811
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin

, , , &

References

  • Aguilar-Toalá, J., L. Santiago-López, C. Peres, C. Peres, H. Garcia, B. Vallejo-Cordoba, A. González-Córdova, and A. Hernández-Mendoza. 2017. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science 100 (1):65–75. doi: 10.3168/jds.2016-11846.
  • Aisiku, O., C. G. Peters, C. K. De, C. C. Ghosh, J. R. Dilks, S. F. Fustolo-Gunnink, M. D. Huang, C. Dockendorff, S. M. Parikh, and B. Flaumenhaft. 2015. Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar. Blood 125 (12):1976–85. doi: 10.1182/blood-2014-09-599910.
  • Atanassov, A., and B. Tchorbanov. 2009. Synthetic and natural peptides as antithrombotic agents-a view on the current development. Biotechnology & Biotechnological Equipment 23 (1):1109–14. doi: 10.1080/13102818.2009.10817623.
  • Athukorala, Y., W. K. Jung, T. Vasanthan, and Y. J. Jeon. 2006. An anticoagulative polysaccharide from an enzymatic hydrolysate of ecklonia cava. Carbohydrate Polymers 66 (2):184–91. doi: 10.1016/j.carbpol.2006.03.002.
  • Biela, A., M. Khayat, H. Tan, J. Kong, A. Heine, D. Hangauer, and G. Klebe. 2012. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. Journal of Molecular Biology 418 (5):350–66. doi: 10.1016/j.jmb.2012.01.054.
  • Bode, W., I. Mayr, U. Baumann, R. Huber, S. R. Stone, and J. Hofsteenge. 1989. The refined 1.9 Å crystal structure of human α-thrombin: Interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. The EMBO Journal 8 (11):3467–75. doi: 10.1002/j.1460-2075.1989.tb08511.x.
  • Bode, W., and R. Huber. 1992. Natural protein proteinase inhibitors and their interaction with proteinase. European Journal of Biochemistry 204 (2):433–51. doi: 10.1111/j.1432-1033.1992.tb16654.x.
  • Brahma, R. K., G. Blanchet, S. Kaur, R. M. Kini, and R. Doley. 2017. Expression and characterization of haemathrins, madanin-like thrombin inhibitors, isolated from the salivary gland of tick haemaphysalis bispinosa (acari: Ixodidae). Thrombosis Research 152:20–29. doi: 10.1016/j.thromres.2017.01.012.
  • Brochier, B. V., and V. Ravault. 2016. High throughput development of a non-protein a monoclonal antibody purification process using mini-columns and bio-layer interferometry. Engineering in Life Sciences 16 (2):152–9. doi: 10.1002/elsc.201400244.
  • Caliceti, C., P. Rizzo, R. Ferrari, F. Fortini, G. Aquila, E. Leoncini, L. Zambonin, B. Rizzo, D. Calabria, P. Simoni, et al. 2017. Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin. Nutrition, Metabolism & Cardiovascular Diseases 27 (6):552–63. doi: 10.1016/j.numecd.2017.04.002.
  • Capriotti, A. L., C. Cavaliere, S. Piovesana, R. Samperi, and A. Laganà. 2016. Recent trends in the analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical Chemistry 408 (11):2677–85. doi: 10.1007/s00216-016-9303-8.
  • Català-Clariana, S., F. Benavente, E. Giménez, J. Barbosa, and V. Sanz-Nebot. 2013. Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behavior. Electrophoresis 34 (13):1886–94. doi: 10.1002/elps.201200547.
  • Chang, J. Y., R. Knecht, and D. G. Braun. 1983. A new method for the selective isolation of cysteine-containing peptides. Specific labelling of the thiol group with a hydrophobic chromophore. Biochemical Journal 211 (1):163–71. doi: 10.1042/bj2110163.
  • Choi, J. H., S. J. Kim, and S. Kim. 2016. A novel anticoagulant protein with antithrombotic properties from the mosquito Culex pipiens pallens. International Journal of Biological Macromolecules 93:156–66. doi: 10.1016/j.ijbiomac.2016.08.055.
  • Ciesielski, G. L., V. P. Hytönen, and L. S. Kaguni. 2016. Biolayer interferometry: A novel method to elucidate protein-protein and protein-DNA interactions in the mitochondrial DNA replisome. Methods in Molecular Biology 1351:223–31. doi: 10.1007/978-1-4939-3040-1-17.
  • Clemetson, K. J., and J. M. Clemetson. 2001. Platelet collagen receptors. Thrombosis and Haemostasis 86 (1):189–97. doi: 10.1055/s-0037-1616217.
  • Cheung, I. W. Y., S. Nakayama, M. N. K. Hsu, A. G. P. Samaranayaka, and E. C. Y. Li-Chan. 2009. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of Agricultural and Food Chemistry 57 (19):9234–42. doi: 10.1021/jf9018245.
  • Daliri, B. M., D. H. Oh, and B. H. Lee. 2017. Bioactive peptides. Foods 6 (5):32. doi: 10.3390/foods6050032.
  • Daliri, E. B., B. H. Lee, and D. H. Oh. 2017. Current trends and perspectives of bioactive peptides. Critical Reviews in Food Science and Nutrition 57:1–12. doi: 10.1080/10408398.2017.1319795.
  • Dallas, D. C., A. Guerrero, E. A. Parker, R. C. Robinson, J. Gan, J. B. German, D. Barile, and C. B. Lebrilla. 2015. Current peptidomics: Applications, purification, identification, quantification, and functional analysis. Proteomics 15 (5–6):1026–38. doi: 10.1002/pmic.201400310.
  • Davie, E. W., and O. D. Ratnoff. 1964. Waterfall sequence for intrinsic blood clotting. Science 145 (3638):1310–2. doi: 10.1126/science.145.3638.1310.
  • Davie, E. W., K. Fujikawa, and W. Kisiel. 1991. The coagulation Cascade: Initiation, maintenance, and regulation. Biochemistry 30 (43):10363–70. doi: 10.1021/bi00107a001.
  • Deng, L., Q. He, T. Kang, H. Yin, X. Jin, H. Li, W. Gan, C. Yang, J. Hua, Y. Wu, et al. 2010. Identification of an anticoagulant peptide that inhibits both FXIa and FVIIa/tissue factor from the blood-feeding nematode Ancylostoma caninum. Biochemical and Biophysical Research Communications 392 (2):155–9. doi: 10.1016/j.bbrc.2009.12.177.
  • Dennis, M. S., C. Eigenbrot, N. J. Skelton, M. H. Ultsch, L. Santell, M. A. Dwyer, M. P. O'Connell, and R. A. Lazarus. 2000. Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature 404 (6777):465–70. doi: 10.1038/35006574.
  • Díazgómez, J. L., F. Castorenatorres, R. E. Preciadoortiz, and S. Garcíalara. 2017. Anti-cancer activity of maize bioactive peptides. Frontiers in Chemistry 5:1–8. doi: 10.3389/fchem.2017.00044.
  • Digiandomenico, A., P. Warrener, M. Hamilton, S. Guillard, P. Ravn, R. Minter, M. M. Camara, V. Venkatraman, R. S. Macgill, J. Lin, et al. 2012. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide psl by phenotypic screening. The Journal of Experimental Medicine 209 (7):1273–87. doi: 10.1084/jem.20120033.
  • Eikelboom, J. W., and J. I. Weitz. 2010. New anticoagulants. Circulation 121 (13):1523–32. doi: 10.1161/CIRCULATIONAHA.109.853119.
  • Eriksson, B. I., D. J. Quinlan, and J. I. Weitz. 2009. Comparative pharmacodynamics and pharmacokinetics of oral direct thrombin and factor Xa inhibitors in development. Clinical Pharmacokinetics 48 (1):1–22. doi: 10.2165/0003088-200948010-00001.
  • Feng, L., M. Tu, M. Qiao, F. Fan, H. Chen, W. Song, and M. Du. 2018. Thrombin inhibitory peptides derived from mytilus edulis, proteins: Identification, molecular docking and in silico prediction of toxicity. European Food Research and Technology 244 (2):207–17. doi: 10.1007/s00217-017-2946-7.
  • Ferri, M., J. Graen-Heedfeld, K. Bretz, F. Guillon, E. Michelini, M. M. Calabretta, M. Lamborghini, N. Gruarin, A. Roda, A. Kraft, et al. 2017. Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. PLoS One 12 (1):e0170954. doi: 10.1371/journal.pone.0170954.
  • Figueiredo, A. C., S. D. De, and P. J. Pereira. 2013. The tick-derived anticoagulant madanin is processed by thrombin and factor Xa. PLoS One 8:e71866. doi: 10.1371/journal.pone.0071866.
  • Figueiredo, A. C., S. D. De, R. Gutiérrezgallego, T. B. Cereija, S. Macedoribeiro, P. Fuentesprior, and P. J. Barbosapereira. 2012. Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proceedings of the National Academy of Sciences of the United States of America 109:E3649–58. doi: 10.1073/pnas.1211614109.
  • Flaumenhaft, R. 2013. Protein disulfide isomerase as an antithrombotic target. Trends in Cardiovascular Medicine 23 (7):264–8. doi: 10.1016/j.tcm.2013.03.001.
  • Fosgerau, K., and T. Hoffmann. 2015. Peptide therapeutics: Current status and future directions. Drug Discovery Today 20 (1):122–8. doi: 10.1016/j.drudis.2014.10.003.
  • Francischetti, I. M., J. G. Valenzuela, and J. M. Ribeiro. 1999. Anophelin: Kinetics and mechanism of thrombin inhibition. Biochemistry 38 (50):16678–85. doi: 10.1021/bi991231p.
  • Gallagher, W. H., and C. K. Woodward. 1989. The concentration dependence of the diffusion coefficient for bovine pancreatic trypsin inhibitor: A dynamic light scattering study of a small protein. Biopolymers 28 (11):2001–24. doi: 10.1002/bip.360281115.
  • Gandhi, P. S., Z. Chen, and E. D. Cera. 2010. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1. Journal of Biological Chemistry 285 (20):15393–8. doi: 10.1074/jbc.M110.115337.
  • Grabherr, M. G., J. Pontiller, E. Mauceli, W. Ernst, M. Baumann, T. Biagi, R. Swofford, P. Russell, M. C. Zody, F. D. Palma, et al. 2011. Exploiting nucleotide composition to engineer promoters. PLoS One 6 (5):e20136. doi: 10.1371/journal.pone.0020136.
  • Handley, L. D., N. A. Treuheit, V. J. Venkatesh, and E. A. Komives. 2015. Thrombomodulin binding selects the catalytically active form of thrombin. Biochemistry 54(43):6650–8. doi: 10.1021/acs.biochem.5b00825.
  • He, R., A. T. Girgih, E. Rozoy, L. Bazinet, X. R. Ju, and R. E. Aluko. 2016. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry 197:1008–14. doi: 10.1016/j.foodchem.2015.11.081.
  • Herrera, C. F., J. C. Ruiz Ruiz, A. D. Betancur, J. J. Acevedo Fernández, and M. R. Segura Campos. 2016. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates. Food & Function 7 (1):434–44. doi: 10.1039/c5fo01012h.
  • Herrera, C. F., J. C. Ruiz-Ruiz, D. Betancur-Ancona, and M. R. Segura-Campos. 2016. Potential therapeutic applications of Mucuna pruriens peptide fractions purified by high-performance liquid chromatography as angiotensin-converting enzyme inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents. Journal of Medicinal Food 19(2):187–95. doi: 10.1089/jmf.2015.0098.
  • Hirsh, J., M. O'Donnell, and J. I. Weitz. 2005. New anticoagulants. Blood 105 (2):453–63. doi: 10.1182/blood-2003-12-4195.
  • Ho, T. Y., C. C. Li, H. Y. Lo, F. Y. Chen, and C. Y. Hsiang. 2017. Corn silk extract and its bioactive peptide ameliorated lipopolysaccharide-induced inflammation in mice via the nuclear factor-κB signaling pathway. Journal of Agricultural and Food Chemistry 65 (4):759–68. doi: 10.1021/acs.jafc.6b03327.
  • Huang, J., Q. Liu, B. Xue, L. Chen, Y. Wang, S. Ou, and X. Peng. 2016. Angiotensin-I-converting enzyme inhibitory activities and in vivo antihypertensive effects of sardine protein hydrolysate. Journal of Food Science 81 (11):H2831–40. doi: 10.1111/1750-3841.13508.
  • Huang, X., R. Chen, H. Xu, W. Lai, and Y. Xiong. 2016. Nanospherical brush as catalase container for enhancing the detection sensitivity of competitive plasmonic ELISA. Analytical Chemistry 88(3):1951–8. doi: 10.1021/acs.analchem.5b04518.
  • Huang, Y. L., M. F. Ma, C. J. Chow, and Y. H. Tsai. 2017. Angiotensin I-converting enzyme inhibitory and hypocholesterolemic activities: Effects of protein hydrolysates prepared from Achatina fulica snail foot muscle. International Journal of Food Properties 20 (12):3102–11. doi: 10.1080/10942912.2016.1274904.
  • Herbert, N. 2012. The role of structural information in the discovery of direct thrombin and factor Xa inhibitors. Trends in Pharmacological Sciences 33:279–88. doi: 10.1016/j.tips.2012.03.004.
  • Indumathi, P., and A. Mehta. 2016. A novel anticoagulant peptide from the Nori hydrolysate. Journal of Functional Foods 20:606–17. doi: 10.1016/j.jff.2015.11.016.
  • Iyer, L., and J. Fareed. 1995. Determination of specific activity of recombinant hirudin using a thrombin titration method. Thrombosis Research 78 (3):259–63. doi: 10.1016/0049-3848(95)90877-1.
  • Jasuja, R., F. H. Passam, D. R. Kennedy, S. H. Kim, L. V. Hessem, L. Lin, S. R. Bowley, S. S. Joshi, J. R. Dilks, B. Furie, et al. 2012. Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. Journal of Clinical Investigation 122 (6):2104–13. doi: 10.1172/JCI61228.
  • Ji, W., C. Zhang, and H. Ji. 2017. Two novel bioactive peptides from antarctic krill with dual angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Journal of Food Science 82 (7):1742–9. doi: 10.1111/1750-3841.13735.
  • Jo, H. Y., W. K. Jung, and S. K. Kim. 2008. Purification and characterization of a novel anticoagulant peptide from marine echiuroid worm, Urechis unicinctus. Process Biochemistry 43(2):179–84. doi: 10.1016/j.procbio.2007.11.011.
  • Jung, W. K., and S. K. Kim. 2009. Isolation and characterisation of an anticoagulant oligopeptide from blue mussel, Mytilus edulis. Food Chemisrty 117(4):687–92. doi: 10.1016/j.foodchem.2009.04.077.
  • Jung, W. K., H. Y. Jo, Z. J. Qian, Y. J. Jeong, S. G. Park, I. W. Choi, and S. K. Kim. 2007. A novel anticoagulant protein with high affinity to blood coagulation factor Va from Tegillarca granosa. BMB Reports 40 (5):832–8. doi: 10.5483/BMBRep.2007.40.5.832.
  • Kameyama, K., and A. Minton. 2006. Rapid quantitative characterization of protein interactions by composition gradient static light scattering. Biophysical Journal 90 (6):2164–9. doi: 10.1529/biophysj.105.074310.
  • Kastelowitz, N., R. Tamura, A. Onasoga, T. J. Stalker, O. R. White, P. N. Brown, G. L. Brodsky, L. F. Brass, B. R. Branchford, P. J. Di, et al. 2017. Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Scientific Reports 7 (1):17. doi: 10.1038/s41598-017-04494-y.
  • Khiari, Z., D. Rico, A. B. Martin-Diana, and C. Barry-Ryan. 2014. Structure elucidation of ACE-inhibitory and antithrombotic peptides isolated from mackerel skin gelatine hydrolysates. Journal of the Science of Food and Agriculture 94(8):1663–71. doi: 10.1002/jsfa.6476.
  • Koehbach, J., C. W. Gruber, C. Becker, D. P. Kreil, and A. Jilek. 2016. MALDI TOF/TOF-based approach for the identification OFD-amino acids in biologically active peptides and proteins. Journal of Proteome Research 15 (5):1487–96. doi: 10.1021/acs.jproteome.5b01067.
  • Koh, C. Y., M. Kazimirova, P. A. Nuttall, and R. M. Kini. 2009. Noncompetitive inhibitor of thrombin. Chembiochem 10 (13):2155–8. doi: 10.1002/cbic.200900371.
  • Koh, C. Y., M. Kazimirova, A. Trimnell, P. Takac, M. Labuda, P. A. Nuttall, and R. M. Kini. 2007. Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. Journal of Biological Chemistry 282 (40):29101–13. doi: 10.1074/jbc.M705600200.
  • Koh, C. Y., S. Kumar, M. Kazimirova, P. A. Nuttall, U. P. Radhakrishnan, S. Kim, J. Jagadeeswaran, T. Imamura, J. Mizuguchi, S. Iwanaga., et al. 2011. Crystal structure of thrombin in complex with s-variegin: Insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors. PLoS One 6 (10):e26367. doi: 10.1371/journal.pone.0026367.
  • Kong, Y., S. Li, Y. Shao, Z. L. He, M. M. Chen, X. Ming, and J. F. Wei. 2014. Antithrombotic peptides from Scolopendra subspinipes mutilans hydrolysates. International Journal of Peptide Research and Therapeutics 20 (2):245–52. doi: 10.1007/s10989-013-9387-3.
  • Korhonen, H., and A. Pihlanto. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16 (9):945–60. doi: 10.1016/j.idairyj.2005.10.012.
  • Koyama, T., K. Noguchi, Y. Aniya, and M. Sakanashi. 1998. Analysis for sites of anticoagulant action of plancinin, a new anticoagulant peptide isolated from the starfish Acanthaster planci, in the blood coagulation cascade. General Pharmacology 31 (2):277–82. doi: 10.1016/S0306-3623(97)00443-6.
  • Lahrichi, S. L., M. Affolter, I. S. Zolezzi, and A. Panchaud. 2013. Food peptidomics: Large scale analysis of small bioactive peptides-a pilot study. Journal of Proteomics 88:83–91. doi: 10.1016/j.jprot.2013.02.018.
  • Lai, R., H. Takeuchi, J. Jonczy, H. H. Rees, and P. C. Turner. 2004. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene 342 (2):243–9. doi: 10.1016/j.gene.2004.07.012.
  • Lemes, A. C., L. Sala, J. D. C. Ores, A. R. C. Braga, M. B. Egea, and K. F. Fernandes. 2016. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17 (6):950. doi: 10.3390/ijms17060950.
  • Li, J., A. Schantz, M. Schwegler, and G. Shankar. 2011. Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by octet®, biolayer interferometry. Journal of Pharmaceutical and Biomedical Analysis 54(2):286–94. doi: 10.1016/j.jpba.2010.08.022.
  • Liu, Y., W. Luo, H. Yang, W. Fang, T. Xi, Y. Li, and J. Xiong. 2015. Stimulation of nitric oxide production contributes to the antiplatelet and antithrombotic effect of new peptide pENW (pGlu-Asn-Trp). Thrombosis Research 136 (2):319–27. doi: 10.1016/j.thromres.2015.05.016.
  • Liu, R., W. Zheng, J. Li, L. Wang, H. Wu, X. Wang, and L. Shi. 2015. Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis, by UPLC-Q-TOF mass spectrometry. Food Chemistry 167:484–9. doi: 10.1016/j.foodchem.2014.06.113.
  • Macedo-Ribeiro, S., C. Almeida, B. M. Calisto, T. Friedrich, R. Mentele, J. Stürzebecher, P. Fuentes-Prior, and P. J. Pereira. 2008. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 3 (2):e1624. doi: 10.1371/journal.pone.0001624.
  • Macfarlane, R. G. 1964. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202 (4931):498–9. doi: 10.1038/202498a0.
  • Mackman, N. 2008. Triggers, targets and treatments for thrombosis. Nature 451 (7181):914–8. doi: 10.1038/nature06797.
  • Maraganore, J. M., P. Bourdon, J. Jablonski, K. L. Ramachandran, and J. W. Fenton. 1990. Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin. Biochemistry 29 (30):7095–101. doi: 10.1021/bi00482a021.
  • Marcone, S., O. Belton, and D. J. Fitzgerald. 2017. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. British Journal of Clinical Pharmacology 83 (1):152–62. doi: 10.1111/bcp.13002.
  • Markwardt, F. 1970. Hirudin as an inhibitor of thrombin. Methods in Enzymology 19:924–32. doi: 10.1016/0076-6879(70)19082-3.
  • Martínez-Sánchez, S. M., A. Minguela, D. Prieto-Merino, M. P. Zafrilla-Rentero, J. Abellán-Alemán, and S. Montoro-García. 2017. The effect of regular intake of dry-cured ham rich in bioactive peptides on inflammation, platelet and monocyte activation markers in humans. Nutrients 9 (4):321–11. doi: 10.3390/nu9040321.
  • McNicol, A., and S. J. Israels. 2003. Platelets and anti-platelet therapy. Journal of Pharmacological Sciences 93 (4):381–96. doi: 10.1254/jphs.93.381.
  • Mechmeche, M., F. Kachouri, H. Ksontini, and M. Hamdi. 2017. Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity. Food Biotechnology 31 (2):94–113. doi: 10.1080/08905436.2017.1302888.
  • Mejri, L., R. Vásquez-Villanueva, M. Hassouna, M. L. Marina, and M. C. García. 2017. Identification of peptides with antioxidant and antihypertensive capacities by RP-HPLC-Q-TOF-MS in dry fermented camel sausages inoculated with different starter cultures and ripening times. Food Research International 100:708–16. doi: 10.1016/j.foodres.2017.07.072.
  • Melanie, S., M. P. Daniel, M. Kara, Y. Guo, E. Mia, O. Richard, D. S. Sarah, and M. Chris. 2016. Comparison of enzyme-linked immunosorbent assay, surface plasmon resonance and biolayer interferometry for screening of deoxynivalenol in wheat and wheat dust. Toxins 8 (4):103. doi: 10.3390/toxins8040103.
  • Minkiewicz, P., Dziuba. J. 2008a. Food peptidomics. Food Technology and Biotechnology 4:1–10.
  • Minkiewicz, P., J. Dziuba, A. Iwaniak, M. Dziuba, and M. Darewicz. 2008b. BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International 91:965–980.
  • Minkiewicz, P., J. Dziuba, and J. Michalska. 2011. Bovine meat proteins as potential precursors of biologically active peptides-A computational study based on the BIOPEP database. Food Science and Technology International 17 (1):39–45. doi: 10.1177/1082013210368461.
  • Nasri, R., I. B. Amor, A. Bougatef, N. Nedjar-Arroume, P. Dhulster, J. Gargouri, M. K. Châabouni, and M. Nasri. 2012. Anticoagulant activities of goby muscle protein hydrolysates. Food Chemistry 133 (3):835–41. doi: 10.1016/j.foodchem.2012.01.101.
  • Neves, A. C., P. A. Harnedy, M. B. O’Keeffe, and R. J. Fitzgerald. 2017. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chemistry 218:396–405. doi: 10.1016/j.foodchem.2016.09.053.
  • New, R., M. Bogus, G. S. Bansal, M. Dryjska, K. Zajkowska, and M. Burnet. 2017. Efficacy of bioactive cyclic peptides in rheumatoid arthritis: Translation from in vitro to in vivo models. Molecules 22 (10):1613–8. doi: 10.3390/molecules22101613.
  • Nimalaratne, C., N. Bandara, and J. Wu. 2015. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chemistry 188:467–72. doi: 10.1016/j.foodchem.2015.05.014.
  • Noeske-Jungblut, C., B. Haendler, P. Donner, A. Alagon, L. Possani, and W.-D. Schleuning. 1995. Triabin, a highly potent exosite inhibitor of thrombin. Journal of Biological Chemistry 270 (48):28629–34. doi: 10.1074/jbc.270.48.28629.
  • Nongonierma, A. B., and R. J. Fitzgerald. 2017. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends in Food Science and Technology 69:289–305. doi: 10.1016/j.tifs.2017.03.003.
  • Nurdiani, R., T. Vasiljevic, T. Yeager, T. K. Singh, and O. N. Donkor. 2017. Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from flathead (Platycephalus fuscus) by-products. European Food Research and Technology 243 (4):627–37. doi: 10.1007/s00217-016-2776-z.
  • Pripp, A. H., T. Isaksson, L. Stepaniak, and T. Sørhaug. 2004. Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. European Food Research and Technology 219 (6):579–83. doi: 10.1007/s00217-004-1004-4.
  • Qiao, M., M. Tu, Z. Wang, F. Mao, H. Chen, L. Qin, and M. Du. 2018. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. International Journal of Molecular Sciences 19 (1):138–12. doi: 10.3390/ijms19010138.
  • Rafiq, S., N. Huma, I. Pasha, M. Shahid, and H. Xiao. 2017. Angiotensin-converting enzyme-inhibitory and antithrombotic activities of soluble peptide extracts from buffalo and cow milk cheddar cheeses. International Journal of Dairy Technology 70 (3):380–8. doi: 10.1111/1471-0307.12373.
  • Rajapakse, N., W. K. Jung, E. Mendis, S. H. Moon, and S. K. Kim. 2005. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Science 76 (22):2607–19. doi: 10.1016/j.lfs.2004.12.010.
  • Rawlings, N. D., A. J. Barrett, and A. Bateman. 2012. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 40(D1):D343–50. doi: 10.1093/nar/gkr987.
  • Richardson, J. L., B. Kröger, W. Hoeffken, J. E. Sadler, P. Pereira, R. Huber, W. Bode, and P. Fuentes-Prior. 2000. Crystal structure of the human α-thrombin-haemadin complex: An exosite II-binding inhibitor. The EMBO Journal 19 (21):5650–60. doi: 10.1093/emboj/19.21.5650.
  • Rizzello, C. G., A. Lorusso, V. Russo, D. Pinto, B. Marzani, and M. Gobbetti. 2017. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology 241:252–61. doi: 10.1016/j.ijfoodmicro.2016.10.035.
  • Rodríguez-Díaz, J. C., L. E. Kurozawa, F. M. Netto, and M. D. Hubinger. 2011. Optimization of the enzymatic hydrolysis of blue shark skin. Journal of Food Science 76 (7):C938–49. doi: 10.1111/j.1750-3841.2011.02318.x
  • Rojas-Ronquillo, R., A. Cruz-Guerrero, A. Flores-Nájera, G. Rodríguez-Serrano, L. Gómez-Ruiz, J. P. Reyes-Grajeda, J. Jiménez-Guzmán, and M. García-Garibay. 2012. Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. International Dairy Journal 26 (2):147–54. doi: 10.1016/j.idairyj.2012.05.002.
  • Gustafsson, D., J.-E. Nyström, S. Carlsson, U. Bredberg, U. Eriksson, E. Gyzander, M. Elg, T. Antonsson, K.-J. Hoffmann, A.-L. Ungell, et al. 2001. The direct thrombin inhibitor melagatran and its oral prodrug H376/95: Intestinal absorption properties, biochemical and pharmacodynamic effects. Thrombosis Research 101 (3):171–81. doi: 10.1039/b001793k.
  • Rusconi, C. P., E. Scardino, J. Layzer, G. A. Pitoc, T. L. Ortel, D. Monroe, and B. A. Sullenger. 2002. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419 (6902):90–94. doi: 10.1038/nature00963.
  • Sabbione, A. C., A. E. Nardo, M. C. Añón, and A. Scilingo. 2016. Amaranth peptides with antithrombotic activity released by simulated gastrointestinal digestion. Journal of Functional Foods 20:204–14. doi: 10.1016/j.jff.2015.10.015.
  • Sabbione, A. C., G. Rinaldi, M. C. Añón, and A. A. Scilingo. 2016. Antithrombotic effects of Amaranthus hypochondriacus proteins in rats. Plant Foods for Human Nutrition 71 (1):19–27. doi: 10.1007/s11130-015-0517-2.
  • Sabbione, A. C., A. Scilingo, and M. C. Añón. 2015. Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. LWT - Food Science and Technology 60 (1):171–7. doi: 10.1016/j.lwt.2014.07.015.
  • Salzet, M., V. Chopin, J. Baert, I. Matias, and J. Malecha. 2000. Theromin, a novel leech thrombin inhibitor. Journal of Biological Chemistry 275 (40):30774–80. doi: 10.1074/jbc.M000787200.
  • Scharf, M., J. Engels, and D. Tripier. 1989. Primary structures of new ‘iso-hirudins. FEBS Letters 255 (1):105–10. doi: 10.1016/0014-5793(89)81070-1.
  • Schechter, I., and A. Berger. 1967. On the size of the active site in proteases. I. Papain. Biochemical and Biophysical Research Communications 27 (2):157–62. doi: 10.1016/S0006-291X(67)80055-X.
  • Shimizu, M., N. Sawashita, F. Morimatsu, J. Ichikawa, Y. Taguchi, Y. Ijiri, and J. Yamamoto. 2009. Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thrombosis Research 123 (5):753–7. doi: 10.1016/j.thromres.2008.07.005.
  • Silva, F. G. D. E., B. Hernández-Ledesma, L. Amigo, F. M. Netto, and B. Miralles. 2017. Identification of peptides released from flaxseed (Linum usitatissimum) protein by alcalase® hydrolysis: Antioxidant activity. LWT-Food Science and Technology 76:140–6. doi: 10.1016/j.lwt.2016.10.049.
  • Singh, B. P., and S. Vij. 2017. Growth and bioactive peptides production potential of Lactobacillus plantarum, strain C2 in soy milk: A LC/MS-MS based revelation for peptides biofunctionality. LWT - Food Science and Technology 86:293–301. doi: 10.1016/j.lwt.2017.08.013.
  • Skrzypczak, K., W. Gustaw, D. Szwajgier, E. Fornal, and A. Waśko. 2017. κ-casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology 54 (11):3679–88. doi: 10.1007/s13197-017-2830-2.
  • Song, R., R. Wei, B. Zhang, and D. Wang. 2012. Optimization of the antibacterial activity of half-fin anchovy (Setipinna taty) hydrolysates. Food and Bioprocess Technology 5 (5):1979–89. doi: 10.1007/s11947-010-0505-3.
  • Steiner, V., R. Knecht, K. O. Boernsen, E. Gassmann, S. R. Stone, F. Raschdorf, J. M. Schlaeppi, and R. Maschler. 1992. Primary structure and function of novel O-glycosylated hirudins from the leech Hirudinaria manillensis. Biochemistry 31 (8):2294–8. doi: 10.1021/bi00123a012.
  • Sun, T., F. Reid, Y. Liu, Y. Cao, P. Estep, C. Nauman, and Y. Xu. 2013. High throughput detection of antibody self-interaction by bio-layer interferometry. Mabs 5 (6):838–41. doi: 10.4161/mabs.26186.
  • Tanaka-Azevedo, A. M., K. Morais-Zani, R. J. Torquato, and A. S. Tanaka. 2010. Thrombin inhibitors from different animals. Journal of Biomedicine and Biotechnology 2010:1–9. doi: 10.1155/2010/641025.
  • Tornesello, A. L., L. Buonaguro, M. L. Tornesello, and F. M. Buonaguro. 2017. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules 22:1–21. doi: 10.3390/molecules22081282.
  • Tu, M., L. Feng, Z. Wang, M. Qiao, F. Shahidi, W. Lu, and M. Du. 2017. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. Journal of Functional Foods 32:313–23. doi: 10.1016/j.jff.2017.03.015.
  • Udenigwe, C. C. 2014. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Science and Technology 36 (2):137–43. doi: 10.1016/j.tifs.2014.02.004.
  • Valenzuela, J. G., I. M. Francischetti, and J. M. Ribeiro. 1999. Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus. Biochemistry 38 (34):11209–15. doi: 10.1021/bi990761i.
  • Van, D. L. A., M. T. Stubbs, W. Bode, T. Friedrich, C. Bollschweiler, W. Höffken, and R. Huber. 1996. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? The Embo Journal 15 (22):6011–7.
  • Velazquezcampoy, A., S. A. Leavitt, and E. Freire. 2004. Characterization of protein-protein interactions by isothermal titration calorimetry. Methods in Molecular Biology 261:35–54. doi: 10.1385/1-59259-762-9:035.
  • Vercruysse, L., G. Smagghe, A. V. D. Bent, A. V. Amerongen, M. Ongenaert, and J. V. Camp. 2009. Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides. Peptides 30 (3):575–82. doi: 10.1016/j.peptides.2008.06.027.
  • Viskov, C., M. Just, V. Laux, P. Mourier, and M. Lorenz. 2009. Description of the chemical and pharmacological characteristics of a new hemisynthetic ultra-low-molecular-weight heparin, AVE5026. Journal of Thrombosis and Haemostasis 7 (7):1143–51. doi: 10.1111/j.1538-7836.2009.03447.x.
  • Wada, Y., and B. Lönnerdal. 2014. Bioactive peptides derived from human milk proteins-mechanisms of action. The Journal of Nutritional Biochemistry 25 (5):503–14. doi: 10.1016/j.jnutbio.2013.10.012.
  • Wallner, J., G. Lhota, D. Jeschek, A. Mader, and K. Vorauer-Uhl. 2013. Application of bio-layer interferometry for the analysis of protein/liposome interactions. Journal of Pharmaceutical and Biomedical Analysis 72:150–4. doi: 10.1016/j.jpba.2012.10.008.
  • Wang, X. Q., H. H. Yu, R. Xing, and P. C. Li. 2017. Characterization, preparation, and purification of marine bioactive peptides. BioMed Research International 2017:1–16. doi: 10.1155/2017/9746720.
  • Wartchow, C. A., F. Podlaski, S. Li, K. Rowan, X. Zhang, D. Mark, and K. S. Huang. 2011. Biosensor-based small molecule fragment screening with biolayer interferometry. Journal of Computer-Aided Molecular Design 25 (7):669–76. doi: 10.1007/s10822-011-9439-8.
  • Watanabe, R. M., A. M. Tanaka-Azevedo, M. S. Araujo, M. A. Juliano, and A. S. Tanaka. 2011. Characterization of thrombin inhibitory mechanism of rAaTI, a kazal-type inhibitor from Aedes aegypti with anticoagulant activity. Biochimie 93(3):618–23. doi: 10.1016/j.biochi.2010.12.006.
  • Weitz, J. I., and S. M. Bates. 2005. New anticoagulants. Journal of Thrombosis and Haemostasis 3 (8):1843–53. doi: 10.1111/j.1538-7836.2005.01374.x.
  • Weitz, J. I., and J. Hirsh. 1999. New antithrombotic agents. Lancet 353(9162):1431–6. doi: 10.1016/S0140-6736(98)09233-2.
  • Wolowacz, S. E., N. S. Roskell, J. M. Plumb, J. A. Caprini, and B. I. Eriksson. 2009. Efficacy and safety of dabigatran etexilate for the prevention of venous thromboembolism following total hip or knee arthroplasty. A meta-analysis. Thrombosis and Haemostasis 101 (01):77–85. doi: 10.1160/TH08-07-0493.
  • Wu, J., and R. E. Aluko. 2007. Quantitative structure-activity relationship study of bitter di and tripeptides including relationship with angiotensin I-converting enzyme inhibitory activity. Journal of Peptide Science 13 (1):63–69. doi: 10.1002/psc.800.
  • Wu, J., R. E. Aluko, and S. Nakai. 2006. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di-and tripeptides. Journal of Agricultural and Food Chemistry 54 (3):732–8. doi: 10.1021/jf051263l.
  • Yamada, T., K. Kurihara, Y. Ohnishi, T. Tamada, K. Tomoyori, K. Masumi, I. Tanaka, R. Kuroki, and N. Niimura. 2013. Neutron and X-ray crystallographic analysis of the human α-thrombin-bivalirudin complex at pD 5.0: Protonation states and hydration structure of the enzyme-product complex. Biochimica et Biophysica Acta 1834 (8):1532–8. doi: 10.1016/j.bbapap.2013.05.014.
  • Yang, L. J., L. T. Zhang, L. H. Yan, H. F. Zheng, P. F. Lu, J. J. Chen, J. Dai, H. B. Sun, Y. Xu, and T. Yang. 2017. Stability assessment of a new antithrombotic small peptide, Arg-Gly-Asp-Trp-Arg (RGDWR), and its derivative. Biotechnology Letters 39 (8):1183–90. doi: 10.1007/s10529-017-2346-x.
  • Yang, W. G., Z. Wang, and S. Y. Xu. 2007. A new method for determination of antithrombotic activity of egg white protein hydrolysate by microplate reader. Chinese Chemical Letters 18 (4):449–51. doi: 10.1016/j.cclet.2007.02.014.
  • Ye, X., M. Chen, Y. Chen, X. Su, Y. Wang, W. Su, and Y. Kong. 2015. Isolation and characterization of a novel antithrombotic peptide from enzymatic hydrolysate of Agkistrodon acutus, venom. International Journal of Peptide Research and Therapeutics 21 (3):343–51. doi: 10.1007/s10989-015-9463-y.
  • Yu, G., F. Wang, B. Zhang, and J. Fan. 2016. In vitro inhibition of platelet aggregation by peptides derived from oat (Avena sativa L.), highland barley (Hordeum vulgare Linn. var. nudum Hook. f.), and buckwheat (Fagopyrum esculentum Moench) proteins. Food Chemistry 194:577–86. doi: 10.1016/j.foodchem.2015.08.058.
  • Zanfardino, A., G. Criscuolo, L. B. Di, E. Pizzo, M. L. Ciavatta, E. Notomista, A. Carpentieri, A. Pezzella, and M. Varcamonti. 2017. Identification of a new small bioactive peptide from Lactobacillus gasseri supernatant. Beneficial Microbes 8 (1):133–41. doi: 10.3920/BM2016.0098.
  • Zhang, H., W. H. Yokoyama, and H. Zhang. 2012. Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates. Journal of the Science of Food and Agriculture 92 (7):1395–401. doi: 10.1002/jsfa.4713.
  • Zhang, N., C. Zhang, Y. Chen, and B. Zheng. 2016. Purification and characterization of antioxidant peptides of Pseudosciaena crocea protein hydrolysates. Molecules 22 (1):57. doi: 10.3390/molecules220100
  • Zhang, S. B. 2016. In vitro antithrombotic activities of peanut protein hydrolysates. Food Chemistry 202:1–8. doi: 10.1016/j.foodchem.2016.01.108.
  • Zheng, Y., Y. Li, Y. Zhang, X. Ruan, and R. Zhang. 2017. Purification, characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. Journal of Functional Foods 28:48–58. doi: 10.1016/j.jff.2016.11.021.
  • Zhou, Y. 2014. The potential biomedical application of cyclopeptides from marine natural products. Current Organic Chemistry 18 (7):918–24. doi: 10.2174/138527281807140515154736.
  • Zvereva, I., G. Dudko, and M. Dikunets. 2018. Determination of GnRH and its synthetic analogues' abuse in doping control: Small bioactive peptide UPLC-MS/MS method extension by addition of in vitro and in vivo metabolism data; evaluation of LH and steroid profile parameter fluctuations as suitable biomarkers. Drug Testing and Analysis 10 (4):711–22. doi: 10.1002/dta.2256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.