2,852
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Cheesomics: the future pathway to understanding cheese flavour and quality

, , , &
Pages 33-47 | Received 01 May 2018, Accepted 13 Aug 2018, Published online: 04 Oct 2018

References

  • Aldrete-Tapia, A., M. C. Escobar-Ramírez, M. L. Tamplin, and M. Hernández-Iturriaga. 2014. High-throughput sequencing of microbial communities in poro cheese, an artisanal Mexican cheese. Food Microbiology 44:136–41.
  • Almeida, M., A. Hébert, A.-L. Abraham, S. Rasmussen, C. Monnet, N. Pons, C. Delbès, V. Loux, J.-M. Batto, P. Leonard, et al. 2014. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products. BMC Genomics 15 (1):1101.
  • Angelis, M., M. Calasso, N. Cavallo, R. Di Cagno, and M. Gobbetti. 2016. Functional proteomics within the genus lactobacillus. Proteomics 16 (6):946–62.
  • Aune, D., T. Norat, P. Romundstad, and L. J. Vatten. 2013. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. The American Journal of Clinical Nutrition 98 (4):1066–83.
  • Bernstein, J. A., A. B. Khodursky, P.-H. Lin, S. Lin-Chao, and S. N. Cohen. 2002. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proceedings of the National Academy of Sciences of the United States of America 99 (15):9697–702.
  • Bokulich, N. A., and D. A. Mills. 2013. Facility-specific “house” microbiome drives microbial landscapes of artisan cheesemaking plants. Applied and Environmental Microbiology 79 (17):5214–23.
  • Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research 11 (5):731–53.
  • Bourdichon, F., S. Casaregola, C. Farrokh, J. C. Frisvad, M. L. Gerds, W. P. Hammes, J. Harnett, G. Huys, S. Laulund, and A. Ouwehand. 2012. Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology 154 (3):87–97.
  • Brattoli, M., E. Cisternino, P. R. Dambruoso, G. De Gennaro, P. Giungato, A. Mazzone, J. Palmisani, and M. Tutino. 2013. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds. Sensors 13 (12):16759–800.
  • Budinich, M. F., I. Perez-Díaz, H. Cai, S. A. Rankin, J. R. Broadbent, and J. L. Steele. 2011. Growth of Lactobacillus paracasei ATCC 334 in a cheese model system: A biochemical approach. Journal of Dairy Science 94 (11):5263–77.
  • Casado, B., M. Affolter, and M. Kussmann. 2009. OMICS-rooted studies of milk proteins, oligosaccharides and lipids. Journal of Proteomics 73 (2):196–208.
  • Chen, G.-C., Y. Wang, X. Tong, I. M. Y. Szeto, G. Smit, Z.-N. Li, and L.-Q. Qin. 2017. Cheese consumption and risk of cardiovascular disease: a Meta-analysis of prospective studies. European Journal of Nutrition 56 (8):2565–75.
  • Cheng, S., A. Lyytikäinen, H. Kröger, C. Lamberg-Allardt, M. Alén, A. Koistinen, Q. J. Wang, M. Suuriniemi, H. Suominen, A. Mahonen, et al. 2005. Effects of calcium, dairy product, and vitamin d supplementation on bone mass accrual and body composition in 10–12-y-old girls: a 2-y randomized trial. The American Journal of Clinical Nutrition 82 (5):1115–26.
  • Cocolin, L., and D. Ercolini. 2007. Molecular techniques in the microbial ecology of fermented foods. New York, NY: Springer.
  • Cocolin, L., M. Mataragas, F. Bourdichon, A. Doulgeraki, M.-F. Pilet, B. Jagadeesan, K. Rantsiou, and T. Phister. 2017. Next generation microbiological risk assessment Meta-omics: The next need for integration. International Journal of Food Microbiology. doi:10.1016/j.ijfoodmicro.2017.11.008
  • Conto, F. 2017. Advances in dairy products. Hoboken, NJ: John Wiley & Sons.
  • Cretenet, M., V. Laroute, V. Ulvé, S. Jeanson, S. Nouaille, S. Even, M. Piot, L. Girbal, Y. Le Loir, P. Loubière, et al., and M. Cocaign-Bousquet. 2011. Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses. Applied and Environmental Microbiology 77 (1):247–57.
  • da Cruz, A. G., F. C. A. Buriti, C. H. B. de Souza, J. A. F. Faria, and S. M. I. Saad. 2009. Probiotic cheese: Health benefits, technological and stability aspects. Trends in Food Science and Technology 20 (8):344–54.
  • Dallas, D. C., V. Weinborn, J. M. de Moura Bell, M. Wang, E. A. Parker, A. Guerrero, K. A. Hettinga, C. B. Lebrilla, J. B. German, and D. Barile. 2014. Comprehensive peptidomic and glycomic evaluation reveals that sweet whey permeate from colostrum is a source of milk protein-derived peptides and oligosaccharides. Food Research International 63:203–9.
  • Dalmasso, M., J. Aubert, V. Briard-Bion, V. Chuat, S.-M. Deutsch, S. Even, H. Falentin, G. Jan, J. Jardin, M.-B. Maillard, et al. 2012. A temporal-omic study of Propionibacterium freudenreichii CIRM-BIA1T adaptation strategies in conditions mimicking cheese ripening in the cold. PLoS One 7 (1):e29083.
  • De Beeck, M. O., B. Lievens, P. Busschaert, S. Declerck, J. Vangronsveld, and J. V. Colpaert. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9 (6):e97629.
  • De Filippis, F., A. Genovese, P. Ferranti, J. A. Gilbert, and D. Ercolini. 2016. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Scientific Reports 6 (1):21871.
  • De Filippis, F., E. Parente, and D. Ercolini. 2017. Metagenomics insights into food fermentations. Applied Microbiology and Biotechnology 10 (1):91–102.
  • Delcenserie, V., B. Taminiau, L. Delhalle, C. Nezer, P. Doyen, S. Crevecoeur, D. Roussey, N. Korsak, and G. Daube. 2014. Microbiota characterization of a Belgian protected designation of origin cheese, herve cheese, using metagenomic analysis. Journal of Dairy Science 97 (10):6046–56.
  • Den Hengst, C. D., S. A. van Hijum, J. M. Geurts, A. Nauta, J. Kok, and O. P. Kuipers. 2005. The Lactococcus lactis CodY regulon: Identification of a conserved cis-regulatory element. The Journal of Biological Chemistry 280 (40):34332–42.
  • Dias, D. A., O. A. Jones, D. J. Beale, B. A. Boughton, D. Benheim, K. A. Kouremenos, J.-L. Wolfender, and D. S. Wishart. 2016. Current and future perspectives on the structural identification of small molecules in biological systems. Metabolites 6 (4):46.
  • Dias, D. A., and T. Koal. 2016. Progress in metabolomics standardisation and its significance in future clinical laboratory medicine. EJIFCC 27 (4):331.
  • Douillard, F. P., and W. M. De Vos. 2014. Functional genomics of lactic acid bacteria: from food to health. Microbial Cell Factories 13 (1):S8.
  • Dressaire, C., E. Redon, H. Milhem, P. Besse, P. Loubière, and M. Cocaign-Bousquet. 2008. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics 9 (1):343.
  • Dugat-Bony, E., L. Garnier, J. Denonfoux, S. Ferreira, A.-S. Sarthou, P. Bonnarme, and F. Irlinger. 2016. Highlighting the microbial diversity of 12 french cheese varieties. International Journal of Food Microbiology 238 :265–73.
  • Dugat-Bony, E., C. Straub, A. Teissandier, D. Onésime, V. Loux, C. Monnet, F. Irlinger, S. Landaud, M.-N. Leclercq-Perlat, P. Bento, et al. 2015. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PloS One 10 (4):e0124360.
  • Duwat, P., S. Sourice, B. Cesselin, G. Lamberet, K. Vido, P. Gaudu, Y. Le Loir, F. Violet, P. Loubière, and A. Gruss. 2001. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. Journal of Bacteriology 183 (15):4509–16.
  • Ekman, M., P. Tollbäck, and B. Bergman. 2008. Proteomic analysis of the cyanobacterium of the azolla symbiosis: identity, adaptation, and NifH modification. Journal of Experimental Botany 59 (5):1023–34.
  • Ercolini, D. 2013. High-throughput sequencing and metagenomics: Moving forward in the culture-independent analysis of food microbial ecology. Applied and Environmental Microbiology 79 (10):3148–55.
  • Ercolini, D., F. De Filippis, A. La Storia, and M. Iacono. 2012. Remake’ by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese. Applied and Environmental Microbiology 78 (22):8142–5.
  • Escobar-Zepeda, A., A. Sanchez-Flores, and M. Q. Baruch. 2016. Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiology 57:116–27.
  • Falentin, H., S.-M. Deutsch, G. Jan, V. Loux, A. Thierry, S. Parayre, M.-B. Maillard, J. Dherbécourt, F. J. Cousin, J. Jardin, et al. 2010. The complete genome of Propionibacterium freudenreichii CIRM-BIA1 T, a hardy actinobacterium with food and probiotic applications. PloS One 5 (7):e11748.
  • Falentin, H., F. Postollec, S. Parayre, N. Henaff, P. Le Bivic, R. Richoux, A. Thierry, and D. Sohier. 2010. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout emmental cheese manufacture. International Journal of Food Microbiology 144 (1):10–9.
  • Ferrocino, I., A. Bellio, M. Giordano, G. Macori, A. Romano, K. Rantsiou, L. Decastelli, and L. Cocolin. 2018. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Applied and Environmental Microbiology 84 (3):e02120–17.
  • Fiehn, O., J. Kopka, P. Dörmann, T. Altmann, R. N. Trethewey, and L. Willmitzer. 2000. Metabolite profiling for plant functional genomics. Nature Biotechnology 18 (11):1157
  • Forquin, M.-P., A. Hébert, A. Roux, J. Aubert, C. Proux, J.-F. Heilier, S. Landaud, C. Junot, P. Bonnarme, and I. Martin-Verstraete. 2011. Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum. Applied and Environmental Microbiology 77 (4):1449–59.
  • Fox, P. 2000. Fundamentals of cheese science. New York, NY: Springer Science & Business Media.
  • Franzosa, E. A., T. Hsu, A. Sirota-Madi, A. Shafquat, G. Abu-Ali, X. C. Morgan, and C. Huttenhower. 2015. Sequencing and beyond: Integrating molecular 'omics' for microbial community profiling. Nature Reviews Microbiology 13 (6):360–72.
  • Fuchsmann, P., M. T. Stern, Y.-A. Brügger, and K. Breme. 2015. Olfactometry profiles and quantitation of volatile sulfur compounds of Swiss tilsit cheeses. Journal of Agricultural and Food Chemistry 63 (34):7511–21.
  • Fuka, M. M., S. Wallisch, M. Engel, G. Welzl, J. Havranek, and M. Schloter. 2013. Dynamics of bacterial communities during the ripening process of different croatian cheese types derived from raw ewe's milk cheeses. PLoS One 8 (11):e80734.
  • Gagnaire, V., J. Jardin, G. Jan, and S. Lortal. 2009. Invited review: Proteomics of milk and bacteria used in fermented dairy products: From qualitative to quantitative advances. Journal of Dairy Science 92 (3):811–25.
  • Gill, H. S., K. J. Rutherfurd, M. L. Cross, and P. K. Gopal. 2001. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. The American Journal of Clinical Nutrition 74 (6):833–9.
  • Gobbetti, M., F. Minervini, and C. G. Rizzello. 2007. Bioactive peptides in dairy products. In Handbook of food products manufacturing, ed. Y. H. Hui., 489–517. Hoboken, NJ: John Wiley & Sons, Inc.
  • Goodacre, R., S. Vaidyanathan, W. B. Dunn, G. G. Harrigan, and D. B. Kell. 2004. Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology 22 (5):245–52.
  • Gwinner, F., G. Boulday, C. Vandiedonck, M. Arnould, C. Cardoso, I. Nikolayeva, O. Guitart-Pla, C. V. Denis, O. D. Christophe, J. Beghain, et al. 2017. Network-based analysis of omics data: The LEAN method. Bioinformatics (Oxford, England) 33 (5):701–9.
  • Hamady, M., and R. Knight. 2009. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research 19 (7):1141–52.
  • Han, X. 2009. Lipidomics: Developments and applications. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 877 (26):2663.
  • Handelsman, J. 2004. Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews 68 (4):669–85.
  • Hinz, K., P. M. O'Connor, B. O'Brien, T. Huppertz, R. P. Ross, and A. L. Kelly. 2012. Proteomic study of proteolysis during ripening of cheddar cheese made from milk over a lactation cycle. The Journal of Dairy Research 79 (2):176–84.
  • Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 180 (18):4765–74.
  • Irlinger, F., S. A. Y. In Yung, A.-S. Sarthou, C. Delbès-Paus, M.-C. Montel, E. Coton, M. Coton, and S. Helinck. 2012. Ecological and aromatic impact of two gram-negative bacteria (Psychrobacter celer and Hafnia alvei) inoculated as part of the whole microbial community of an experimental smear soft cheese. International Journal of Food Microbiology 153 (3):332–8.
  • Jardin, J., D. Mollé, M. Piot, S. Lortal, and V. R Gagnaire. 2012. Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening. International Journal of Food Microbiology 155 (1–2):19–28.
  • Johanningsmeier, S. D., G. K. Harris, and C. M. Klevorn. 2016. Metabolomic technologies for improving the quality of food: Practice and promise. Annual Review of Food Science and Technology 7:413–38.
  • Jovel, J., J. Patterson, W. Wang, N. Hotte, S. O'Keefe, T. Mitchel, T. Perry, D. Kao, A. L. Mason, K. L. Madsen, and G. K.-S. Wong. 2016. Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology 7:459
  • Kok, J., L. A. van Gijtenbeek, A. de Jong, S. B. van der Meulen, A. Solopova, and O. P. Kuipers. 2017. The evolution of gene regulation research in Lactococcus lactis. FEMS Microbiology Reviews 41 (1):S220–S43.
  • Konkit, M., J.-H. Kim, N. Bora, and W. Kim. 2014. Transcriptomic analysis of Lactococcus chungangensis sp. nov. and its potential in cheese making. Journal of Dairy Science 97 (12):7363–72.
  • Korte, R., and J. Brockmeyer. 2017. Novel mass spectrometry approaches in food proteomics. TrAC Trends in Analytical Chemistry 96:99–106.
  • Kuipers, O. P., A. De Jong, R. J. Baerends, S. A. Van, A. L. Z. Hijum, H. A. Karsens, C. D. Den Hengst, N. E. Kramer, G. Buist, and J. Kok. 2002. Transcriptome analysis and related databases of Lactococcus lactis. Lactic acid bacteria: Genetics, metabolism and applications. Berlin, Germany: Springer.
  • Land, M., L. Hauser, S.-R. Jun, I. Nookaew, M. R. Leuze, T.-H. Ahn, T. Karpinets, O. Lund, G. Kora, T. Wassenaar, et al. 2015. Insights from 20 years of bacterial genome sequencing. Functional & Integrative Genomics 15 (2):141–61.
  • Larsen, N., S. Moslehi-Jenabian, B. B. Werner, M. L. Jensen, C. Garrigues, F. K. Vogensen, and L. Jespersen. 2016. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential. International Journal of Food Microbiology 226:5–12.
  • Lazzi, C., M. Povolo, F. Locci, V. Bernini, E. Neviani, and M. Gatti. 2016. Can the development and autolysis of lactic acid bacteria influence the cheese volatile fraction? The case of Grana Padano. International Journal of Food Microbiology 233:20–8.
  • Lazzi, C., S. Turroni, A. Mancini, E. Sgarbi, E. Neviani, P. Brigidi, and M. Gatti. 2014. Transcriptomic clues to understand the growth of Lactobacillus rhamnosus in cheese. BMC Microbiology 14 (1):28
  • Le Boucher, C., F. Courant, S. Jeanson, S. Chereau, M. B. Maillard, A. L. Royer, A. Thierry, G. Dervilly-Pinel, B. Le Bizec, and S. Lortal. 2013. First mass spectrometry metabolic fingerprinting of bacterial metabolism in a model cheese. Food Chemistry 141 (2):1032–40.
  • Le Boucher, C., F. Courant, A.-L. Royer, S. Jeanson, S. Lortal, G. Dervilly-Pinel, A. Thierry, and B. Le Bizec. 2015. LC–HRMS fingerprinting as an efficient approach to highlight fine differences in cheese metabolome during ripening. Metabolomics 11 (5):1117–30.
  • Lee, J. Y., J. Y. Joung, Y.-S. Choi, Y. Kim, and N. S. Oh. 2016. Characterisation of microbial diversity and chemical properties of cheddar cheese prepared from heat-treated milk. The International Dairy Journal 63:92–8.
  • Lessard, M.-H., C. Viel, B. Boyle, D. St-Gelais, and S. Labrie. 2014. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened camembert-type cheese. BMC Genomics 15 (1):235.
  • Li, Q., Y. Zhao, D. Zhu, X. Pang, Y. Liu, R. Frew, and G. Chen. 2017. Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-Exactive Orbitrap mass Spectrometry. Food Chemistry 224:302–9.
  • Loman, N. J., and M. J. Pallen. 2015. Twenty years of bacterial genome sequencing. Nature Reviews Microbiology 13 (12):787
  • Lusk, T. S., A. R. Ottesen, J. R. White, M. W. Allard, E. W. Brown, and J. A. Kase. 2012. Characterization of microflora in Latin-style cheeses by next-generation sequencing technology. BMC Microbiology 12 (1):254.
  • Magenis, R. B., E. S. Prudêncio, L. Molognoni, and H. Daguer. 2014. A control method to inspect the compositional authenticity of minas frescal cheese by gel electrophoresis. Journal of Agricultural and Food Chemistry 62 (33):8333–9.
  • Makarova, K., A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin, E. Koonin, A. Pavlov, N. Pavlova, V. Karamychev, N. Polouchine, et al. 2006. Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America 103 (42):15611–6.
  • Mandal, M., and R. R. Breaker. 2004. Gene regulation by riboswitches. Nature Reviews. Molecular Cell Biology 5 (6):451–63.
  • Manso, M., J. Léonil, G. Jan, and V. Gagnaire. 2005. Application of proteomics to the characterization of milk and dairy products. The International Dairy Journal 15 (6-9):845–55.
  • Marco, M. L., Heeney, D. S. Binda, C. J. Cifelli, P. D. Cotter, B. Foligné, M. Gänzle, R. Kort, G. Pasin, A. Pihlanto, E. J. et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44:94–102.
  • Mardis, E. R. 2011. A decade's perspective on DNA sequencing technology. Nature 470 (7333):198.
  • Martinez-Villaluenga, C., E. Peñas, and J. Frias. 2016. Bioactive peptides in fermented foods: Production and evidence for health effects. Fermented foods in health and disease prevention 23–47.
  • Masoud, W., M. Takamiya, F. K. Vogensen, S. Lillevang, W. A. Al-Soud, S. J. Sørensen, and M. Jakobsen. 2011. Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. The International Dairy Journal 21 (3):142–8.
  • Mazzei, P., and A. Piccolo. 2012. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chemistry 132 (3):1620–7.
  • Metzker, M. L. 2010. Sequencing technologies – The next generation. Nature Reviews. Genetics 11 (1):31–46.
  • Monnet, C., E. Dugat-Bony, D. Swennen, J.-M. Beckerich, F. Irlinger, S. Fraud, and P. Bonnarme. 2016. Investigation of the activity of the microorganisms in a reblochon-style cheese by metatranscriptomic analysis. Frontiers in Microbiology 7:536.
  • Monnet, C., V. Ulvé, A.-S. Sarthou, and F. Irlinger. 2008. Extraction of RNA from cheese without prior separation of microbial cells. Applied and Environmental Microbiology 74 (18):5724–30.
  • Mounier, J., C. Monnet, N. Jacques, A. Antoinette, and F. Irlinger. 2009. Assessment of the microbial diversity at the surface of livarot cheese using culture-dependent and independent approaches. International Journal of Food Microbiology 133 (1-2):31–7.
  • Mukherjee, S., R. Seshadri, N. J. Varghese, E. A. Eloe-Fadrosh, J. P. Meier-Kolthoff, M. Göker, R. C. Coates, M. Hadjithomas, G. A. Pavlopoulos, D. Paez-Espino, et al. 2017. 1,003 Reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nature Biotechnology 35 (7):676.
  • Nocker, A., M. Burr, and A. K. Camper. 2007. Genotypic microbial community profiling: A critical technical review. Microbial Ecology 54 (2):276–89.
  • O’Donnell, R., J. W. Holland, H. C. Deeth, and P. Alewood. 2004. Milk proteomics. The International Dairy Journal 14 (12):1013–23.
  • Ochi, H., T. Bamba, H. Naito, K. Iwatsuki, and E. Fukusaki. 2012. Metabolic fingerprinting of hard and semi-hard natural cheeses using gas chromatography with flame ionization detector for practical sensory prediction modeling. The Journal of Bioscience and Bioengineering 114 (5):506–11.
  • Ochi, H., H. Naito, K. Iwatsuki, T. Bamba, and E. Fukusaki. 2012. Metabolomics-based component profiling of hard and semi-hard natural cheeses with gas chromatography/time-of-flight-mass spectrometry, and its application to sensory predictive modeling. The Journal of Bioscience and Bioengineering 113 (6):751–8.
  • Ojala, T., P. K. S. Laine, T. Ahlroos, J. Tanskanen, S. Pitkänen, T. Salusjärvi, M. Kankainen, S. Tynkkynen, L. Paulin, and P. Auvinen. 2017. Functional genomics provides insights into the role of Propionibacterium freudenreichii ssp. shermanii JS in cheese ripening. International Journal of Food Microbiology 241:39–48.
  • Pisano, M. B., P. Scano, A. Murgia, S. Cosentino, and P. Caboni. 2016. Metabolomics and microbiological profile of Italian mozzarella cheese produced with buffalo and cow milk. Food Chemistry 192:618–24. doi: 10.1016/j.foodchem.2015.07.061.
  • Pogačić, T., M.-B. Maillard, A. Leclerc, C. Hervé, V. Chuat, F. Valence, and A. Thierry. 2016. Lactobacillus and leuconostoc volatilomes in cheese conditions. Applied Microbiology and Biotechnology 100 (5):2335–46.
  • Pogačić, T., M.-B. Maillard, A. Leclerc, C. Hervé, V. Chuat, A. L. Yee, F. Valence, and A. Thierry. 2015. A methodological approach to screen diverse cheese-related bacteria for their ability to produce aroma compounds. Food Microbiology 46:145–53.
  • Prasad, J., H. Gill, J. Smart, and P. K. Gopal. 1998. Selection and characterization of lactobacillus and bifidobacterium strains for use as probiotics. The International Dairy Journal 8 (12):993–1002.
  • Putri, S. P., Y. Nakayama, F. Matsuda, T. Uchikata, S. Kobayashi, A. Matsubara, and E. Fukusaki. 2013. Current metabolomics: Practical applications. Journal of Bioscience and Bioengineering 115 (6):579–89.
  • Quigley, L., O. O'Sullivan, T. P. Beresford, R. P. Ross, G. F. Fitzgerald, and P. D. Cotter. 2011. Molecular approaches to analyzing the microbial composition of raw milk and raw milk cheese. International Journal of Food Microbiology 150 (2–3):81–94.
  • Quigley, L., O. O'Sullivan, T. P. Beresford, R. P. Ross, G. F. Fitzgerald, and P. D. Cotter. 2012. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Applied and Environmental Microbiology 78 (16):5717–23.
  • Quince, C., A. W. Walker, J. T. Simpson, N. J. Loman, and N. Segata. 2017. Shotgun metagenomics, from sampling to analysis. Nature Biotechnology 35 (9):833.
  • Raes, J., and P. Bork. 2008. Molecular eco-systems biology: Towards an understanding of community function. Nature Reviews. Microbiology 6 (9):693
  • Rastogi, G., and R. K. Sani. 2011. Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In Microbes and microbial technology, ed. I. Ahmad, F. Ahmad, and J. Pichtel, 29–57. New York, NY: Springer.
  • Riquelme, C., S. Câmara, M. D L N. Enes Dapkevicius, P. Vinuesa, C. C. G. da Silva, F. X. Malcata, and O. A. Rego. 2015. Characterization of the bacterial biodiversity in pico cheese (an artisanal Azorean food)). International Journal of Food Microbiology 192:86–94.
  • Rittmann, B. E., R. Krajmalnik-Brown, and R. U. Halden. 2008. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews. Microbiology 6 (8):604.
  • Rizzello, C., I. Losito, M. Gobbetti, T. Carbonara, M. De Bari, and P. Zambonin. 2005. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. Journal of Dairy Science 88 (7):2348–60.
  • Rocca, J. D., E. K. Hall, J. T. Lennon, S. E. Evans, M. P. Waldrop, J. B. Cotner, D. R. Nemergut, E. B. Graham, and M. D. Wallenstein. 2015. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. The Isme Journal 9 (8):1693.
  • Roessner, U., A. Nahid, B. Chapman, A. Hunter, and M. Bellgard. 2011. Metabolomics–the combination of analytical biochemistry, biology, and informatics. In Comprehensive biotechnology, ed. M. Moo-Young, 447–459. 2nd ed. Cambridge, MA: Academic Press.
  • Roncada, P., C. Piras, A. Soggiu, R. Turk, A. Urbani, and L. Bonizzi. 2012. Farm animal milk proteomics. Journal of Proteome Research 75 (14):4259–74.
  • Sattin, E., N. Andreani, L. Carraro, L. Fasolato, S. Balzan, E. Novelli, A. Squartini, A. Telatin, B. Simionati, and B. Cardazzo. 2016. Microbial dynamics during shelf-life of industrial ricotta cheese and identification of a bacillus strain as a cause of a pink discolouration. Food Microbiology 57:8–15.
  • Salter, S. J., M. J. Cox, E. M. Turek, S. T. Calus, W. O. Cookson, M. F. Moffatt, P. Turner, J. Parkhill, N. J. Loman, and A. W. Walker. 2014. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 12 (1):87.
  • Santiago-López, L., J. E. Aguilar-Toalá, A. Hernández-Mendoza, B. Vallejo-Cordoba, A. M. Liceaga, and A. F. González-Córdova. 2018. Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of Dairy Science 101 (5):3742–57.
  • Schornsteiner, E., E. Mann, O. Bereuter, M. Wagner, and S. Schmitz-Esser. 2014. Cultivation-independent analysis of microbial communities on Austrian raw milk hard cheese rinds. International Journal of Food Microbiology 180:88–97.
  • Settanni, L., and G. Moschetti. 2010. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology 27 (6):691–7.
  • Sgarbi, E., C. Lazzi, G. Tabanelli, M. Gatti, E. Neviani, and F. Gardini. 2013. Nonstarter lactic acid bacteria volatilomes produced using cheese components. Journal of Dairy Science 96 (7):4223–34.
  • Silva, R. A., V. S. Bezerra, M. D C B. Pimentel, A. L. F. Porto, M. T. H. Cavalcanti, and L. José Luiz Filho. 2016. Proteomic and peptidomic profiling of Brazilian artisanal 'Coalho' cheese. Journal of the Science of Food and Agriculture 96 (13):4337–44.
  • Soggiu, A., C. Piras, S. L. Mortera, I. Alloggio, A. Urbani, L. Bonizzi, and P. Roncada. 2016. Unravelling the effect of clostridia spores and lysozyme on microbiota dynamics in grana padano cheese: A metaproteomics approach. Journal of Proteome Research 147:21–7.
  • Sokol, E., T. Ulven, N. J. Faergeman, and C. S. Ejsing. 2015. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL. European Journal of Lipid Science and Technology: Ejlst 117 (6):751–9.
  • Solieri, L., T. C. Dakal, and P. Giudici. 2013. Next-generation sequencing and its potential impact on food microbial genomics. Annals of Microbiology 63 (1):21–37.
  • Spratlin, J. L., N. J. Serkova, and S. G. Eckhardt. 2009. Clinical applications of metabolomics in oncology: a review. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 15 (2):431–40.
  • St-Onge, M.-P., E. R. Farnworth, and P. J. Jones. 2000. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. The American Journal of Clinical Nutrition 71 (3):674–81.
  • Sumner, L. W., P. Mendes, and R. A. Dixon. 2003. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 62 (6):817–36.
  • Sun, Z., H. M. B. Harris, A. McCann, C. Guo, S. Argimón, W. Zhang, X. Yang, I. B. Jeffery, J. C. Cooney, T. F. Kagawa, et al. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications 6 (1):8322.
  • Tan-A-Ram, P., T. Cardoso, M.-L. Daveran-Mingot, S. Kanchanatawee, P. Loubière, L. Girbal, and M. Cocaign-Bousquet. 2011. Assessment of the diversity of dairy Lactococcus lactis subsp. lactis isolates by an integrated approach combining phenotypic, genomic, and transcriptomic analyses. Applied and Environmental Microbiology 77 (3):739–48.
  • Taïbi, A., N. Dabour, M. Lamoureux, D. Roy, and G. LaPointe. 2011. Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating cheddar cheese manufacture. International Journal of Food Microbiology 146 (3):263–75.
  • Telgi, R. L., V. Yadav, C. R. Telgi, and N. Boppana. 2013. In vivo dental plaque pH after consumption of dairy products. General Dentistry 61 (3):56–9.
  • Tessler, M., J. S. Neumann, E. Afshinnekoo, M. Pineda, R. Hersch, L. F. M. Velho, B. T. Segovia, F. A. Lansac-Toha, M. Lemke, R. DeSalle, et al. 2017. Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Scientific Reports 7 (1):6589.
  • van Dijk, E. L., H. Auger, Y. Jaszczyszyn, and C. Thermes. 2014. Ten years of next-generation sequencing technology. Trends in Genetics 30 (9):418–26.
  • Walsh, A. M., F. Crispie, M. J. Claesson, and P. D. Cotter. 2017. Translating omics to food microbiology. Annual Review of Food Science and Technology 8:113–34.
  • Walther, B., A. Schmid, R. Sieber, and K. Wehrmüller. 2008. Cheese in nutrition and health. Dairy Science and Technology 88 (4–5):389–405.
  • Wegmann, U., M. O'Connell-Motherway, A. Zomer, G. Buist, C. Shearman, C. Canchaya, M. Ventura, A. Goesmann, M. J. Gasson, O. P. Kuipers, et al. 2007. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. Journal of Bacteriology 189 (8):3256–70.
  • Wilmes, P., and P. L. Bond. 2004. The application of two‐dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environmental Microbiology 6 (9):911–20.
  • Wolfe, B. E., J. E. Button, M. Santarelli, and R. J. Dutton. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158 (2):422–33.
  • Wu, Z., P. Wang, J. He, D. Pan, X. Zeng, and J. Cao. 2016. Proteome analysis of Lactobacillus plantarum strain under cheese-like conditions. Journal of Proteomics 146:165–71.
  • Yee, A. L., M.-B. Maillard, N. Roland, V. Chuat, A. Leclerc, T. Pogačić, F. Valence, and A. Thierry. 2014. Great interspecies and intraspecies diversity of dairy propionibacteria in the production of cheese aroma compounds. International Journal of Food Microbiology 191:60–8.
  • Yvon, M., C. Gitton, E. Chambellon, G. Bergot, and V. Monnet. 2011. The initial efficiency of the proteolytic system of Lactococcus lactis strains determines their responses to a cheese environment. The International Dairy Journal 21 (5):335–45.
  • Zanni, E., E. Schifano, S. Motta, F. Sciubba, C. Palleschi, P. Mauri, G. Perozzi, D. Uccelletti, C. Devirgiliis, and A. Miccheli. 2017. Combination of metabolomic and proteomic analysis revealed different features among Lactobacillus delbrueckii subspecies bulgaricus and lactis strains while in vivo testing in the model organism caenorhabditis elegans highlighted probiotic properties. Frontiers in Microbiology 8:1206.
  • Zhang, Y., B. R. Fonslow, B. Shan, M.-C. Baek, and J. R. Yates. III. 2013. Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews 113 (4):2343–94.
  • Zomer, A. L., G. Buist, R. Larsen, J. Kok, and O. P. Kuipers. 2007. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. Journal of Bacteriology 189 (4):1366–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.