3,430
Views
146
CrossRef citations to date
0
Altmetric
Reviews

Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma

, &
Pages 2321-2334 | Received 17 Jul 2018, Accepted 28 Jul 2018, Published online: 02 Oct 2018

References

  • Ai, Z., B. Zhang, Y. Chen, Z. Yu, H. Chen, and D. Ni. 2017. Impact of light irradiation on black tea quality during withering. Journal of Food Science and Technology 54 (5):1212–27.
  • Alagarsamy, K., L. F. Shamala, and S. Wei. 2018. Protocol: high-efficiency in-planta agrobacterium-mediated transgenic hairy root induction of Camellia sinensis var. sinensis. Plant Methods 14 (1):17.
  • Alborn, H. T., T. V. Hansen, T. H. Jones, D. C. Bennett, J. H. Tumlinson, E. A. Schmelz, and P. E. Teal. 2007. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America 104 (32):12976–81.
  • Alborn, H. T., T. C. J. Turlings, T. H. Jones, G. Stenhagen, J. H. Loughrin, and J. H. Tumlinson. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276 (5314):945–9.
  • Allmann, S., and I. T. Baldwin. 2010. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science (New York, N.Y.) 329 (5995):1075–8.
  • Arrivault, S., M. Guenther, A. Florian, B. Encke, R. Feil, D. Vosloh, J. E. Lunn, R. Sulpice, A. R. Fernie, M. Stitt, and W. X. Schulze. 2014. Dissecting the subcellular compartmentation of proteins and metabolites in Arabidopsis leaves using non-aqueous fractionation. Molecular & Cellular Proteomics 13 (9):2246–59.
  • Baldermann, S., Z. Y. Yang, T. Katsuno, V. A. Tu, N. Mase, Y. Nakamura, and N. Watanabe. 2014. Discrimination of green, oolong, and black teas by GC-MS analysis of characteristic volatile flavor compounds. American Journal of Analytical Chemistry 05 (09):620–32.
  • Beer, J. 1987. Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforestry Systems 5 (1):3–13.
  • Bonaventure, G., A. van Doorn, and I. T. Baldwin. 2011. Herbivore-associated elicitors: FAC signaling and metabolism. Trends in Plant Science 16 (6):294–9.
  • Cao, F. R., K. B. Liu, C. Y. Liu, and D. L. Wang. 2006. Studies on the induction of aromatic constituents in fresh leaves of Lingtou Dancong tea by low temperature stress (in Chinese). Frontiers of Agriculture in China 1 (1):81–140.
  • Cao, P. R., C. Y. Liu, and K. B. Liu. 2007. Aromatic constituents in fresh leaves of Lingtou Dancongtea induced by drought stress. Frontiers of Agriculture in China 1 (1):81–4.
  • Cho, J. Y., M. Mizutani, B. Shimizu, T. Kinoshita, M. Ogura, K. Tokoro, M. L. Lin, and K. Sakata. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea "Oriental beauty. Bioscience, Biotechnology, and Biochemistry 71 (6):1476–86.
  • Cui, J., Katsuno, T. Totsuka, K. Ohnishi, T. Takemoto, H. Mase, N. Toda, M. Narumi, T. Sato, K. Matsuo. T. H et al., 2016. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. Journal of Agricultural and Food Chemistry 64 (5):1151–7.
  • Deng, W. W., R. Wang, T. Yang, L. N. Jiang, and Z. Z. Zhang. 2017. Functional characterization of salicylic acid carboxyl methyltransferase from Camellia sinensis, providing the aroma compound of methyl salicylate during the withering process of white tea. Journal of Agricultural and Food Chemistry 65 (50):11036–45.
  • Deng, W. W., Y. L. Wu, Y. Y. Li, Z. Tan, and C. L. Wei. 2016. Molecular cloning and characterization of hydroperoxide lyase gene in the leaves of tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 64 (8):1770–6.
  • Dong, F., X. M. Fu, N. Watanabe, X. Su, and Z. Y. Yang. 2016. Recent advances in the emission and functions of plant vegetative volatiles. Molecules (Basel, Switzerland) 21(2):124.
  • Dong, F., Z. Y. Yang, S. Baldermann, Y. Sato, T. Asai, and N. Watanabe. 2011. Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. Journal of Agricultural and Food Chemistry 59 (24):13131–5.
  • Dudareva, N., A. Klempien, J. K. Muhlemann, and I. Kaplan. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198 (1):16–32.
  • Farré, E. M., A. Tiessen, U. Roessner, P. Geigenberger, R. N. Trethewey, and L. Willmitzer. 2001. Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiology 127 (2):685–700.
  • Etoh, H., K. Ina, and M. Iguchi. 1980. 3S-(+)-3,7-Dimethyl-1,5-octadiene-3,7-diol and ionone derivatives from tea. Agricultural and Biological Chemistry 44 (12):2999–3000.
  • Franklin, K. A., and G. C. Whitelam. 2005. Phytochromes and shade-avoidance responses in plants. Annals of Botany 96 (2):169–75.
  • Fu, X. M., Y. Y. Chen, X. Mei, T. Katsuno, E. Kobayashi, F. Dong, N. Watanabe, and Z. Y. Yang. 2015. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports 5 (1):16858.
  • Gui, J. D., X. M. Fu, Y. Zhou, T. Katsuno, X. Mei, R. F. Deng, X. L. Xu, L. Y. Zhang, F. Dong, N. Watanabe, and Z. Y. Yang. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of Agricultural and Food Chemistry 63 (31):6905–14.
  • Han, B. Y., and Z. M. Chen. 2002. Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. Journal of Agricultural and Food Chemistry 50 (9):2571–5.
  • Heskes, A. M., Sundram, T. C. Boughton, B. A. Jensen, N. B. Hansen, N. L. Crocoll, C. Cozzi, F. Rasmussen, S. Hamberger, B. Hamberger. B., et al. 2018. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus. The Plant Journal 93 (5):943–58.
  • Ishiwari, H., T. Suzuki, and T. Maeda. 2007. Essential compounds in herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi. Journal of Chemical Ecology 33(9):1670–81.
  • Jang, J., Y. C. Yang, G. H. Zhang, H. Chen, J. L. Lu, Y. Y. Du, J. H. Ye, Q. Ye, D. Borthakur, X. Q. Zheng, et al. 2010. Effect of ultra-violet B on release of volatiles in tea leaf. International Journal of Food Properties13 (3):608–17.
  • Katsuno, T., H. Kasuga, Y. Kusano, Y. Yaguchi, M. Tomomura, J. Cui, Z. Yang, S. Baldermann, Y. Nakamura, T. Ohnishi, et al. 2014. Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chemistry 148: 388–95.
  • Kessler, A., R. Halitschke, and K. Poveda. 2011. Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant-pollinator interactions. Ecology 92 (9):1769–80.
  • Kinoshita, T. 2011. Chemical studies on the mechanism of aroma production in tea (in Japanese). Doctor Thesis of Shizuoka University in Japan.
  • Liu, G. F., J. J. Liu, Z. R. He, F. M. Wang, H. Yang, Y. F. Yan, M. J. Gao, M. Y. Gruber, X. C. Wan, and S. Wei. 2018. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Plant, Cell & Environment 41(1):176–86.
  • Liu, X. Y. 2018. Formation and emission of volatile monoterpenes in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda) (in Chinese). Master Thesis of University of Chinese Academy of Sciences in China.
  • Luan, F., A. Mosandl, A. Degenhardt, M. Gubesch, and M. Wust. 2006. Metabolism of linalool and substrate analogs in grape berry mesocarp of Vitis vinifera L. cv. Morio Muscat: demonstration of stereoselective oxygenation and glycosylation. Analytica Chimica Acta 563 (1–2):353–64.
  • Ma, S. J., M. Mizutani, J. Hiratake, K. Hayashi, K. Yagi, N. Watanabe, and K. Sakata. 2001. Substrate specificity of β-primeverosidase, a key enzeme in aroma formation during oolong tea and black tea manufacturing. Bioscience, Biotechnology, and Biochemistry 65 (12):2719–29.
  • Maffei, M. E., A. MithÖfer, and W. Boland. 2007. Before gene expression: early events in plant-insect interaction. Trends in Plant Science 12 (7):310–6.
  • Mattiacci, L., M. Dicke, and M. A. Posthumus. 1995. Beta-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps . Proceedings of the National Academy of Sciences of the United States of America 92 (6):2036–40.
  • Mei, X., X. Y. Liu, Y. Zhou, X. Q. Wang, L. T. Zeng, X. M. Fu, J. L. Li, J. C. Tang, F. Dong, and Z. Y. Yang. 2017. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (matsumurasca) onukii matsuda). Food Chemistry 237 :356–63.
  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science 11 (1):15–9.
  • Mizutani, M., H. Nakanishi, J. I. Ema, S. J. Ma, E. Noguchi, M. Inohara-Ochiai, M. Fukuchi-Mizutani, M. Nakao, and K. Sakata. 2002. Cloning of beta-primeverosidase from tea leaves, a key enzyme in tea aroma formation . Plant Physiology 130 (4):2164–76.
  • O’Connor, 2009. Genome wide approaches in natural product research. In Plant-derived natural products, ed. A. E. Osbourn and V. Lanzotti, 165–179. New York: Springer.
  • Ohgami, S., E. Ono, M. Horikawa, J. Murata, K. Totsuka, H. Toyonaga, Y. Ohba, H. Dohra, T. Asai, K. Matsui, et al. 2015. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiology 168 (2):464–77.
  • Peng, Z., H. R. Tong, G. L. Liang, Y. Q. Shi, and L. Y. Yuan. 2018. Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant (Camellia sinensis L. O. Kuntze). Acta Agronomica Sin 44:463–70. (in Chinese).
  • Pichersky, E., and J. Gershenzon. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5(3):237–43.
  • Rietveld, A., and S. Wiseman. 2003. Antioxidant effects of tea: evidence from human clinical trials. The Journal of Nutrition 133(10):3285S–92S.
  • Schmelz, E. A., M. J. Carroll, S. LeClere, S. M. Phipps, J. Meredith, P. S. Chourey, H. T. Alborn, and P. E. A. Teal. 2006. Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences of the United States of America 103 (23):8894–9.
  • Schuh, C., and P. Schieberle. 2006. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. Journal of Agricultural and Food Chemistry 54 (3):916–24.
  • Schullehner, K., R. Dick, F. Vitzthum, W. Schwab, W. Brandt, M. Frey, and A. Gierl. 2008. Benzoxazinoid biosynthesis in dicot plants. Phytochemistry 69 (15):2668–77.
  • Smith, H. 1982. Light quality, photoperception, and plant strategy. Annual Review of Plant Physiology 33 (1):481–518.
  • Tocci, N., M. Gaid, F. Kaftan, A. K. Belkheir, I. Belhadj, B. Liu, A. Svatoš, R. Hänsch, G. Pasqua, and L. Beerhues. 2018. Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. The New Phytologist 217 (3):1099–112.
  • Tohge, T., M. S. Ramos, A. Nunes-Nesi, M. Mutwil, P. Giavalisco, D. Steinhauser, M. Schellenberg, L. Willmitzer, S. Persson, E. Martinoia, et al. 2011. Towards the storage metabolome: profiling the barley vacuole. Plant Physiology 157 (3):1469–82.
  • Underwood, B. A., D. M. Tieman, K. Shibuya, C. A. Sims, E. A. Schmelz, H. J. Klee, and D. G. Clark. 2005. Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiology 138 (1):255–66.
  • Wan, X. C. 2003. Tea biochemistry (in Chinese). Beijing: China Agriculture Press.
  • Wang, D. M., K. Kubota, A. Kobayashi, and I. M. Juan. 2001a. Analysis of glycosidically bound aroma precursors in tea leaves. 3. Changes in glycoside contents during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 49:5391–6.
  • Wang, D. M., E. Kurasawa, Y. Yamaguchi, K. Kubota, and A. Kobayashi. 2001b. Analysis of glycosidically bound aroma precursors in tea leaves. 2. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. Journal of Agricultural and Food Chemistry 49:1900–3.
  • Wang, X. Q., L. T. Zeng, Y. Y. Liao, Y. Zhou, X. L. Xu, F. Dong, and Z. Y. Yang. 2019. An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry 270:17–24.
  • Williams, P. J., C. R. Strauss, and B. Wilson. 1980. Hydroxylated linalool derivatives as precursors of volatile monoterpenes of Muscat grapes. Journal of Agricultural and Food Chemistry 28 (4):766–71.
  • Winterhalter, P., and G. K. Skouroumounis. 1997. Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. In Biotechnology of aroma compounds, ed. R. G. Berger, 73–105. New York: Springer.
  • Xu, Q. S., Y. X. He, X. M. Yan, S. Q. Zhao, J. Y. Zhu, and C. L. Wei. 2018. Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis) leaves by integration of metabolomics and transcriptomics. Environmental and Experimental Botany 149: 81–94.
  • Yang, Z. Y., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Research International 53 (2):585–99.
  • Yang, Z. Y., E. Kobayashi, T. Katsuno, T. Asanuma, T. Fujimori, I. Ishikawa, M. Tomomura, K. Mochizuki, T. Watase, Y. Nakamura, et al. 2012. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry 135 (4):2268–76.
  • Yang, Z. Y., K. Mochizuki, T. Watase, E. Kobayashi, T. Katsuno, T. Asanuma, K. Tomita, A. Morita, T. Suzuki, Y. Nakamura, et al. 2010. Influences of light emitting diodes irradiations and shade treatments on volatile profiles and related metabolites of leaves of tea (Camellia sinensis) plants and postharvest tea leaves. In Advances and challenges in flavor chemistry & biology, ed. T. Hofmann, W. Meyerhof, and P. Schieberle, 207 213. Germany: Deutsche Forschungsanstalt für Lebensmittelchemie.
  • Zeng, L. T. 2018. Biosyntheses of characteristic floral aroma compounds in tea (Camellia sinensis) leaves and their formations in response to abiotic stresses (in Chinese). Doctor Thesis of University of Chinese Academy of Sciences in China.
  • Zeng, L. T., Y. Zhou, X. M. Fu, Y. Y. Liao, Y. F. Yuan, Y. X. Jia, F. Dong, and Z. Y. Yang. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry 66 (15):3899–909.
  • Zeng, L. T., Y. Zhou, X. M. Fu, X. Mei, S. H. Cheng, J. D. Gui, F. Dong, J. C. Tang, S. Z. Ma, and Z. Y. Yang. 2017. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry 237:488–98.
  • Zeng, L. T., Y. Zhou, J. D. Gui, X. M. Fu, X. Mei, Y. P. Zhen, T. X. Ye, B. Du, F. Dong, N. Watanabe, et al. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 64 (24):5011–9.
  • Zhao, X., Meng, Z. Wang, Y. Chen, W. Sun, C. Cui, B.Cui, J. H. Yu, M. L. Zeng, Z. H. Guo, et al. 2017. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants 3 (12):956.
  • Zhou, Y., Dong, F. Kunimasa, A. Zhang, Y. Q. Cheng, S. H. Lu, J. M. Zhang, L. Murata, A. Mayer, F. Fleischmann, et al. 2014. Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers. Journal of Agricultural and Food Chemistry 62 (32):8042–50.
  • Zhou, Y., Q. Peng, L. T. Zeng, J. C. Tang, J. L. Li, F. Dong, and Z. Y. Yang. 2018. Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia sinensis (L.) O. Kuntze) flowers and other plants. Food Chemistry 258: 352–8.
  • Zhou, Y., L. T. Zeng, J. D. Gui, Y. Y. Liao, J. L. Li, J. C. Tang, Q. Meng, F. Dong, and Z. Y. Yang. 2017a. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International 96:206–14.
  • Zhou, Y., L. T. Zeng, Y. Y. Liao, F. Dong, Q. Y. Peng, J. L. Li, J. C. Tang, N. Watanabe, and Z. Y. Yang. 2017b. Insects (Thrips hawaiiensis (morgan)) change the stereochemical configuration of 1-phenylethanol emitted from tea (Camellia sinensis) flowers. RSC Advances 7 (51):32336–43.
  • Zhou, Y., L. T. Zeng, X. Y. Liu, J. D. Gui, X. Mei, X. M. Fu, F. Dong, J. C. Tang, L. Y. Zhang, and Z. Y. Yang. 2017c. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry 231:78–86.
  • Zhu, J. Y., X. W. Wang, L. X. Guo, Q. S. Xu, S. Q. Zhao, F. D. Li, X. M. Yan, S. R. Liu, and C. L. Wei. 2018. Characterization and alternative splicing profiles of lipoxygenase gene family in tea plant (Camellia sinensis). Plant Cell Physiology. doi:10.1093/pcp/pcy091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.