1,457
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Alicyclobacillus spoilage and control - a review

, &

References

  • Adhikari, M.D., Das, G. and Ramesh, A. (2012). Retention of nisin activity at elevated pH in an organic acid complex and gold nanoparticle composite. Chem. Commun. 48: 8928–8930.
  • . (2008). Alicyclobacillus best practice guideline. Association of the Industries of Juices and Nectars from Fruits and Vegetables of the European Union, Brussels, Belgium. http://www.unipektin.ch/docus/public/AIJN_Alicyclobacillus_Best_Practice_Guideline_July_2008.pdf. (accessed May 25, 2017).
  • Albuquerque, L., Rainey, F.A., Chung, A.P., Sunna, A., Nobre, M.F., Grote, R., Antranikian, G. and da Costa, M.S. (2000). Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int. J. Syst. Evol. Microbiol. 50:451–457.
  • Alighourchi, H., Barzegar, M. and Abbasi, S. (2008). Effect of gamma irradiation on the stability of anthocyanins and shelf-life of various pomegranate juices. Food Chem. 110:1036–1040.
  • Alpas, H., Alma, L. and Bozoglu, F. (2003). Inactivation of Alicyclobacillus acidoterrestris vegetative cells in model system, apple, orange, and tomato juices by high hydrostatic pressure. World J. Microbiol. Biotechnol. 19:619–623.
  • Antolinos, V., Muñoz, M., Ros-Chumillas, M., Aznar, A., Periago, P.M. and Fernández, P.S. (2011). Combined effect of lysozyme and nisin at different incubation temperature and mild heat treatment on the probability of time to growth of Bacillus cereus. Food Microbiol. 28:305–310.
  • Bahçeci, K.S., Gökmen, V. and Acar, J. (2005). Formation of guaiacol from vanillin by Alicyclobacillus acidoterrestris in apple juice: a model study. Eur. Food Res. 220:196–199.
  • Bahçeci, K.S. and Acar, J. (2007). Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestris. Int. J. Food Microbiol. 120:266–273.
  • Barbosa, A.A.T., de Araujo, H.G.S., Matos, P.N., Carnelossi, M.A.G. and de Castro, A.A. (2013). Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processes mangoes. Int. J. Food Microbiol. 164:135–140.
  • Baumgart, J., Husemann, M. and Schmidt, C. (1997). Alicyclobacillus acidoterrestris: occurrence, significance and detection in beverages and beverage base. Flussiges Obst. 64: 178–180.
  • Baysal, A.H. and Icier, F. (2010). Inactivation kinetics of Alicyclobacillus acidoterrestris spores in orange juice by ohmic heating: effects of voltage gradient and temperature on inactivation. J. Food Prot. 73: 299–304.
  • Bevilacqua, A., Cibelli, F., Corbo, M.R. and Sinigaglia M. (2007). Effects of high-pressure homogenization on the survival of Alicyclobacillus acidoterrestris in a laboratory medium. Lett. Appl. Microbiol. 45: 382–386.
  • Bevilacqua A, Corbo MR, and Sinigaglia M. (2008b) Inhibition of Alicyclobacillus acidoterrestris spores by natural compounds. Int. J. Food Sci. Technol. 43:1271–1275.
  • Bevilacqua, A., Sinigaglia, M., Corbo, M.R. (2008a). Alicyclobacillus acidoterrestris: new methods for inhibiting spore germination. Intl. J. Food Microbiol. 125:103–110.
  • Bintis, T., Litopoulou-Tzanetaki, E. and Robinson, R.K. (2000). Existing and potential applications of ultraviolet light in the food industry – a critical review. J. Sci. Food Agric. 80: 637–645.
  • Borrero, J., Kelly, E., O'Connor, P.M., Kelleher, P., Scully, C., Cotter, P.D., Mahony, J. and van Sinderen, D. (2018). Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: purification, characterization, and heterologous production. Appl. Environ. Microbiol. 84. doi: 10.1128/AEM.01801-17.
  • Brinez, W.J., Roig-Sagues, A., Herrero, M.M.H. and Lopez, B.G. (2006). Inactivation by ultrahigh-pressure homogenization of Escherichia coli strains inoculated into orange juice. J. Food Prot. 69:984–989.
  • Burt, S. (2004). Essential oils and their antibacterial properties and potential applications in foods-a review. Int.J.Food Microbiol. 94:223–253.
  • Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin D. A. and Lyng, J.G. (2012). The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food Bioprocess Technol. 5:680–686.
  • Cai, R., Yuan, Y., Wang, Z., Guo, C., Liu, B. and Yue, T. (2015). Reduction of Alicyclobacillus acidoterrestris spores on apples by chlorine dioxide in combination with ultrasound or shaker. Food Bioprocess Technol. 8:2409–2417.
  • Cerny, G., Hennlich, W. and Poral, K. (1984). [Spoilage of fruit juice by bacilli: Isolation and characterization of the spoilage organism]. Z. Lebensm. Unters. Forsch. 179:224–227.
  • Cerny, G., Duong, H.A., Hennlich, W. and Miller, S. (2000). Alicyclobacillus acidoterrestris: influence of oxygen content on growth in fruit juices. Food Aust. 52:289–291.
  • Ceviz, G., Tulek, Y. and Con, A.H. (2009). Thermal resistance of Alicyclobacillus acidoterrestris spores in different heating media. Int. J. Food Sci. Technol. 44: 1770–1777.
  • Chang, S.S. and Kang, D.H. (2004). Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit. Rev. Microbiol. 30:55–74.
  • Chang, S., Park, S.H., Kang, D.H. (2015). Effect of extrinsic factors on the production of guaiacol by Alicyclobacillus spp. J. Food Prot. 78: 831–835.
  • Chen, S., Tang, Q., Zhang, X., Zhao, G., Hu, X., Liao, X., Chen, F.,Wu, J. and Xiang, H. (2006) Isolation and characterization of thermo-acidophilic endospore-forming bacteria from the concentrated apple juice-processing environment. Food Microbiol. 23: 439–445.
  • Chen, D. (2012). Applications of ultrasound in water and wastewater treatment. In Handbook on application of ultrasound: sonochemistry for sustainability. eds., 373–406. Boca Raton: CRC Press
  • Cleveland, J., Monteville, T.J., Nes, I.F. and Chikindas, M.L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Intl. J. Food Microbiol. 71: 1–20.
  • Conte, A., Sinigaglia, M. and Del Nobile, M.A. (2006). Antimicrobial effectiveness of lysozyme immobilized on polyvinylalcohol-based film against Alicyclobacillus acidoterrestris. J. Food Prot. 69:861–865.
  • da Costa, M.S., Rainey, F.A., Albuquerque, L. (2009). Genus I. Alicyclobacillus. In Bergey’s Manual of Systematic Bacteriology, vol 3. The Firmicutes. eds , pp. 229–243. New York: Springer.
  • Danyluk, M. D., Friedrich, L.M., Jouquand, C, Goodrich-Schneider, R., Parish, M.E. and Rouseff, R. (2011). Prevalence, concentration, spoilage, and mitigation of Alicyclobacillus spp. in tropical and subtropical fruit juice concentrates. Food Microbiol. 28:472–477.
  • Darland, G. and Brock, T.D. (1971). Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 67:9–15.
  • da Silva, C.R., Oliveira, M.B.N., Motta, E.S., de Almeida, G.S., Varanda, L.L., de Pádula, M., Leitão, A.C. and Caldeira-de-Araújo, A. (2010). Genotoxic and cytotoxic safety evaluation of papain (Carica papaya L.) using in vitro assays. J. Biomed. Biotechnol. 2010:197898. doi: 10.1155/2010/197898
  • De Carvalho, A. A. T., Vanetti, M. C. D. and Mantovani, H. C. (2008). Bovicin HC5 reduces thermal resistance of Alicyclobacillus acidoterrestris in acidic mango pulp. J. Appl. Microbiol. 104:1685–1691.
  • Deinhard, G., Blanz, P., Poralla, K. and Altan, E. (1987). Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst. Appl. Microbiol. 10:47–53.
  • Diels, A.M. and Michiels, C.W. (2006). High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit. Rev. Microbiol. 32: 201–16.
  • do Prado, D.B., da Silva Fernandes, M., dos Anjos, M.M., Bronharo Tognim, M.C., Nakamura, C.V., Machinski, M. Jr., Graton Mikcha. J.M. and de Abreu Filho, B.A. (2018). Biofilm-forming ability of Alicyclobacillus spp. isolates from orange juice concentrate processing plant. J. Food Saf. 38:e12466. doi: 10.1111/jfs.12466.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerg Infect. Dis. 8: 881–890.
  • dos Anjos, M.M., da Silva, A.A., de Pascoli, I.C., Mikcha, J.M., Machinski, M. Jr., Peralta, R.M. and de Abreu Filho, B.A. (2016). Antibacterial activity of papain and bromelain on Alicyclobacillus spp. Int. J. Food Microbiol. 216:121–126.
  • dos Anjos, M.M., Endo, H.H., Leimann, F.V., Gonçalves, O.H., Dias-Filho, B.P. and de Abreu Filho, B.A. (2018). Preservation of the antibacterial activity of enzymes against Alicyclobacillus spp. through microencapsulation. LWT - Food Sci. Technol. 88: 18–25.
  • dos Anjos, M. M., Ruiz, S. P., Nakamura, C. V. and de Abreu Filho, B. A. (2013). The resistance of Alicyclobacillus acidoterrestris spores and biofilm to industrial sanitizers. J. Food Protect. 76:1408–1413.
  • Dumay, E., Chevalier-Lucia, D., Laetitia, P., Benzaria, A., Gràcia-Julià, A. and Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenization Trends Food Sci. Technol. 31:13–26.
  • Eiroa, M. N. U., Junqueira, V. C. A. and Schmidt, F. (1999). Alicyclobacillus in orange juice: occurrence and heat resistance of spores. J. Food Prot. 62:883–886.
  • Evelyn, E. and Silva, F. V. M. (2016). High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 62:365–372.
  • . (2004). 2003/114/EC of the European Parliament and the Council of 22 December amending Directive 95/2/EC on food additives other than colours and sweeteners. Off. J. Eur. Union 47 (Jan), 58.
  • Falcone, P., Campaniello, D., Altieri, C., Sinigaglia, M., Corbo, M. Anese, M. and Del Nobile, M. A. (2003). Effectiveness of pasteurization on Alicyclobacillus acidoterrestris spores in the presence of lowmolecular weight chitosan. Ital. J. Food Sci. 15:142–151.
  • . (2001). Hazard analysis and critical control point (HACCP); procedures for the safe and sanitary processing and importing of juice: Final rule (21 CFR Part 120) Federal Register 66, 6137–6202.
  • (2000). Irradiation in the production, processing, and handling of food. Final Rule. Federal Register 65:71056–8.
  • Foley, D.M., Pickett K., Varon, J. Lee, J., Mln, D.B., Caporaso R. and Prakash, A. (2002). Pasteurization of fresh orange juice using gamma irradiation: microbiological, flavor, and sensory analyses. J. Foood Sci. 67:1495–1501.
  • Gharsallaoui, A., Oulahal, N., Joly C. and Degraeve P. (2016). Nisin as a food preservative: Part 1: physicochemical properties, antimicrobial activity, and main uses. Crit. Rev. Food Sci. Nutr. 56:1262–1274.
  • Glaeser, S.P., Falsen, E., Martin, K. and Kampfer, P. (2013). Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int. J. Syst. Evol. Microbiol. 63:3623–3627.
  • Gocmen, D., Elston, A., Williams, T., Parish, M.and Rouseff, R.L. (2005) Identification of medicinal off-flavours generated by Alicyclobacillus species in orange juice using GC-olfactometry and GC-MS. Lett. Appl. Microbiol. 40, 172–177.
  • Gordon, A. (2017). Case study: addressing the problem of Alicyclobacillus in tropical beverages. In Food Safety and Quality Systems in Developing Countries. ed. , 245–276. London: Academic Press.
  • Goto, K., Mochida, K., Asahara, M., Suzuki, M., Kasai, H. and Yokota, A. (2003). Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω -alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int. J. Syst. Evol. Microbiol. 53, 1537–1544.
  • Goto, K., Nishibori, A., Wasada, Y., Furuhata, K., Fukuyama, M. and Hara, M. (2008). Identification of thermo-acidophilic bacteria isolated from the soil of several Japanese fruit orchards. Lett. Appl. Microbiol. 46, 289–294.
  • Goto, K., Tanaka, T., Yamamoto, R. and Tokuda, H. (2007). Characteristics of Alicyclobacillus. In Alicyclobacillus: Thermophilic acidophilic bacilli eds. , 9–48. Tokyo: Springer.
  • Gouws, P.A., Gie, L., Pretorius, A. and Dhansay, N. (2005). Isolation and identification of Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate. Int. J. Food Sci. Technol. 40:789–792.
  • Grande, M.J., Lucas, R., Abriouel, H., Omar, N.B., Maqueda, M., Martìnez-Bueno, M., Martìnez-Cãnamero, M., Valdivia, E. and Gàlvez, A. (2005). Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Intl. J. Food Microbiol. 104:289–297.
  • Groenewald, W.H., Gouws, P.A. and Witthuhn, R.C. (2009). Isolation, identification and typification of Alicyclobacillus acidoterrestris and Alicyclobacillus acidocaldarius strains from orchard soil and the fruit processing environment in South Africa. Food Microbiol. 26:71–76.
  • Groenewald, W.H., Gouws, P.A. and Witthuhn, R.C. (2013). Thermal inactivation of Alicyclobacillus acidoterrestris spores isolated from a fruit processing plant and grape juice concentrate in South Africa. Afr. J. Microbiol Res. 7:2736–2740.
  • Heyndrickx, M. (2011). The importance of endospore-forming bacteria originating from soil for contamination of industrial food processing. Appl. Environ. Soil Sci. 2011, 561975. doi: 10.1155/2011/561975
  • Hippchen, B., Röll, A. and Poralla, K. (1981). Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Arch. Microbiol. 129:53–55.
  • Hsiao, C.P. and Siebert, K.J. (1999). Modeling the inhibitory effects of organic acids on bacteria. Int. J. Food Microbiol. 47:189–201.
  • Huang, Z., Dostal, L. and Rosazza, J.P.N. (1993). Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem. 268:23954–23958.
  • Huang, X.-C., Yuan, Y.-H., Guo, C.-F., Gekas, V., and Yue, T.-L. (2015). Alicyclobacillus in the fruit juice industry: spoilage, setection, and prevention/control. Food Rev. Int. 31, 91–124. doi: 10.1080/87559129.2014.974266.
  • Huertas, J.P., Esteban, M.D., Antolines, V. and Palop, A. (2014). Combined effect of natural antimicrobials and thermal treatments on Alicyclobacillus acidoterrestris spores. Food Control 35:73–78.
  • Imperio, T., Viti, C. and Marri, L. (2008). Alicyclobacillus pohliae sp. nov., a thermophilic, endospore-forming bacterium isolated from geothermal soil of the north-west slope of Mount Melbourne (Antarctica). Int. J. Syst. Evol. Microbiol. 58:221–225.
  • Jensen, N. (2000). Alicyclobacillus in Australia. Food Aust. 52: 282–285.
  • Jensen, N. (1999). Alicyclobacillus: a new challenge for the food industry. Food Aust. 51: 33–36.
  • Jensen, N. and Whitfield, F.B. (2003). Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett. Appl. Microbiol. 36:9–14.
  • Jin, T. and Zhang, H. (2008). Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J. Food Sci. 73:127–134.
  • Jovetta, M.P., Augusto, P.E.D., Tribst, A.A.L., Conti, M. J. and Cristianini, M. (2011). Thermal inactivation of Alicyclobacillus acidoterrestris in a model food. Int. J. Food Eng. 71:556–1558.
  • Kakagianni, M., Kalantzi, K., Beletsiotis, E., Ghikas, D., Lianou, A., Koutsoumanis, P. K. (2018). Development and validation of predictive models for the effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATCC 49025 in fruit drinks. Food Microbiol. 74:40–49.
  • Keyser, M., Muller, I.A., Cillers, F.P., Nel, W. and Gouvs, P.A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emmerg. Technol. 9:348–354.
  • Kim, M. G., Lee, J., C., Park, D.J., Li, W.J. and Kim, C.J. (2014). Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil. J. Microbiol. 52:884–889.
  • Kim, N., Ryang, J., Lee, B., Kim, C., and Rhee, M. (2017). Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. Int. J. Food Microbiol. 246:80–84.
  • Komitopoulou, E., Boziaris, I.S., Davies, E.A., Delves-Broughton, J. and Adams, M.R. (1999). Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int. J. Food Sci. Technol. 34:81–85.
  • Kusube, M., Sugihara, A., Moriwaki, Y.,Ueokau, T., Shimane, Y. and Minegishi, H. (2014). Alicycl obacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int. J. Syst. Evo.l Microbiol. 64:2257–2263.
  • Lado, B.H. and Yousef, A.E. (2002). Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect. 4:433–440.
  • Le Blay, G., Lacroix, C., Zihler, A. and Fliss, I. (2007). In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett. Appl. Microbiol. 45:252–257.
  • Lee, S.Y., Chung, H.J. and Kang, D.H. (2006a). Combined treatment of high pressure and heat on killing spores of Alicyclobacillus acidoterrestris in apple juice concentrate. J. Food Protect. 69: 1056–1060.
  • Lee, S.Y., Dancer, G.I., Chang, S., Rhee, M.S., Kang, D.H. (2006b). Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on apple surfaces. Int. J. Food Microbiol. 108:364–368.
  • Lee, S.Y., Dougherty, R.H. and Kang, D.H. (2002). Inhibitory effect of high pressure and heat on Alicyclobacillus acidoterrestris spores in apple juice. Appl. Environ. Microbiol. 68:4158–4161.
  • Lee, S.Y., Park, S.H. and Kang D.H. (2014). Inactivation of Alicyclobacillus acidoterrestris spores in apple and orange juice concentrates by gamma irradiation. J. Food Protect. 77:339–344.
  • López, G., Díaz-Cárdenas, C., David Alzate, J., Gonzalez, L.N., Shapiro, N., Woyke, T., Kyrpides, N.C., Restrepo, S. and Baena, S. (2018). Description of Alicyclobacillus montanus sp. nov., a mixotrophic bacterium isolated from acidic hot springs. Int. J. Syst. Evol. Microbiol. 68: 1608–1615.
  • Luu, S., Cruz-Mora, J., Setlow, B., Feeherry, F.E., Doona, CJ. and Setlow, P. (2015). The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins. Appl. Environ. Microbiol. 81:2927–2938.
  • Mahapatra, A. K., Muthukumarappan, K. and Julson, J. L. (2005). Applications of ozone, bacteriocins and irradiation in food processing: a review. Crit. Rev. Food Sci. Nutr. 45:447–461.
  • Maldonado, M.C., Belfiore, C., and Navarro, A.R. (2008). Temperature, soluble solids and pH effect on Alicyclobacillus acidoterrestris viability in lemon juice concentrate. J. Ind. Microbiol. Biotechnol. 35: 141–144.
  • Maldonado, C.M., Aban, M.P., and Navarro, R.A. (2013). Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability. Braz. J. Microbiol. 44:1133–1137.
  • Mathew, S., Abraham, T.E. and Sudheesh, S. (2007). Rapid conversion of ferulic acid to 4-vinylguaiacol and vanillin metabolites by Debaryomyces hansenii. J. Mol. Catal. B Enzym. 44:48–52.
  • Matsubara, H., Goto, K., Matsumura, T., Mochida, K., Iwaki, M., Niwa, M. and Yamasoto, K. (2002). Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int. J. Syst. Evol. Microbiol. 52:1681–1685.
  • Merle, J. and Montville T.J. (2014). Alicyclobacillus acidoterrestris: the organism, the challenge, potential interventions. J. Food Process Preserv. 38:153–158.
  • Minamikawa, M., Kawai, Y., Inoue, N. and Yamazaki, K. (2005). Purification and characterization of warnericin RB4, anti-Alicyclobacillus bacteriocin, produced by Staphylococcus warneri RB4. Curr. Microbiol. 51:22–26.
  • Molva, C. and Baysal, A. H. (2017). Modeling growth of Alicyclobacillus acidoterrestris DSM 3922 type strain vegetative cells in the apple juice with nisin and lysozyme AIMS Microbiol. 3, 315–322. doi: 10.3934/microbiol.2017.2.315.
  • Murakami, M., Tedzuka, H. and Yamazaki, K. (1998). Thermal resistance of Alicyclobacillus acidoterrestris spores in different buffers and pH. Food Microbiol. 15:577–582.
  • Nakano, C., Takahashi, N., Tanaka, N. and Okada, S. (2015). Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product. Int. J. Syst. Evol. Microbiol. 65:716–722.
  • Orr, R.V., Shewfelt, R.L., Huang, C.J., Tefera, S. and Beuchat, L.R. (2000). Detection of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory and chromatographic analyses, and comparison with spore and vegetative cell populations. J. Food Prot. 63, 1517–1522.
  • Osopale, B.A., Witthuhn, C.R., Albertyn, J. and Oguntoyinbo, F.A. (2016). Culture dependent and independent genomic identification of Alicyclobacillus species in contaminated commercial fruit juices. Food Microbiol. 56:21–28.
  • Osopale, B.A, Witthuhn, C.R, Albertyn, J. and Oguntoyinbo, F.A. (2017). Inhibitory spectrum of diverse guaiacol-producing Alicyclobacillus acidoterrestris by poly dimethyl ammonium chloride disinfectant. LWT - Food Sci. Technol. 84:241–247.
  • Palop, A., Álvarez, I., Raso, J. and Condón, S. (2000). Heat resistance of Alicyclobacillus acidocaldarius in water, various buffers and orange juice. J. Food Prot. 63:1377–1380.
  • Pavan, R., Jain, S., Shraddha, Kumar, A. (2012). Properties and therapeutic application of bromelain: a review. Biotechnol. Res. Int. 2012:976203. doi: 10.1155/2012/976203.
  • Pei, J., Yue, T. and Yuan Y. (2014). Control of Alicyclobacillus acidoterrestris in fruit juices by a newly discovered bacteriocin. World J. Microbiol. Biotechnol. 30:855–863.
  • Pei, J. J., Yuan, Y. H., and Tue, T. L. (2013). Primary characterization of bacteriocin paracin C -A novel bacteriocin produced by Lactobacillus paracasei. Food Control 34:168–176
  • Pei, J., Yue, T., Yuan, Y. and Dai, L. (2017). Activity of paracin C from lactic acid bacteria against Alicyclobacillus in apple juice: application of a novelty bacteriocin. J. Food Saf. 37:e12350. doi: 10.1111/jfs.12350.
  • Peleg, H., Naim, M., Zehavi, U., Rouseff, R.L. and Nagy, S. (1992). Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice. J. Agric. Food Chem. 40: 764–767.
  • Peña, W.E.L., Massaguer, P.R., Zuñiga, A.D.G., Saraiva, S.H. (2011). Modeling the growth limit of Alicyclobacillus acidoterrestris CRA7152 in apple juice: effect of pH, Brix, temperature and nisin concentration. J. Food Process Preserv. 35:509–517.
  • Piskernik, S., Klančnik, A., Demšar, L., Možina, S.S. and Jeršek B. (2016). Control of Alicyclobacillus spp. vegetative cells and spores in apple juice with rosemary extracts. Food Control 60:205–214.
  • Podolak, R., Elliott, P.H., Taylor, B.J., Khurana, A. and Black. D.G. (2009). Destruction of Alicyclobacillus acidoterrestris spores in apple juice on stainless steel surfaces by chemical disinfectants. J. Food Protect. 72:510–514.
  • Pontius, A.J., Rushing, J.E. and Foegeding, P.M. (1998). Heat resistance of Alicyclobacillus acidoterrestris spores as affected by various pH values and organic acids. J. Food Prot. 61:41–46.
  • Poralla, K. and König, W.A. (1983). The occurrence of ω-cycloheptane fatty acids in a thermo acidophilic bacillus. FEMS Microbiol. Lett. 16:303–306.
  • Porębska, I., Sokołowska, B., Skąpska, S.and Rzoska, S.J. (2016). Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control 73:24–30. doi: 10.1016/j.foodcont.2016.06.005.
  • Rabea, E. I., Badawy, M. E., Stevens, C. V., Smagghe, G. and Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465.
  • Roig-Sagues, A., Asto, E., Engers, I., and Hernandez-Herrero, M. (2015). Improving the efficiency of ultra-high pressure homogenization treatments to inactivate spores of Alicyclobacillus spp. in orange juice controlling the inlet temperature. LWT-Food Sci. Technol 63:866–871.
  • Setlow, P. (2003). Spore germination. Curr. Opin. Microbiol. 6:550–556.
  • Shemesh, M., Pasvolsky, R. and Zakin, V. (2014). External pH is a cue for the behavioral switch that determines surface motility and biofilm formation of Alicyclobacillus acidoterrestris. J. Food Prot. 77:1418–1423.
  • Siegmund, B. and Pöllinger-Zierler, B. (2007). Growth behavior of off-flavor-forming microorganisms in apple juice. J. Agric. Food Chem. 55:6692–6699.
  • Silva, F.M.S., Gibbs, P., Vieira, M.C. and Silva, C.L.M. (1999). Thermal inactivation ofAlicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. Intl. J. Food. Microbiol. 51:95–103.
  • Silva, F.V.M. and Gibbs P. (2001). Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends Food Sci. Technol. 12:68–74.
  • Silva, F.V.M. and Gibbs, P. (2004). Target selection in designing pasteurization processes for shelf stable high-acid fruit products. Crit. Rev. Food Sci. Nutr. 44:353–360.
  • Silva, F.V.M., Tan, E.K. and Farid, M. (2012). Bacterial spore inactivation at 45–65 °C using high pressure processing: study of Alicyclobacillus acidoterrestris in orange juice. Food Microbiol. 32: 206–211.
  • Sivakumar, D., Bill, Mallick., Korsten, L. and Thompson, A.K. (2016). Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality. In: Chitosan in the Preservation of Agricultural Commodities. eds, , 127–154. Oxford: Academic Press.
  • Smit, Y., Cameron, M., Venter, P., and Witthuhn, R.C. (2011). Alicyclobacillus spoilage and isolation—A review. Food Microbiol. 28: 331–349.
  • Sokolowska, B., Skapska, S., Fonberg-Broczek, M., Niezgoda, J., Chotkiewicz, M., Dekowska, A. and Rzoska, S. (2012). The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Res. 32:119–127.
  • Song, H.P., Kim, D.H., Jo, C., Lee, C.H., Kim, K.S. and Byun, M.W. (2006). Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol. 23:372–378.
  • Song, Z., Yuan Y., Niu, C., Dai, L., Wei, J. and Yue, T. (2017). Iron oxide nanoparticles functionalized with nisin for rapid inhibition and separation of Alicyclobacillus spp. RSC Adv. 7:6712–6719.
  • Spinelli, A.C.N., Sant'Ana, A.S., Rodrigues-Junior, S., Massaguer, P.R. (2009). Influence of different filling, cooling, and storage conditions on the growth of Alicyclobacillus acidoterrestris CRA7152 in orange juice. Appl. Environ. Microbiol. 75: 7409–7416.
  • Splittstoesser, D.F., Churey, J.J. and Lee, C.Y. (1994). Growth characteristics of aciduric spore forming bacilli isolated from fruit juices. J. Food Prot. 57: 1080–1083.
  • Splittstoesser, D.F., Lee, C.Y. and Churey, J.J. (1997). Control of Alicyclobacillus in the juice industry. Paper presented in Session 36-3 at the Institute of Food Technologists Annual Meeting. Orlando, USA, June 14–18.
  • Springett, M.B. (1996). Formation of off-flavors due to microbiological and enzymatic action. In: Food taints and off flavors. ed. , 2/ed., 275–291. Glasgow: Blackie Academic and Professional.
  • Stackebrandt, E. (2014). The Family Alicyclobacillaceae. In The Prokaryotes. eds., . , 4/edn., 7–12. Heidelberg: Springer.
  • Steyn, C. E., Cameron, M. and Witthuhn, R.C. (2011). Occurrence of Alicyclobacillus in the fruit processing environment—A review. Intl. J. Food Microbiol. 147:1–11.
  • Tajkarimi, M.M., Ibrahim, S.A. and Cliver, D.O. (2010). Antimicrobial herb and spice compounds in food. Food Conrol 21:1199–1218.
  • Takahashi, T., Kokubo, R. and Sakaino, M. (2004). Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol. 39:60–64.
  • Tastan, Ö. and Baysal, T. (2017). Chitosan as a novel clarifying agent on clear apple juice production: optimization of process conditions and changes on quality characteristics Food Chem. 237: 818–824.
  • Tianli, Y., Jiangbo, Z., and Yahong, Y. (2014). Spoilage by Alicyclobacillus bacteria in juice and beverage products: chemical, physical, and combined control methods. Compr. Rev. Food Sci. Food Saf. 5:771–797.
  • Tiwari, B.K. and Muthukumarappan, K. (2012). Ozone in fruit and vegetable processing. In: Ozone in Food Processing. eds. , 55–80. Oxford: Wiley.
  • Torlak, E. (2014). Efficacy of ozone against Alicyclobacillus acidoterrestris spores in apple juice. Intl. J. Food Microbiol. 172, 1–4.
  • Tremarin, A., Brandão, T. R. S. and Silva C. L. M. (2017). Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control 73:18–23.
  • Tyfa, A., Kunicka-Styczyńska, A. and Zabielska, J. (2015). Evaluation of hydrophobicity and quantitative analysis of biofilm formation by Alicyclobacillus sp. Acta Biochim. Pol. 62:785–790.
  • Uchino, F. and doi, S. (1967). Acido-thermophilic bacteria from thermal waters. Agric. Biol. Chem. 31: 817–822.
  • Vercammen, A., Vivijs, B., Lurquin, I. and Michiels, C.W. (2012). Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int. J. Food Microbiol. 152:162–167.
  • Voundi, S.O., Nyegue, M., Pascal Bougnom, B. and Etoa, F.X. (2017). The problem of spore-forming bacteria in food preservation and tentative solutions. In Foodborne Pathogens and Antibiotic Resistance, ed , 139–152. Hoboken: Wiley.
  • Walker, M. and Phillips, C.A. (2005). The effect of intermittent shaking, headspace and temperature on the growth of Alicyclobacillus acidoterrestris in stored apple juice. Int. J. Food Sci. Technol. 40:557–562.
  • Walker, M. and Phillips, C.A. (2008). The effect of preservatives on Alicyclobacillus acidoterrestris and Propionibacterium cyclohexanicum in fruit juice. Food Control 19:74–981.
  • Walls, I. (1997). Alicyclobacillus –an overview. Paper presented in Session 36-1 at the Institute of Food Technologists Annual Meeting. Orlando, USA, June 14–18.
  • Walls, I. and Chuyate, R. (1998). Alicyclobacillus – historical perspective and preliminary characterization study. Dairy Food Environ. Sanit. 18:499–503.
  • Walls, I. and Chuyate, R. (2000). Isolation of Alicyclobacillus acidoterrestris from Fruit Juices. J. AOAC Int. 83: 1115–1120.
  • Wisotzkey, J.D., Jurtshuk, P., Fox, G.E., Deinhard, G. and Poralla, K. (1992). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Microbiol. 42:263–269.
  • Yamazaki, K., Isoda, C., Tedzuka, H., Kawai, Y. and Shinano, H. (1997). Thermal resistance and prevention of spoilage bacterium Alicyclobacillus acidoterrestris in acidic beverages. J. Jpn. Soc. Food Sci. Technol. 44: 905–911.
  • Yamazaki, K., Murakami, M., Kawai, Y., Inoue, N. and Matsuda, T. (2000). Use of nisin for inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Food Microbiol. 17:315–320.
  • Yuan, Y.H., Hu, Y.C., Yue, T.L., Chen, T.J. and Lo, Y. (2009). Effect of ultrasonic treatments on thermoacidophilic Alicyclobacillus acidoterrestris in apple juice. J. Food Process Preserv. 33:370–383.
  • Zhang, J., Yue, T. and Yuan, Y. (2013). Alicyclobacillus contamination in the production line of kiwi products in China. PLoS One 8:67704. doi: 10.1371/journal.pone.0067704.
  • Zhang, B., Wu, Y. F., Song, J. L., Huang, Z. S., Wang, B. J., Liu, S. J. and Jiang, C. Y. (2015). Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water. Intl. J. Syst. Evol. Microbiol. 65:4915–4920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.