2,331
Views
54
CrossRef citations to date
0
Altmetric
Reviews

Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities

, , & ORCID Icon
Pages 157-170 | Received 17 Jun 2018, Accepted 23 Aug 2018, Published online: 12 Oct 2018

References

  • Abdel-Hamid, I., Ivnitski, D., Atanasov, P., and Wilkins, E. (1999). Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens. Bioelectron. 14:309–316.
  • Aissa, A. B., Jara, J., Sebastián, R., Vallribera, A., Campoy, S., and Pividori, M. (2017). Comparing nucleic acid lateral flow and electrochemical genosensing for the simultaneous detection of foodborne pathogens. Biosens. Bioelectron. 88:265–272.
  • Alhogail, S., Suaifan, G. A. R. Y., and Zourob, M. (2016). Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosens. Bioelectron. 86:1061–1066.
  • Ang, G. Y., Yu, C. Y., and Yean, C. Y. (2012). Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor. Biosens. Bioelectron. 38:151–156.
  • Blažková, M., Koets, M., Rauch, P., and Amerongen, A. (2009). Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. Eur. Food Res. Technol. 229:867–874.
  • Bruno, J. G. (2014). Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold. Pathog. 3:341–355.
  • Bu, T., Huang, Q., Yan, L., Huang, L., Zhang, M., Yang, Q., Yang, B., Wang, J., and Zhang, D. (2018). Ultra technically-simple and sensitive detection for Salmonella Enteritidis by immunochromatographic assay based on gold growth. Food Control. 84:536–543.
  • Carter, D. J., and Cary, R. B. (2007). Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography. Nucleic Acids Res. 35:e74.
  • Chai, L., Zhou, J., Feng, H., Tang, C., Huang, Y., and Qian, Z. (2015). Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl. Mater. Interfaces. 7:23564–23574.
  • Chen, M., Yu, Z., Liu, D., Peng, T., Liu, K., Wang, S., Xiong, Y., Wei, H., Xu, H., and Lai, W. (2015a). Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157:H7. Anal. Chim. Acta. 876:71–76.
  • Chen, X., Gan, M., Xu, H., Chen, F., Ming, X., Xu, H., Wei, H., Xu, F., and Liu, C. (2014). Development of a rapid and sensitive quantum dot-based immunochromatographic strip by double labeling PCR products for detection of Staphylococcus aureus in food. Food Control. 46:225–232.
  • Chen, Y., Xianyu, Y., Wang, Y., Zhang, X., Cha, R., Sun, J., and Jiang, X. (2015b). One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation. ACS nano. 9:3184–3191.
  • Cho, I.-H., and Irudayaraj, J. (2013a). In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int. J. Food Microbiol. 164:70–75.
  • Cho, I. H., Bhunia, A., and Irudayaraj, J. (2015). Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int. J. Food Microbiol. 206:60–66.
  • Cho, I. H., and Irudayaraj, J. (2013b). Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes. Anal. Bioanal. Chem. 405:3313–3319.
  • Choi, J. R., Hu, J., Tang, R., Gong, Y., Feng, S., Ren, H., Wen, T., Li, X., Abas, W. A. B. W., and Pingguan-Murphy, B. (2016). An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab on a Chip. 16:611–621.
  • Corstjens, P., Zuiderwijk, M., Brink, A., Li, S., Feindt, H., Niedbala, R. S., and Tanke, H. (2001). Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. Clin. Chem. 47:1885–1893.
  • Cui, X., Huang, Y., Wang, J., Zhang, L., Rong, Y., Lai, W., and Chen, T. (2015). A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157:H7. RSC Advances. 5:45092–45097.
  • Fang, Z., Wu, W., Lu, X., and Zeng, L. (2014). Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification. Biosens. Bioelectron. 56:192–197.
  • Fisher, M., Atiya‐Nasagi, Y., Simon, I., Gordin, M., Mechaly, A., and Yitzhaki, S. (2009). A combined immunomagnetic separation and lateral flow method for a sensitive on‐site detection of Bacillus anthracis spores–assessment in water and dairy products. Lett. Appl. Microbiol. 48:413–418.
  • Gharaat, M., Sajedi, R. H., Shanehsaz, M., Jalilian, N., Mirshahi, M., and Gholamzad, M. (2017). A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Microchim. Acta. 184:4817–4825.
  • Hampl, J., Hall, M., Mufti, N. A., Yao, Y.-m. M., MacQueen, D. B., Wright, W. H., and Cooper, D. E. (2001). Upconverting Phosphor Reporters in Immunochromatographic Assays. Anal. Biochem. 288:176–187.
  • Hao, M., Zhang, P., Li, B., Liu, X., Zhao, Y., Tan, H., Sun, C., Wang, X., Wang, X., and Qiu, H. (2017). Development and evaluation of an up-converting phosphor technology-based lateral flow assay for the rapid, simultaneous detection of Vibrio cholerae serogroups O1 and O139. PLoS One. 12:e0179937.
  • Hong, W., Huang, L., Wang, H., Qu, J., Guo, Z., Xie, C., Zhu, Z., Zhang, Y., Du, Z., Yan, Y., Zheng, Y., Huang, H., Yang, R., and Zhou, L. (2010). Development of an up-converting phosphor technology-based 10-channel lateral flow assay for profiling antibodies against Yersinia pestis. J. Microbiol. Methods. 83:133–140.
  • Hu, L.-M., Luo, K., Xia, J., Xu, G.-M., Wu, C.-H., Han, J.-J., Zhang, G.-G., Liu, M., and Lai, W.-H. (2017). Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens. Bioelectron. 91:95–103.
  • Huang, Z., Cui, X., Xie, Q.-Y., Liu, D.-F., and Lai, W.-H. (2016). A novel method using immunomagnetic separation with a fluorescent nanobeads lateral flow assay for the rapid detection of low-concentration Escherichia coli O157: H7 in raw milk. J. Dairy Sci. 99:9581–9585.
  • Jiang, T., Song, Y., Wei, T., Li, H., Du, D., Zhu, M.-J., and Lin, Y. (2016). Sensitive detection of Escherichia coli O157: H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 77:687–694.
  • Jung, B. Y., Jung, S. C., and Kweon, C. H. (2005). Development of a rapid immunochromatographic strip for detection of Escherichia coli O157. J. Food Prot. 68:2140–2143.
  • Kong, M., Shin, J. H., Heu, S., Park, J.-K., and Ryu, S. (2017). Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96:173–177.
  • Li, C. Z., Vandenberg, K., Prabhulkar, S., Zhu, X., Schneper, L., Methee, K., Rosser, C. J., and Almeide, E. (2011). Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens. Bioelectron. 26:4342–4348.
  • Liang, Z., Wang, X., Zhu, W., Zhang, P., Yang, Y., Sun, C., Zhang, J., Wang, X., Xu, Z., and Zhao, Y. (2017). Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Appl. Mater. Interfaces. 9:3497–3504.
  • Liu, C. C., Yeung, C. Y., Chen, P. H., Yeh, M. K., and Hou, S. Y. (2013). Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay. Food Chem. 141:2526–2532.
  • Liu, H.-b., Du, X.-j., Zang, Y.-X., Li, P., and Wang, S. (2017). SERS-Based Lateral Flow Strip Biosensor for Simultaneous Detection of Listeria monocytogenes and Salmonella enterica Serotype Enteritidis. J. Agric. Food Chem. 65:10290–10299.
  • Liu, Y., Zhang, Z., Wang, Y., Zhao, Y., Lu, Y., Xu, X., Yan, J., and Pan, Y. (2015). A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay platform for pathogen Vibrio parahaemolyticus. Int. J. Food Microbiol. 211:109–116.
  • Loo, A. H., Sofer, Z., Bouša, D., Ulbrich, P., Bonanni, A., and Pumera, M. (2016). Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces. 8:1951–1957.
  • Luo, K., Jeong, K.-B., Park, C.-S., and Kim, Y.-R. (2018a). Biosynthesis of superparamagnetic polymer microbeads via simple precipitation of enzymatically synthesized short-chain amylose. Carbohydr. Polym. 181:818–824.
  • Luo, K., Jeong, K.-B., You, S.-M., Lee, D.-H., and Kim, Y.-R. (2018b). Molecular Rearrangement of Glucans from Natural Starch To Form Size-Controlled Functional Magnetic Polymer Beads. J. Agric. Food Chem. 66:6806–6813.
  • McFarland, A. D., Haynes, C. L., Mirkin, C. A., Van Duyne, R. P., and Godwin, H. A. (2004). Color My Nanoworld. J. Chem. Educ. 81:544A.
  • Moongkarndi, P., Rodpai, E., and Kanarat, S. (2011). Evaluation of an immunochromatographic assay for rapid detection of Salmonella enterica serovars Typhimurium and Enteritidis. J. Vet. Diagn. Invest. 23:797–801.
  • Morales-Narváez, E., Naghdi, T., Zor, E., and Merkoçi, A. (2015). Photoluminescent lateral-flow immunoassay revealed by graphene oxide: highly sensitive paper-based pathogen detection. Anal. Chem. 87:8573–8577.
  • Mudanyali, O., Dimitrov, S., Sikora, U., Padmanabhan, S., Navruz, I., and Ozcan, A. (2012). Integrated Rapid-Diagnostic-Test Reader Platform on a Cellphone. Lab on a Chip. 12:2678–2686.
  • Niedbala, R. S., Feindt, H., Kardos, K., Vail, T., Burton, J., Bielska, B., Li, S., Milunic, D., Bourdelle, P., and Vallejo, R. (2001). Detection of Analytes by Immunoassay Using Up-Converting Phosphor Technology. Anal. Biochem. 293:22–30.
  • Noguera, P., Posthuma-Trumpie, G. A., van Tuil, M., van der Wal, F. J., de Boer, A., Moers, A. P. H. A., and van Amerongen, A. (2011). Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal. Bioanal. Chem. 399:831–838.
  • Panagiotopoulou, M., Salinas, Y., Beyazit, S., Kunath, S., Duma, L., Prost, E., Mayes, A. G., Resmini, M., Tse Sum Bui, B., and Haupt, K. (2016). Molecularly imprinted polymer coated quantum dots for multiplexed cell targeting and imaging. Angew. Chem. Int. Ed. 55:8244–8248.
  • Pandey, S. K., Suri, C. R., Chaudhry, M., Tiwari, R., and Rishi, P. (2012). A gold nanoparticles based immuno-bioprobe for detection of Vi capsular polysaccharide of Salmonella enterica serovar Typhi. Mol. Biosyst. 8:1853–1860.
  • Park, B. H., Oh, S. J., Jung, J. H., Choi, G., Seo, J. H., Kim, D. H., Lee, E. Y., and Seo, T. S. (2017). An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens. Bioelectron. 91:334–340.
  • Park, J., Shin, J. H., and Park, J.-K. (2016). Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Anal. Chem. 88:3781–3788.
  • Park, S., Kim, Y., and Kim, Y.-K. (2010). Optical enzyme-linked immunosorbent assay on a strip for detection of Salmonella typhimurium. BioChip J. 4:110–116.
  • Pengsuk, C., Chaivisuthangkura, P., Longyant, S., and Sithigorngul, P. (2013). Development and evaluation of a highly sensitive immunochromatographic strip test using gold nanoparticle for direct detection of Vibrio cholerae O139 in seafoodsamples. Biosens. Bioelectron. 42:229–235.
  • Pohlmann, C., Dieser, I., and Sprinzl, M. (2014). A lateral flow assay for identification of Escherichia coli by ribosomal RNA hybridisation. Analyst. 139:1063–1071.
  • Posthuma-Trumpie, G. A., Wichers, J. H., Koets, M., Berendsen, L. B., and van Amerongen, A. (2012). Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 402:593–600.
  • Preechakasedkit, P., Pinwattana, K., Dungchai, W., Siangproh, W., Chaicumpa, W., Tongtawe, P., and Chailapakul, O. (2012). Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens. Bioelectron. 31:562–566.
  • Qi, H., Zhong, Z., Zhou, H.-X., Deng, C.-Y., Zhu, H., Li, J.-F., Wang, X.-L., and Li, F.-R. (2011). A rapid and highly sensitive protocol for the detection of Escherichia coli O157: H7 based on immunochromatography assay combined with the enrichment technique of immunomagnetic nanoparticles. Int. J. Nanomed. 6:3033.
  • Qu, Q., Zhu, Z., Wang, Y., Zhong, Z., Zhao, J., Qiao, F., Du, X., Wang, Z., Yang, R., Huang, L., Yu, Y., Zhou, L., and Chen, Z. (2009). Rapid and quantitative detection of Brucella by up-converting phosphor technology-based lateral-flow assay. J. Microbiol. Methods. 79:121–123.
  • Que, Y., Feng, C., Lu, G., and Huang, X. (2017). Polymer-Coated Ultrastable and Biofunctionalizable Lanthanide Nanoparticles. ACS Appl. Mater. Interfaces. 9:14647–14655.
  • Quesada-González, D., and Merkoçi, A. (2018). Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev.
  • Ramachandran, S., Fu, E., Lutz, B., and Yager, P. (2014). Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst. 139:1456–1462.
  • Rastogi, S. K., Gibson, C. M., Branen, J. R., Aston, D. E., Branen, A. L., and Hrdlicka, P. J. (2012). DNA detection on lateral flow test strips: enhanced signal sensitivity using LNA-conjugated gold nanoparticles. Chem. Commun. (Camb.). 48:7714–7716.
  • Ren, W., Cho, I.-H., Zhou, Z., and Irudayaraj, J. (2016). Ultrasensitive detection of microbial cells using magnetic focus enhanced lateral flow sensors. Chem. Commun. 52:4930–4933.
  • Renault, C., Koehne, J., Ricco, A. J., and Crooks, R. M. (2014). Three-Dimensional Wax Patterning of Paper Fluidic Devices. Langmuir. 30:7030–7036.
  • Roskos, K., Hickerson, A. I., Lu, H.-W., Ferguson, T. M., Shinde, D. N., Klaue, Y., and Niemz, A. (2013). Simple System for Isothermal DNA Amplification Coupled to Lateral Flow Detection. PLoS One. 8:e69355.
  • Seo, S.-M., Kim, S.-W., Jeon, J.-W., Kim, J.-H., Kim, H.-S., Cho, J.-H., Lee, W.-H., and Paek, S.-H. (2016). Food contamination monitoring via internet of things, exemplified by using pocket-sized immunosensor as terminal unit. Sensors Actuators B: Chem. 233:148–156.
  • Shafiee, H., Asghar, W., Inci, F., Yuksekkaya, M., Jahangir, M., Zhang, M. H., Durmus, N. G., Gurkan, U. A., Kuritzkes, D. R., and Demirci, U. (2015). Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci. Rep. 5:8719.
  • Shen, C., Yao, W., and Lu, Y. (2013a). One-step synthesis of intrinsically functionalized fluorescent carbon nanoparticles by hydrothermal carbonization from different carbon sources. J. Nanopart. Res. 15:1-15.
  • Shen, G., Zhang, S., and Hu, X. (2013b). Signal enhancement in a lateral flow immunoassay based on dual gold nanoparticle conjugates. Clin. Biochem. 46:1734–1738.
  • Shi, L., Wu, F., Wen, Y., Zhao, F., Xiang, J., and Ma, L. (2015). A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal. Bioanal. Chem. 407:529–535.
  • Shim, W.-B., Choi, J.-G., Kim, J.-Y., Yang, Z.-Y., Lee, K.-H., Kim, M.-G., Ha, S.-D., Kim, K.-S., Kim, K.-Y., Kim, C.-H., Eremin, S. A., and Chung, D.-H. (2008). Enhanced Rapidity for Qualitative Detection of Listeria monocytogenes Using an Enzyme-Linked Immunosorbent Assay and Immunochromatography Strip Test Combined with Immunomagnetic Bead Separation. J. Food Prot. 71:781–789.
  • Shin, J. H., Hong, J., Go, H., Park, J., Kong, M., Ryu, S., Kim, K.-P., Roh, E., and Park, J.-K. (2017). Multiplexed Detection of Foodborne Pathogens from Contaminated Lettuces Using a Handheld Multistep Lateral Flow Assay Device. J. Agric. Food Chem. 66:290–297.
  • Shukla, S., Leem, H., and Kim, M. (2011). Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Anal. Bioanal. Chem. 401:2581–2590.
  • Singh, J., Sharma, S., and Nara, S. (2015). Nanogold based lateral flow assay for the detection of Salmonella typhi in environmental water samples. Anal. Methods. 7:9281–9288.
  • Song, C., Liu, C., Wu, S., Li, H., Guo, H., Yang, B., Qiu, S., Li, J., Liu, L., and Zeng, H. (2016a). Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of Shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples. Food Control. 59:345–351.
  • Song, C., Liu, J., Li, J., and Liu, Q. (2016b). Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157: H7 in food samples. Biosens. Bioelectron. 85:734–739.
  • Suaifan, G. A. R. Y., Alhogail, S., and Zourob, M. (2017a). Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens. Bioelectron. 92:702–708.
  • Suaifan, G. A. R. Y., Alhogail, S., and Zourob, M. (2017b). Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 90:230–237.
  • Sun, C., Zhang, Y., Ruan, C., Yin, C., Wang, X., Wang, Y., and Yu, W. W. (2016). Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots. Adv. Mater. 28:10088–10094.
  • Suria, M., Mohd Afendy, A., Noor Azlina, M., and Zamri, I. (2015). Lateral flow assay strip for detection of Escherichia coli O157: H7. Int. Food Res. J. 22:2587–2593.
  • Tang, R., Yang, H., Gong, Y., You, M., Liu, Z., Choi, J. R., Wen, T., Qu, Z., Mei, Q., and Xu, F. (2017). A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab on a Chip. 17:1270–1279.
  • Terao, Y., Takeshita, K., Nishiyama, Y., Morishita, N., Matsumoto, T., and Morimatsu, F. (2015). Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli. J. Food Prot. 78:1560–1568.
  • Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A., and Luong, J. H. (2015). Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 33:692–705.
  • Wang, J.-Y., Chen, M.-H., Sheng, Z.-C., Liu, D.-F., Wu, S.-S., and Lai, W.-H. (2015). Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157: H7 in milk. RSC Advances. 5:62300–62305.
  • Wang, W., Liu, L., Song, S., Xu, L., Kuang, H., Zhu, J., and Xu, C. (2017). Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim. Acta. 184:715–724.
  • Wu, W., Zhao, S., Mao, Y., Fang, Z., Lu, X., and Zeng, L. (2015). A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta. 861:62–68.
  • Xia, S., Yu, Z., Liu, D., Xu, C., and Lai, W. (2016). Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads (GMBN) for efficient detection of Salmonella choleraesuis in milk. Food Control. 59:507–512.
  • Xing, K.-Y., Peng, J., Liu, D.-F., Hu, L.-M., Wang, C., Li, G.-Q., Zhang, G.-G., Huang, Z., Cheng, S., and Zhu, F.-F. (2018). Novel immunochromatographic assay based on Eu (III)-doped polystyrene nanoparticle-linker-monoclonal antibody for sensitive detection of Escherichia coli O157: H7. Anal. Chim. Acta. 998:52–59.
  • Yan, J., Liu, Y., Wang, Y., Xu, X., Lu, Y., Pan, Y., Guo, F., and Shi, D. (2014). Effect of physiochemical property of Fe3O4 particle on magnetic lateral flow immunochromatographic assay. Sensors Actuators B: Chem. 197:129–136.
  • Yan, Z., Zhou, L., Zhao, Y., Wang, J., Huang, L., Hu, K., Liu, H., Wang, H., Guo, Z., Song, Y., Huang, H., and Yang, R. (2006). Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors Actuators B: Chem. 119:656–663.
  • Yeung, C. Y., Liu, C. C., Tseng, Y. T., Tsai, K. C., Hsieh, M. A., Chan, W. T., Liu, H. L., Lee, H. C., and Hou, S. Y. (2014). Rapid identification of Salmonella using Hektoen enteric agar and 16s ribosomal DNA probe-gold nanoparticle immunochromatography assay in clinical faecal specimens. Lett. Appl. Microbiol. 58:311–317.
  • Yonekita, T., Fujimura, T., Morishita, N., Matsumoto, T., and Morimatsu, F. (2013). Simple, rapid, and reliable detection of Escherichia coli O26 using immunochromatography. J. Food Prot. 76:748–754.
  • Zhan, L., Guo, S.-z., Song, F., Gong, Y., Xu, F., Boulware, D. R., McAlpine, M. C., Chan, W. C., and Bischof, J. C. (2017). The role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Lett. 17:7207–7212.
  • Zhang, H., Ma, L., Ma, L., Hua, M. Z., Wang, S., and Lu, X. (2017). Rapid detection of methicillin-resistant Staphylococcus aureus in pork using a nucleic acid-based lateral flow immunoassay. Int. J. Food Microbiol. 243:64–69.
  • Zhang, L., Huang, Y., Wang, J., Rong, Y., Lai, W., Zhang, J., and Chen, T. (2015a). Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7. Langmuir. 31:5537–5544.
  • Zhang, P., Liu, X., Wang, C., Zhao, Y., Hua, F., Li, C., Yang, R., and Zhou, L. (2014). Evaluation of up-converting phosphor technology-based lateral flow strips for rapid detection of Bacillus anthracis Spore, Brucella spp., and Yersinia pestis. PLoS One. 9:e105305.
  • Zhang, Z., Wang, D., Li, J., Zhang, Q., and Li, P. (2015b). Monoclonal antibody-europium conjugate-based lateral flow time-resolved fluoroimmunoassay for quantitative determination of T-2 toxin in cereals and feed. Anal. Methods. 7:2822–2829.
  • Zhao, Y., Wang, H., Zhang, P., Sun, C., Wang, X., Wang, X., Yang, R., Wang, C., and Zhou, L. (2016). Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 6:21342.
  • Zhou, J., Zhu, K., Xu, F., Wang, W., Jiang, H., Wang, Z., and Ding, S. (2014). Development of a Microsphere-Based Fluorescence Immunochromatographic Assay for Monitoring Lincomycin in Milk, Honey, Beef, and Swine Urine. J. Agric. Food Chem. 62:12061–12066.
  • Zhu, H., Sikora, U., and Ozcan, A. (2012). Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 137:2541–2544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.