981
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &

References

  • Acquah, Caleb, Dominic Agyei, Isaac Monney, Sharadwata Pan, and Michael K. Danquah. 2018. Aptameric sensing in food safety. Food Control and Biosecurity 16: 259–77.
  • Acquah, Caleb, Michael K. Danquah, John L. S. Yon, Amandeep Sidhu, and Clarence M. Ongkudon. 2015. A review on immobilised aptamers for high throughput biomolecular detection and screening. Analytica Chimica Acta 888: 10–18. doi: 10.1016/j.aca.2015.05.050.
  • Acquah, Caleb, Michael K. Danquah, Dominic Agyei, Charles K. S. Moy, Amandeep Sidhu, and Clarence M. Ongkudon. 2016. Deploying aptameric sensing technology for rapid pandemic monitoring. Critical Reviews in Biotechnology 36 (6):1010–22. doi: 10.3109/07388551.2015.1083940.
  • Agyei, Dominic, Sharadwata Pan, Caleb Acquah, A. E.-D A. Bekhit, and M. K. Danquah. 2017. Structure-Informed detection and quantification of peptides in food and biological fluids. Journal of Food Biochemistry: e12482. https://doi.org/10.1111/jfbc.12482.
  • Agyei, Dominic, Caleb Acquah, Kei Xian Tan, Hieng Kok Hii, Subin R. C. K. Rajendran, Chibuike C. Udenigwe, and Michael K. Danquah. 2018. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Analytical and Bioanalytical Chemistry 410 (2):297–306. doi: 10.1007/s00216-017-0599-9.
  • Agyei, Dominic, and Michael K. Danquah. 2011. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances 29 (3):272–7. doi: 10.1016/j.biotechadv.2011.01.001.
  • Agyei, Dominic, and Michael K. Danquah. 2012. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology 23 (2):62–9.
  • Agyei, Dominic, Clarence M. Ongkudon, Chan Yi Wei, Alan S. Chan, and Michael K. Danquah. 2016. Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing 98:244–56. doi: 10.1016/j.fbp.2016.02.003.
  • Agyei, Dominic, Ravichandra Potumarthi, and Michael K. Danquah. 2015. Food-derived multifunctional bioactive proteins and peptides. Biotechnology of bioactive compounds. Hoboken, NJ: John Wiley & Sons, Ltd.
  • Aluko, Rotimi E. 2018. Food protein-derived renin-inhibitory peptides: In vitro and in vivo properties. Journal of Food Biochemistry (September) :e12648.
  • Alvarez-Ordóñez, Avelino, Máire Begley, Tanya Clifford, Thérèse Deasy, Kiera Considine, and Colin Hill. 2013. Structure-activity relationship of synthetic variants of the milk-derived antimicrobial peptide Αs2-Casein f(183–207). Applied and Environmental Microbiology 79 (17):5179–85. doi: 10.1128/AEM.01394-13.
  • Anjum, Komal, Syed Qamar Abbas, Najeeb Akhter, Bibi Ibtesam Shagufta, Sayed Asmat Ali Shah, and Syed Shams Ul Hassan. 2017. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chemical Biology & Drug Design 90 (1):12–30. doi: 10.1111/cbdd.12925.
  • Baines, Ivan C., and Pierre Colas. 2006. Peptide aptamers as guides for small-molecule drug discovery. Drug Discovery Today 11 (7–8):334–41. doi: 10.1016/j.drudis.2006.02.007.
  • Baker, E. N., and H. M. Baker. 2005. Lactoferrin. Cellular and Molecular Life Sciences 62 (22):2531–9. doi: 10.1007/s00018-005-5368-9.
  • Baker, Monya. 2015. Reproducibility crisis: Blame it on the antibodies. Nature 521 (7552):274–6. doi: 10.1038/521274a.
  • Bayat, Payam, Rahim Nosrati, Mona Alibolandi, Houshang Rafatpanah, Khalil Abnous, Mostafa Khedri, and Mohammad Ramezani. 2018. SELEX methods on the road to protein targeting with nucleic acid aptamers. Biochimie 154 (November): 132–55. doi: 10.1016/j.biochi.2018.09.001.
  • Berglund, Lisa, Erik Björling, Per Oksvold, Linn Fagerberg, Anna Asplund, Cristina Al-Khalili Szigyarto, and Anja Persson. 2008. A genecentric human protein atlas for expression profiles based on antibodies. Molecular & Cellular Proteomics 7 (10):2019–27. doi: 10.1074/mcp.R800013-MCP200.
  • Bradbury, Andrew, and Andreas Plückthun. 2015a. Standardize antibodies used in research: To save millions of dollars and dramatically improve reproducibility, protein-binding reagents must be defined by their sequences and produced as recombinant proteins, Say Andrew Bradbury, Andreas Pluckthun and 110 Co-signatories. Nature 518 (7537):27–30.
  • Bradbury, Andrew, and Andreas Plückthun. 2015b. Reproducibility: Standardize antibodies used in research. Nature 518 (7537):27–9. doi: 10.1038/518027a.
  • Challa, Sreerupa, Saul Tzipori, and Abhineet Sheoran. 2014. Selective evolution of ligands by exponential enrichment to identify RNA aptamers against Shiga toxins. Journal of Nucleic Acids 2014 :1–8. doi: 10.1155/2014/214929.
  • Chen, Hua-Ming, Koji Muramoto, Fumio Yamauchi, and Kiyoshi Nokihara. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry 44 (9):2619–23. doi: 10.1021/jf950833m.
  • Chi, Chang-Feng, Fa-Yuan Hu, Bin Wang, Tao Li, and Guo-Fang Ding. 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) Muscle. Journal of Functional Foods 15: 301–13.
  • Clare, D. A., and H. E. Swaisgood. 2000. Bioactive milk peptides: A prospectus. Journal of Dairy Science 83 (6):1187–95. doi: 10.3168/jds.S0022-0302(00)74983-6.
  • Colas, Pierre. 2008. The eleven-year switch of peptide aptamers. Journal of Biology 7 (1):2. doi: 10.1186/jbiol64.
  • Cotten, Steven W., Jianwei Zou, C. Alexander Valencia, and Rihe Liu. 2011. Selection of proteins with desired properties from natural proteome libraries using MRNA display. Nature Protocols 6 (8):1163–82. doi: 10.1038/nprot.2011.354.
  • Crawford, Margaret, Rob Woodman, and Paul Ko Ferrigno. 2003. Peptide aptamers: Tools for biology and drug discovery. Briefings in Functional Genomics & Proteomics 2 (1):72–9. doi: 10.1093/bfgp/2.1.72.
  • Dassie, Justin P., and Paloma H. Giangrande. 2013. Current progress on aptamer-targeted oligonucleotide therapeutics. Therapeutic Delivery 4 (12):1527–46. doi: 10.4155/tde.13.118.
  • Deng, Bin, Yanwen Lin, Chuan Wang, Feng Li, Zhixin Wang, Hongquan Zhang, Xing-Fang Li, and X. Chris Le. 2014. Aptamer binding assays for proteins: The thrombin example—A review. Analytica Chimica Acta 837 :1–15. doi: 10.1016/j.aca.2014.04.055.
  • Di Stefano, Elisa, Dominic Agyei, Emmanuel N. Njoku, and Chibuike C. Udenigwe. 2018. Plant RuBisCo: An underutilized protein for food applications. Journal of the American Oil Chemists' Society 95 (8):1063–74. doi: 10.1002/aocs.12104.
  • Dong, Yiyang, Yan Xu, Wei Yong, Xiaogang Chu, and Daning Wang. 2014. Aptamer and its potential applications for food safety. Critical Reviews in Food Science and Nutrition 54 (12):1548–61. doi: 10.1080/10408398.2011.642905.
  • Du, Fuyou, Lin Guo, Qun Qin, Xian Zheng, Guihua Ruan, Jianping Li, and Gongke Li. 2015. Recent advances in Aptamer-functionalized materials in sample preparation. TrAC Trends in Analytical Chemistry 67 (April) :134–46. doi: 10.1016/j.trac.2015.01.007.
  • Egger, Lotti, and Olivia Ménard. 2017. Update on bioactive peptides after milk and cheese digestion. Current Opinion in Food Science 14 :116–21. doi: 10.1016/j.cofs.2017.03.003.
  • Ejike, Chukwunonso E. C. C., Stephanie A. Collins, Nileeka Balasuriya, Andrew K. Swanson, Beth Mason, and Chibuike C. Udenigwe. 2017. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology 59 (January) :30–6. doi: 10.1016/j.tifs.2016.10.026.
  • Ferreira, C. S. M., C. S. Matthews, and S. Missailidis. 2006. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biology 27 (6):289–301. doi: 10.1159/000096085.
  • FitzGerald, Richard J., and H. Meisel. 2000. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. British Journal of Nutrition 84 (S1): S33–S7.
  • Gao, Shunxiang, Xin Zheng, Binghua Jiao, and Lianghua Wang. 2016. Post-SELEX optimization of aptamers. Analytical and Bioanalytical Chemistry 408 (17):4567–73. doi: 10.1007/s00216-016-9556-2.
  • Gelinas, Amy D., Douglas R. Davies, and Nebojsa Janjic. 2016. Embracing proteins: Structural themes in aptamer–protein complexes. Current Opinion in Structural Biology 36 :122–32. doi: 10.1016/j.sbi.2016.01.009.
  • Gnasegaran, G. K., D. Agyei, S. Pan, I. P. Sarethy, C. Acquah, and M. K. Danquah. 2017. Process development for bioactive peptide production. Food Bioactives: Extraction and Biotechnology Applications. Springer, Cham: Springer International Publishing AG.
  • Gómez-Guillén, M. C., B. Giménez, M. E. López-Caballero, and M. P. Montero. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 25 (8):1813–27. doi: 10.1016/j.foodhyd.2011.02.007.
  • Groff, Katherine, Jeffrey Brown, and J. Amy Clippinger. 2015. Modern affinity reagents: Recombinant antibodies and aptamers. Biotechnology Advances 33 (8):1787–98. doi: 10.1016/j.biotechadv.2015.10.004.
  • Hamdi, Amel, and Pierre Colas. 2012. Yeast two-hybrid methods and their applications in drug discovery. Trends in Pharmacological Sciences 33 (2):109–18. doi: 10.1016/j.tips.2011.10.008.
  • Hernández-Ledesma, Blanca, Alberto Dávalos, Begoña Bartolomé, and Lourdes Amigo. 2005. Preparation of antioxidant enzymatic hydrolysates from α-Lactalbumin and β-Lactoglobulin. Identification of active peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry 53 (3):588–93. doi: 10.1021/jf048626m.
  • Homola, Jiří. 2008. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews 108 (2):462–93. doi: 10.1021/cr068107d.
  • Hori, Shin-ichiro, Alberto Herrera, John Rossi, and Jiehua Zhou. 2018. Current advances in aptamers for cancer diagnosis and therapy. Cancers 10 (1):9. doi: 10.3390/cancers10010009.
  • Hung, Chuan-Chuan, Yu-Hsuan Yang, Pei-Feng Kuo, and Kuo-Chiang Hsu. 2014. Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. Journal of Functional Foods 11 :563–70. doi: 10.1016/j.jff.2014.08.015.
  • Kaur, Harpreet, Aarti Garg, and G. P. S. Raghava. 2007. PEPstr: A de novo method for tertiary structure prediction of small bioactive peptides. Protein & Peptide Letters 14 (7):626–31.
  • Kim, Se-Kwon, Yong-Tae Kim, Hee-Guk Byun, Kyung-Soo Nam, Dong-Sik Joo, and F. Shahidi. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of Agricultural and Food Chemistry 49 (4):1984–9. doi: 10.1021/jf000494j.
  • Kim, Se-Kwon, and Eresha Mendis. 2006. Bioactive compounds from marine processing byproducts – A review. Food Research International 39 (4):383–93. doi: 10.1016/j.foodres.2005.10.010.
  • Kim, Se-Kwon, and Isuru Wijesekara. 2010. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods 2 (1):1–9. doi: 10.1016/j.jff.2010.01.003.
  • Kopylov, A. M., and V. A. Spiridonova. 2000. Combinatorial chemistry of nucleic acids: SELEX. Molecular Biology 34 (6):940–54.
  • Korhonen, Hannu, and Anne Pihlanto. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16 (9):945–60. doi: 10.1016/j.idairyj.2005.10.012.
  • Ku, Ti-Hsuan, Tiantian Zhang, Hua Luo, Tony Yen, Ping-Wei Chen, Yuanyuan Han, and Yu-Hwa Lo. 2015. Nucleic acid aptamers: An emerging tool for biotechnology and biomedical sensing. Sensors 15 (7):16281–313. doi: 10.3390/s150716281.
  • Laugesen, M., and R. B. Elliott. 2003. Ischaemic heart disease, type 1 diabetes, and cow milk A1 β-casein. The New Zealand Medical Journal 116 (1168):U295.
  • Lausted, Christopher, Zhiyuan Hu, Leroy Hood, and Charles Campbell. 2009. SPR imaging for high throughput, label-free interaction analysis. Combinatorial Chemistry & High Throughput Screening 12 (8):741–51. doi: 10.2174/138620709789104933.
  • Lee, Seung Yun, and Sun Jin Hur. 2017. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chemistry 228:506–17. doi: 10.1016/j.foodchem.2017.02.039.
  • Li, Yao-Wang, and Bo Li. 2013. Characterization of structure–antioxidant activity relationship of peptides in free radical systems using QSAR models: Key sequence positions and their amino acid properties. Journal of Theoretical Biology 318 (February) :29–43. doi: 10.1016/j.jtbi.2012.10.029.
  • Lupold, Shawn E., Brian J. Hicke, Yun Lin, and Donald S. Coffey. 2012. Correction: Identification and characterization of Nuclease-Stabilized RNA molecules that bind human prostate cancer cells via the Prostate-Specific membrane antigen. Cancer Research 72 (15):3887.
  • Madureira, A. R., T. Tavares, A. M. P. Gomes, M. E. Pintado, and F. X. Malcata. 2010. Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science 93 (2):437–55. doi: 10.3168/jds.2009-2566.
  • Maehashi, Kenzo, Taiji Katsura, Kagan Kerman, Yuzuru Takamura, Kazuhiko Matsumoto, and Eiichi Tamiya. 2007. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Analytical Chemistry 79 (2):782–7. doi: 10.1021/ac060830g.
  • Maier, Keith E., and Matthew Levy. 2016. From selection hits to clinical leads: Progress in aptamer discovery. Molecular Therapy – Methods & Clinical Development 3:16014. doi: 10.1038/mtm.2016.14.
  • Mascini, Marco, Ilaria Palchetti, and Sara Tombelli. 2012. Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects. Angewandte Chemie International Edition 51 (6):1316–32. doi: 10.1002/anie.201006630.
  • Maynard, Jennifer A., Nathan C. Lindquist, Jamie N. Sutherland, Antoine Lesuffleur, Arthur E. Warrington, Moses Rodriguez, and Sang-Hyun Oh. 2009. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnology Journal 4 (11):1542–58. doi: 10.1002/biot.200900195.
  • McKeague, Maureen. 2017. Aptamers for DNA damage and repair. International Journal of Molecular Sciences 18 (10): 2212. doi: 10.3390/ijms18102212.
  • McKeague, Maureen, Erin M. McConnell, Jose Cruz-Toledo, Elyse D. Bernard, Amanda Pach, Emily Mastronardi, Xueru Zhang, Michael Beking, Tariq Francis, Amanda Giamberardino, et al. 2015. Analysis of in vitro aptamer selection parameters. Journal of Molecular Evolution 81 (5–6):150–61. doi: 10.1007/s00239-015-9708-6.
  • McKeague, Maureen, Ranganathan Velu, Kayla Hill, Viola Bardóczy, Tamás Mészáros, and Maria DeRosa. 2014. Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. Toxins 6 (8):2435–52. doi: 10.3390/toxins6082435.
  • Meisel, Hans. 1997. Biochemical properties of regulatory peptides derived from mil proteins. Biopolymers 43 (2):119–28. doi: 10.1002/(SICI)1097-0282(1997)43:2<119::AID-BIP4>3.0.CO;2-Y.
  • Meisel, Hans, and Richard J. FitzGerald. 2003. Biofunctional peptides from milk proteins: Mineral binding and cytomodulatory effects. Current Pharmaceutical Design 9 (16):1289–95. doi: 10.2174/1381612033454847.
  • Mohanty, D. P., S. Mohapatra, S. Misra, and P. S. Sahu. 2016. Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences 23 (5):577–83. doi: 10.1016/j.sjbs.2015.06.005.
  • Moskowitz, David W. 2002. Is ‘Somatic’ angiotensin I-converting enzyme a mechanosensor? Diabetes Technology & Therapeutics 4 (6):841–58. doi: 10.1089/152091502321118847.
  • Mukama, Omar, Jean Paul Sinumvayo, Muhammad Shamoon, Muhammad Shoaib, Henriette Mushimiyimana, Waseem Safdar, Leo Bemena, Peter Rwibasira, Samson Mugisha, and Zhouping Wang. 2017. An update on aptamer-based multiplex system approaches for the detection of common foodborne pathogens. Food Analytical Methods 10 (7):2549–65. doi: 10.1007/s12161-017-0814-5.
  • Nakamura, Yasunori, Naoyuki Yamamoto, Kumi Sakai, and Toshiaki Takano. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Journal of Dairy Science 78 (6):1253–7. doi: 10.3168/jds.S0022-0302(95)76745-5.
  • Ng-Kwai-Hang, K. F., H. G. Monardes, and J. F. Hayes. 1990. Association between genetic polymorphism of milk proteins and production traits during three lactations. Journal of Dairy Science 73 (12):3414–20. doi: 10.3168/jds.S0022-0302(90)79038-8.
  • Ngo, Dai-Hung, Thanh-Sang Vo, Dai-Nghiep Ngo, Isuru Wijesekara, and Se-Kwon Kim. 2012. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International Journal of Biological Macromolecules 51 (4):378–83. doi: 10.1016/j.ijbiomac.2012.06.001.
  • Nguyen, Duc Doan, Stuart Keith Johnson, Francesco Busetti, and Vicky Ann Solah. 2015. Formation and degradation of beta-casomorphins in dairy processing. Critical Reviews in Food Science and Nutrition 55 (14):1955–67. doi: 10.1080/10408398.2012.740102.
  • Nielsen, Søren Drud, Robert L. Beverly, Yunyao Qu, and David C. Dallas. 2017. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chemistry 232 :673–82. doi: 10.1016/j.foodchem.2017.04.056.
  • Nimjee, Shahid M., Rebekah R. White, Richard C. Becker, and Bruce A. Sullenger. 2017. Aptamers as therapeutics. Annual Review of Pharmacology and Toxicology 57 (1):61–79. doi: 10.1146/annurev-pharmtox-010716-104558.
  • Nongonierma, Alice B., and Richard J. FitzGerald. 2016. Learnings from quantitative structure–activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Advances 6 (79):75400–13. doi: 10.1039/C6RA12738J.
  • Nuijens, Jan H., Patrick H. C. van Berkel, and Floyd L. Schanbacher. 1996. Structure and biological actions of lactoferrin. Journal of Mammary Gland Biology and Neoplasia 1 (3):285–95. doi: 10.1007/BF02018081.
  • Obeng, Eugene M., Elvina C. Dullah, Michael K. Danquah, Cahyo Budiman, and Clarence M. Ongkudon. 2016. FRET spectroscopy—towards effective biomolecular probing. Analytical Methods 8 (27):5323–37. doi: 10.1039/C6AY00950F.
  • Orava, Erik W., Nenad Cicmil, and Jean Gariépy. 2010. Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochimica et Biophysica Acta (BBA) – Biomembranes 1798 (12):2190–200. doi: 10.1016/j.bbamem.2010.02.004.
  • Parashar, Abhishek. 2016. Aptamers in therapeutics. Journal of Clinical and Diagnostic Research 10 :BE01–BE06.
  • Parashar, Abhishek, Yudhishthir S. Rajput, and Rajan Sharma. 2015. Aptamer-based sensing of β-casomorphin-7. Journal of Agricultural and Food Chemistry 63 (10):2647–53. doi: 10.1021/acs.jafc.5b00007.
  • Parashar, Abhishek, and Ram Krishan Saini. 2015. A1 milk and its controversy-A review. International Journal of Bioassays 4.12 :4611–19.
  • Pripp, Are Hugo, Tomas Isaksson, Leszek Stepaniak, and Terje Sørhaug. 2004. Quantitative Structure-Activity relationship modelling of ACE-Inhibitory peptides derived from milk proteins. European Food Research and Technology 219 (6):579–83. doi: 10.1007/s00217-004-1004-4.
  • Qian, Zhong-Ji, Jae-Young Je, and Se-Kwon Kim. 2007. Antihypertensive effect of angiotensin I converting Enzyme-Inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus obesus. Journal of Agricultural and Food Chemistry 55 (21):8398–403. doi: 10.1021/jf0710635.
  • Radom, Filip, Przemysław M. Jurek, Maciej P. Mazurek, Jacek Otlewski, and Filip Jeleń. 2013. Aptamers: Molecules of great potential. Biotechnology Advances 31 (8):1260–74. doi: 10.1016/j.biotechadv.2013.04.007.
  • Reverdatto, Sergey, David Burz, and Alexander Shekhtman. 2015. Peptide aptamers: Development and applications. Current Topics in Medicinal Chemistry 15 (12):1082–101. doi: 10.2174/1568026615666150413153143.
  • Ricci-Cabello, Ignacio, Manuel Olalla Herrera, and Reyes Artacho. 2012. Possible role of Milk-Derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutrition Reviews 70 (4):241–55. doi: 10.1111/j.1753-4887.2011.00448.x.
  • Ruckman, Judy, Louis S. Green, Jim Beeson, Sheela Waugh, Wendy L. Gillette, Dwight D. Henninger, Lena Claesson-Welsh, and Nebojsa Janjic. 1998. 2′-Fluoropyrimidine RNA-Based aptamers to the 165-Amino acid form of vascular endothelial growth factor (VEGF165). Journal of Biological Chemistry 273 (32):20556–67. doi: 10.1074/jbc.273.32.20556.
  • Saitoh, Eiichi, Masayuki Taniguchi, Akihito Ochiai, Tetsuo Kato, Akane Imai, and Satoko Isemura. 2017. Bioactive peptides hidden in human salivary proteins. Journal of Oral Biosciences 59 (2):71–9. doi: 10.1016/j.job.2016.11.005.
  • Salamon, Zdzislaw, HAngus Macleod, and Gordon Tollin. 1997. Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. Biochimica et Biophysica Acta (BBA) – Reviews on Biomembranes 1331 (2):131–52. doi: 10.1016/S0304-4157(97)00003-8.
  • Santosh, Baby, and Pramod K. Yadava. 2014. Nucleic acid aptamers: Research tools in disease diagnostics and therapeutics. BioMed Research International 2014:1–13. doi: 10.1155/2014/540451.
  • Sarmadi, Bahareh H., and Amin Ismail. 2010. Antioxidative peptides from food proteins: A review. Peptides 31 (10):1949–56. doi: 10.1016/j.peptides.2010.06.020.
  • Schrader, Michael, Peter Schulz-Knappe, and Lloyd D. Fricker. 2014. Historical perspective of peptidomics. EuPA Open Proteomics 3 :171–82. doi: 10.1016/j.euprot.2014.02.014.
  • Sharma, Atul, Kotagiri Goud, Akhtar Hayat, Sunil Bhand, and Jean Marty. 2016. Recent advances in Electrochemical-Based sensing platforms for aflatoxins detection. Chemosensors 5 (1):1. doi: 10.3390/chemosensors5010001.
  • Sodhi, Monika, RanjitS. Kataria, Balwinder K. Joshii, Manishi Mukesh, and Bishnu P. Mishra. 2012. Milk proteins and human health: A1/A2 milk hypothesis. Indian Journal of Endocrinology and Metabolism 16 (5):856. doi: 10.4103/2230-8210.100685.
  • Song, Kyung-Mi, Seonghwan Lee, and Changill Ban. 2012. Aptamers and their biological applications. Sensors 12 (1):612–31. doi: 10.3390/s120100612.
  • Song, Ru, Rong-bian Wei, Hong-yu Luo, and Zui-su Yang. 2014. Isolation and identification of an antiproliferative peptide derived from heated products of peptic hydrolysates of Half-Fin anchovy (Setipinna taty). Journal of Functional Foods 10 (September):104–11. doi: 10.1016/j.jff.2014.06.010.
  • Song, Shiping, Lihua Wang, Jiang Li, Chunhai Fan, and Jianlong Zhao. 2008. Aptamer-based biosensors. TrAC Trends in Analytical Chemistry 27 (2):108–17. doi: 10.1016/j.trac.2007.12.004.
  • Stadtman, E. R., and R. L. Levine. 2003. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25 (3–4):207–18. doi: 10.1007/s00726-003-0011-2.
  • Suetsuna, Kunio, and Takahisa Nakano. 2000. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). The Journal of Nutritional Biochemistry 11 (9):450–4. doi: 10.1016/S0955-2863(00)00110-8.
  • Sun, Hongguang, and Youli Zu. 2015. A highlight of recent advances in aptamer technology and its application. Molecules 20 (7):11959–80. doi: 10.3390/molecules200711959.
  • Tabarzad, Maryam, and Marzieh Jafari. 2016. Trends in the design and development of specific aptamers against peptides and proteins. The Protein Journal 35 (2):81–99.
  • Tailford, K. 2003. A casein variant in cow’s milk is atherogenic. Atherosclerosis 170 (1):13–9. doi: 10.1016/S0021-9150(03)00131-X.
  • Tan, S. Y., C. Acquah, A. Sidhu, C. M. Ongkudon, L. S. Yon, and M. K. Danquah. 2016. SELEX modifications and bioanalytical techniques for aptamer–target binding characterization. Critical Reviews in Analytical Chemistry 46 (6): 521–37.
  • Tan, S. Y., C. Acquah, S. Y. Tan, C. M. Ongkudon, and M. K. Danquah. 2017. Characterisation of charge distribution and stability of aptamer-thrombin binding interaction. Process Biochemistry 60: 42–51. https://doi.org/10.1016/j.procbio.2017.06.003.
  • Teng, Jun, Fang Yuan, Yingwang Ye, Lei Zheng, Li Yao, Feng Xue, Wei Chen, and Baoguang Li. 2016. Aptamer-based technologies in foodborne pathogen detection. Frontiers in Microbiology 7: 1426.
  • Toh, Saw Yi, Marimuthu Citartan, Subash C. B. Gopinath, and Thean-Hock Tang. 2015. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosensors and Bioelectronics 64 (February): 392–403. doi: 10.1016/j.bios.2014.09.026.
  • Townshend, Brent, Isabelle Aubry, Richard C. Marcellus, Kalle Gehring, and Michel L. Tremblay. 2010. An RNA aptamer that selectively inhibits the enzymatic activity of protein tyrosine phosphatase 1B in vitro. ChemBioChem 11 (11):1583–93. doi: 10.1002/cbic.201000208.
  • Udenigwe, Chibuike C. 2014. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology 36 (2):137–43. doi: 10.1016/j.tifs.2014.02.004.
  • Udenigwe, Chibuike C., and Rotimi E. Aluko. 2012. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science 77 (1):R11–24. doi: 10.1111/j.1750-3841.2011.02455.x.
  • Udenigwe, Chibuike C., and Vincenzo Fogliano. 2017. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? Journal of Functional Foods 35 :9–12. doi: 10.1016/j.jff.2017.05.029.
  • van den Kieboom, Corné H., Samantha L. van der Beek, Tamás Mészáros, Róbert E. Gyurcsányi, Gerben Ferwerda, and Marien I. de Jonge. 2015. Aptasensors for viral diagnostics. TrAC Trends in Analytical Chemistry 74 :58–67. doi: 10.1016/j.trac.2015.05.012.
  • Vasilescu, Alina, Gilvanda Nunes, Akhtar Hayat, Usman Latif, and Jean-Louis Marty. 2016. Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors 16 (11):1863. doi: 10.3390/s16111863.
  • Vesely, Pavel. 2006. Molecular biology of the cell. By Bruce Alberts, Alexander Johnson, Julian Lewis, Martin raff, Keith Roberts and Peter Walter. ISBN 0-8153-3218-1; Hardback; 1,616 pages; $110.00 Garland Science Inc., New York, 2002. Scanning 26 (3):153. doi: 10.1002/sca.4950260309.
  • Walters, Mallory E., Ramak Esfandi, and Apollinaire Tsopmo. 2018. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods (Basel, Switzerland) 7 (10):172. doi: 10.3390/foods7100172.
  • Wang, Lijun, Ronghui Wang, Hua Wei, and Yanbin Li. 2018. Selection of aptamers against pathogenic bacteria and their diagnostics application. World Journal of Microbiology and Biotechnology 34 (10):149.
  • Wang, Zhujun, and Xuewu Zhang. 2017. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. Journal of the Science of Food and Agriculture 97 (3):918–22. doi: 10.1002/jsfa.7815.
  • WHO. 2001. “No Title.” International Programme on Chemical Safety Biomarkers in Risk Assessment: Validity and Validation. 2001. http://www.inchem.org/documents/ehc/ehc/ehc222.htm.
  • Wu, Yi Xi., and Young Jik Kwon. 2016. Aptamers: The ‘Evolution’ of SELEX. Methods 106 :21–8. doi: 10.1016/j.ymeth.2016.04.020.
  • Yang, Xi-Hui, Wei-Jun Kong, Mei-Hua Yang, Ming Zhao, and Zhen Ouyang. 2013. Application of aptamer identification technology in rapid analysis of mycotoxins. Chinese Journal of Analytical Chemistry 41 (2):297–306. doi: 10.1016/S1872-2040(13)60630-1.
  • Yang, Xianbin, Na Li, and David G. Gorenstein. 2011. Strategies for the discovery of therapeutic aptamers. Expert Opinion on Drug Discovery 6 (1):75–87. doi: 10.1517/17460441.2011.537321.
  • Yao, Shixiang, Dominic Agyei, and Chibuike C. Udenigwe. 2018. Structural basis of bioactivity of food peptides in promoting metabolic health. Advances in Food and Nutrition Research 84 :145–81.
  • Ye, Mao, Jun Hu, Minyuan Peng, Jing Liu, Jun Liu, Huixia Liu, Xielan Zhao, and Weihong Tan. 2012. Generating aptamers by Cell-SELEX for applications in molecular medicine. International Journal of Molecular Sciences 13 (3):3341–53. doi: 10.3390/ijms13033341.
  • Zhou, Zhizhi, Mingying Liu, and Jiahuan Jiang. 2018. The potential of aptamers for cancer research. Analytical Biochemistry 549 (May):91–5. doi: 10.1016/j.ab.2018.03.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.