janes, N. S. Hettiarachchy, and M. G. Johnson. 2001. Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. Journal of Food Science 66 (7):1006–11. doi:10.1111/j.1365-2621.2001.tb08226.x.
  • Kodal Coşkun, B., E. Çalikoğlu, Z. Karagöz Emiroğlu, and K. Candoğan. 2014. Antioxidant active packaging with soy edible films and oregano or thyme essential oils for oxidative stability of ground beef patties. Journal of Food Quality 37 (3):203–12. doi:10.1111/jfq.12089.
  • Kowalczyk, D., W. Kazimierczak, E. Zięba, M. Mężyńska, M. Basiura-Cembala, S. Lisiecki, M. Karaś, and B. Baraniak. 2018. Ascorbic acid- and sodium ascorbate-loaded oxidized potato starch films: Comparative evaluation of physicochemical and antioxidant properties. Carbohydrate Polymers 181:317–26. doi:10.1016/j.carbpol.2017.10.063.
  • Krepker, M., R. Shemesh, Y. Danin Poleg, Y. Kashi, A. Vaxman, and E. Segal. 2017. Active food packaging films with synergistic antimicrobial activity. Food Control 76:117–26. doi:10.1016/j.foodcont.2017.01.014.
  • Krochta, J. M., and C. D. Mulder-Johnson. 1997. Edible and biodegradable polymer films: Challenges and opportunities. Food Technology 51 (2) 61–74.
  • Kurek, M. 2012. Comprehensive study of the effects of formulation and processing parameters on structural and functional properties of active bio-based packaging films. Thèse De Doctorat Sciences De L'alimentation Dijon 2012 Thèse de doctorat Sciences de l'alimentation Université de Bourgogne. http://www.theses.fr/2012DIJOS095 2018.
  • Kurek, M., S. Moundanga, C. Favier, K. Galić, and F. Debeaufort. 2013. Antimicrobial efficiency of carvacrol vapour related to mass partition coefficient when incorporated in chitosan based films aimed for active packaging. Food Control 32 (1):168–75. doi:10.1016/j.foodcont.2012.11.049.
  • Kwok, K. C., and S. Y. Ou. 2002. Effect of ferulic acid on water vapour and gas permeability of SPI-based film. Science and Technology of Food Industry 23:24–6.
  • La Storia, D. A. and G. Mauriello. 2011. Development and application of antimicrobial food packaging. Tesi Di Dottorato Di Ricerca in Scienze e Tecnologie Delle Produzioni Agro-Alimentari XX Ciclo :160–78.
  • Lai, L.-S., S.-T. Chou, and W.-W. Chao. 2001. Studies on the antioxidative activities of hsian-tsao (Mesona procumbens hemsl) leaf gum. Journal of Agricultural and Food Chemistry 49 (2):963–8. doi:10.1021/jf001146k.
  • Li, J.-H., J. Miao, J.-L. Wu, S.-F. Chen, and Q.-Q. Zhang. 2014. Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocolloids 37:166–73. doi:10.1016/j.foodhyd.2013.10.015.
  • Lino, R. C. 2012. Desenvolvimento de filmes de metilcelulose incorporados por nanopartículas de poli-ε-Caprolactona/β-Caroteno. Dissertação (Mestrado Em Ciência De Alimentos)-Centro De Ciências Agrárias, Universidade Federal De Santa Catarina, Florianópolis, 2012, 135f:25–121.
  • Liu, X., Q. Wang, X. Zhuang, B. Wu, F. Yang, and A. Zeng. 2012. Study on antibacterial activity of O-carboxymethyl chitosan sodium salt and spinnability of O-carboxymethyl chitosan sodium salt/cellulose polyblends in N-methylmorpholine-N-oxide system. Carbohydrate Polymers 89 (1):104–10.
  • Lu, Y., and L. Yeap Foo. 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry 68 (1):81–5. doi:10.1016/S0308-8146(99)00167-3.
  • Lucera, A., C. Costa, A. Conte, and M. A. Del Nobile. 2012. Food applications of natural antimicrobial compounds. Frontiers in Microbiology 3:287. doi:10.3389/fmicb.2012.00287.
  • Luthria, D. L. 2006. Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. Journal of the Science of Food and Agriculture 86 (14):2266–72.
  • Maizura, M., A. Fazilah, M. H. Norziah, and A. A. Karim. 2007. Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. Journal of Food Science 72 (6):C324–30.
  • Maqsood, S., and S. Benjakul. 2010. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chemistry 119 (1):123–32. doi:10.1016/j.foodchem.2009.06.004.
  • Martins, J. T., M. A. Cerqueira, and A. A. Vicente. 2012. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids 27 (1):220–7. doi:10.1016/j.foodhyd.2011.06.011.
  • McCormick, K. E., I. Y. Han, J. C. Acton, B. W. Sheldon, and P. L. Dawson. 2005. In-package pasteurization combined with biocide-impregnated films to inhibit Listeria monocytogenes and salmonella typhimurium in Turkey bologna. Journal of Food Science 70 (1):M52–7. doi:10.1111/j.1365-2621.2005.tb09046.x.
  • Mei, Y., Y. Zhao, J. Yang, and H. C. Furr. 2002. Using edible coating to enhance nutritional and sensory qualities of baby carrots. Journal of Food Science 67 (5):1964–8. doi:10.1111/j.1365-2621.2002.tb08753.x.
  • Meira, S. M. M., G. Zehetmeyer, J. O. Werner, and A. Brandelli. 2017. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocolloids 63:561–70. doi:10.1016/j.foodhyd.2016.10.013.
  • Mexis, S. F., E. Chouliara, and M. G. Kontominas. 2009. Combined effect of an oxygen absorber and oregano essential oil on shelf life extension of rainbow trout fillets stored at 4 °C. Food Microbiology 26 (6):598–605. doi:10.1016/j.fm.2009.04.002.
  • Ming, X., G. H. Weber, J. W. Ayres, and W. E. Sandine. 1997. Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. Journal of Food Science 62 (2):413–5. doi:10.1111/j.1365-2621.1997.tb04015.x.
  • Mohsenabadi, N., A. Rajaei, M. Tabatabaei, and A. Mohsenifar. 2018. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules 112:148–55.
  • Mu, L., J. Kou, D. Zhu, and B. Yu. 2007. Comparison of neuroprotective effects of flavonoids, terpenoids, and their combinations from ginkgo biloba. On ischemia-reperfusion–injured mice. Pharmaceutical Biology 45 (9):728–33. doi:10.1080/13880200701575486.
  • Natrajan, N., and B. W. Sheldon. 2000. Inhibition of salmonella on poultry skin using protein-and polysaccharide-based films containing a nisin formulation. Journal of Food Protection® 63 (9):1268–72.
  • Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, and V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6 (12):1451–74. doi:10.3390/ph6121451.
  • Neetoo, H., and F. Mahomoodally. 2014. Use of antimicrobial films and edible coatings incorporating chemical and biological preservatives to control growth of Listeria monocytogenes on cold smoked salmon. BioMed Research International 2014:10. doi:10.1155/2014/534915.
  • Nisar, T., Z.-C. Wang, X. Yang, Y. Tian, M. Iqbal, and Y. Guo. 2018. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules 106:670–80. doi:10.1016/j.ijbiomac.2017.08.068.
  • Nor Adilah, A., B. Jamilah, M. A. Noranizan, and Z. A. Nur Hanani. 2018. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life 16:1–7. doi:10.1016/j.fpsl.2018.01.006.
  • Norajit, K., K. M. Kim, and G. H. Ryu. 2010. Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. Journal of Food Engineering 98 (3):377–84. doi:10.1016/j.jfoodeng.2010.01.015.
  • Noronha, C. M. 2012. Incorporação de nanocápsulas de poli(ε-Caprolactona) contendo α-Tocoferol Em biofilmes de metilcelulose. Dissertação (Mestrado Em Ciência De Alimentos)-Centro De Ciências Agrarias, Universidade Federal De Santa Catarina, Florianópolis, 2012, 129f:25–127.
  • Nostro, A., R. Scaffaro, M. D’Arrigo, L. Botta, A. Filocamo, A. Marino, and G. Bisignano. 2012. Study on carvacrol and cinnamaldehyde polymeric films: Mechanical properties, release kinetics and antibacterial and antibiofilm activities. Applied Microbiology and Biotechnology 96 (4):1029–38.
  • Ollé Resa, C. P., L. N. Gerschenson, and R. J. Jagus. 2014. Natamycin and nisin supported on starch edible films for controlling mixed culture growth on model systems and port salut cheese. Food Control 44:146–51. doi:10.1016/j.foodcont.2014.03.054.
  • Ortiz, C. M., P. R. Salgado, A. Dufresne, and A. N. Mauri. 2018. Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocolloids 79:416–27. doi:10.1016/j.foodhyd.2018.01.011.
  • Otoni, C. G., M. R D Moura, F. A. Aouada, G. P. Camilloto, R. S. Cruz, M. V. Lorevice, N. de, F. F. Soares, and L. H. C. Mattoso. 2014. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41:188–94. doi:10.1016/j.foodhyd.2014.04.013.
  • Ou, S., Y. Wang, S. Tang, C. Huang, and M. G. Jackson. 2005. Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering 70 (2):205–10. doi:10.1016/j.jfoodeng.2004.09.025.
  • Ouattara, B., R. E. Simard, G. Piette, A. Bégin, and R. A. Holley. 2000. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology 62 (1–2):139–48. doi:10.1016/S0168-1605(00)00407-4.
  • Oussalah, M., S. Caillet, S. Salmiéri, L. Saucier, and M. Lacroix. 2004. Antimicrobial and antioxidant effects of milk protein-Based Film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry 52 (18):5598–605. doi:10.1021/jf049389q.
  • Pérez Córdoba, L. J., and P. J. A. Sobral. 2017. Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. Journal of Food Engineering 213:47–53. doi:10.1016/j.jfoodeng.2017.05.023.
  • Perumalla, A. V. S., and N. S. Hettiarachchy. 2011. Green tea and grape seed extracts — Potential applications in food safety and quality. Food Research International 44 (4):827–39. doi:10.1016/j.foodres.2011.01.022.
  • Piñeros-Hernandez, D., C. Medina-Jaramillo, A. López-Córdoba, and S. Goyanes. 2017. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids 63:488–95. doi:10.1016/j.foodhyd.2016.09.034.
  • Priyadarshi, R.S. Kumar, B., and Y. S. Negi. 2018. Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers 195:329–38. doi:10.1016/j.carbpol.2018.04.089.
  • Rababah, T. M., N. S. Hettiarachchy, and R. Horax. 2004. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhydroquinone. Journal of Agricultural and Food Chemistry 52 (16):5183–6.
  • Ramos, Ó. L., S. I. Silva, J. C. Soares, J. C. Fernandes, M. F. Poças, M. E. Pintado, and F. X. Malcata. 2012. Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Research International 45 (1):351–61. doi:10.1016/j.foodres.2011.09.016.
  • Riaz, A., S. Lei, H. M. S. Akhtar, P. Wan, D. Chen, S. Jabbar, M. Abid, M. M. Hashim, and X. Zeng. 2018. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules doi:10.1016/j.ijbiomac.2018.03.126.
  • Ricke, S. C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science 82 (4):632–9.
  • Sallam, Kh, I., Ishioroshi, M., and K. Samejima. 2004. Antioxidant and antimicrobial effects of garlic in chicken sausage. LWT - Food Science and Technology 37 (8):849–55. doi:10.1016/j.lwt.2004.04.001.
  • Sánchez Aldana, D., J. C. Contreras-Esquivel, G. V. Nevárez-Moorillón, and C. N. Aguilar. 2015. Characterization of edible films from pectic extracts and essential oil from Mexican lime. CyTA - Journal of Food 13 (1):17–25. doi:10.1080/19476337.2014.904929.
  • Sánchez-Moreno, C., A. Jiménez-Escrig, and F. Saura-Calixto. 2000. Study of low-density lipoprotein oxidizability indexes to measure the antioxidant activity of dietary polyphenols. Nutrition Research 20 (7):941–53. doi:10.1016/S0271-5317(00)00185-8.
  • Santiago-Silva, P., N. F. F. Soares, J. E. Nóbrega, M. A. W. Júnior, K. B. F. Barbosa, A. C. P. Volp, E. R. M. A. Zerdas, and N. J. Würlitzer. 2009. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 20 (1):85–9. doi:10.1016/j.foodcont.2008.02.006.
  • Sato, Y., S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara, and K. Iseki. 2011. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics 403 (1–2):136–8.
  • Scannell, A. G. M., C. Hill, R. P. Ross, S. Marx, W. Hartmeier, and E. K. Arendt. 2000. Development of bioactive food packaging materials using immobilised bacteriocins lacticin 3147 and Nisaplin®. International Journal of Food Microbiology 60 (2–3):241–9.
  • Shirazi, M. H., R. Ranjbar, S. Eshraghi, G. Amin, M. S. Nouri, and N. Bazzaz. 2008. Inhibitory effects of sage extract on the growth of enteric bacteria. Pakistan Journal of Biological Sciences 11 (3):487–9.
  • Simandi, B., Hajdu, V. K. Peredi, B. Czukor, A. Nobik‐Kovacs A. Kery. 2001. Antioxidant activity of pilot‐plant alcoholic and supercritical carbon dioxide extracts of thyme. European Journal of Lipid Science and Technology 103 (6):355–8.
  • Sobrino-Lopez, A., and O. Martin-Belloso. 2006. Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. Journal of Food Protection 69 (2):345–53.
  • Song, X., G. Zuo, and F. Chen. 2018. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules 107 (Pt A):1302–9.
  • Su Cha, D., J. H. Choi, M. S. Chinnan, and H. J. Park. 2002. Antimicrobial films based on na-alginate and κ-carrageenan. LWT - Food Science and Technology 35 (8):715–9. doi:10.1006/fstl.2002.0928.
  • Sun, L., J. Sun, L. Chen, P. Niu, X. Yang, and Y. Guo. 2017. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydrate Polymers 163:81–91.
  • Tajkarimi, M. M., Ibrahim, S. A. D. O. Cliver. 2010. Antimicrobial herb and spice compounds in food. Food Control 21 (9):1199–218. doi:10.1016/j.foodcont.2010.02.003.
  • Tapia, M. S., M. A. Rojas-Graü, F. J. Rodríguez, J. Ramírez, A. Carmona, and O. Martin-Belloso. 2007. Alginate- and gellan-based edible films for probiotic coatings on fresh-Cut Fruits. Journal of Food Science 72 (4):E190–6. doi:10.1111/j.1750-3841.2007.00318.x.
  • Tian, F., E. A. Decker, and J. M. Goddard. 2013. Controlling lipid oxidation of food by active packaging technologies. Food & Function 4 (5):669–80.
  • Ulbin-Figlewicz, N., A. Zimoch-Korzycka, and A. Jarmoluk. 2014. Antibacterial activity and physical properties of edible chitosan films exposed to low-pressure plasma. Food and Bioprocess Technology 7 (12):3646–54. doi:10.1007/s11947-014-1379-6.
  • Vilela, C., R. J. B. Pinto, J. Coelho, M. R. M. Domingues, S. Daina, P. Sadocco, S. A. O. Santos, and C. S. R. Freire. 2017. Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocolloids 73:120–8. doi:10.1016/j.foodhyd.2017.06.037.
  • Woranuch, S., R. Yoksan, and M. Akashi. 2015. Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers 115:744–51.
  • Yu, S.-H., H.-Y. Hsieh, J.-C. Pang, D.-W. Tang, C.-M. Shih, M.-L. Tsai, Y.-C. Tsai, and F.-L. Mi. 2013. Active films from water-soluble chitosan/cellulose composites incorporating releasable caffeic acid for inhibition of lipid oxidation in fish oil emulsions. Food Hydrocolloids 32 (1):9–19. doi:10.1016/j.foodhyd.2012.11.036.
  • Yu, Z., L. Sun, W. Wang, W. Zeng, A. Mustapha, and M. Lin. 2018. Soy protein-based films incorporated with cellulose nanocrystals and pine needle extract for active packaging. Industrial Crops and Products 112:412–9. doi:10.1016/j.indcrop.2017.12.031.
  • Yu, Z., Z. Zhang, and W.-C. Zeng. 2014. Investigation of antibrowning activity of pine needle (Cedrus deodara) extract with fresh-cut apple slice model and identification of the primary active components. European Food Research and Technology 239 (4):669. Vol.
  • Zactiti, E. M., and T. G. Kieckbusch. 2009. Release of potassium sorbate from active films of sodium alginate crosslinked with calcium chloride. Packaging Technology and Science 22 (6):349–58. doi:10.1002/pts.860.
  • Zhang, Y., X. Liu, Y. Wang, P. Jiang, and S. Y. Quek. 2016. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59:282–9. doi:10.1016/j.foodcont.2015.05.032.
  • Zinoviadou, K. G., K. P. Koutsoumanis, and C. G. Biliaderis. 2009. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Science 82 (3):338–45. doi:10.1016/j.meatsci.2009.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.