3,028
Views
124
CrossRef citations to date
0
Altmetric
Reviews

Combination of emerging technologies for the extraction of bioactive compounds

, , , &

References

  • Adetunji, L. R., A. Adekunle, V. Orsat, and V. Raghavan. 2017. Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids. 62:239–50. doi: 10.1016/j.foodhyd.2016.08.015.
  • Aires, A. 2017. Phenolics in foods: Extraction, analysis and measurements. In Phenolic compounds: Natural sources, importance and applications. London, UK: InTech.
  • Ajila, C. M., S. K. Brar, M. Verma, R. D. Tyagi, and J. R. Valéro. 2011. Solid-state fermentation of apple pomace using Phanerocheate chrysosporium – Liberation and extraction of phenolic antioxidants. Food Chemistry. 126 (3):1071–80. doi: 10.1016/j.foodchem.2010.11.129.
  • Alexandru, L., G. Cravotto, L. Giordana, A. Binello, and F. Chemat. 2013. Ultrasound-assisted extraction of clove buds using batch-and flow-reactors: A comparative study on a pilot scale. Innovative Food Science & Emerging Technologies. 20:167–72. doi: 10.1016/j.ifset.2013.07.011.
  • Aliyu, M., and M. Hepher. 2000. Effects of ultrasound energy on degradation of cellulose material. Ultrasonics Sonochemistry. 7 (4):265–8. doi: 10.1016/S1350-4177(00)00052-3.
  • Alupului, A., I. Calinescu, and V. Lavric. 2012. Microwave extraction of active principles from medicinal plants. UPB Science Bulletin, Series B. 74:1454–2331.
  • Amiri-Rigi, A., S. Abbasi, and M. G. Scanlon. 2016. Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: Optimization of enzymatic and ultrasound pre-treatments. Innovative Food Science & Emerging Technologies. 35:160–7. doi: 10.1016/j.ifset.2016.05.004.
  • Asghari, J., B. Ondruschka, and M. Mazaheritehrani. 2011. Extraction of bioactive chemical compounds from the medicinal Asian plants by microwave irradiation. Journal of Medicinal Plants Research. 5:495–506.
  • Assami, K., D. Pingret, S. Chemat, B. Y. Meklati, and F. Chemat. 2012. Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. seeds. Chemical Engineering and Processing: Process Intensification. 62:99–105. doi: 10.1016/j.cep.2012.09.003.
  • Azmir, J., I. S. M. Zaidul, M. M. Rahman, K. M. Sharif, A. Mohamed, F. Sahena, M. H. A. Jahurul, K. Ghafoor, N. A. N. Norulaini, and A. K. M. Omar. 2013. Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering. 117 (4):426–36. doi: 10.1016/j.jfoodeng.2013.01.014.
  • Bagherian, H., F. Z. Ashtiani, A. Fouladitajar, and M. Mohtashamy. 2011. Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification. 50 (11-12):1237–43. doi: 10.1016/j.cep.2011.08.002.
  • Bracey, E., R. A. Stenning, and B. E. Brooker. 1998. Relating the microstructure of enzyme dispersions in organic solvents to their kinetic behavior. Enzyme and Microbial Technology. 22 (3):147–51. doi: 10.1016/S0141-0229(97)00138-5.
  • Capelo-Martínez, J.-L. 2009. Ultrasound in chemistry: Analytical applications. Hoboken, NJ: John Wiley & Sons.
  • Capelo, J., and A. Mota. 2005. Ultrasonication for analytical chemistry. Current Analytical Chemistry. 1 (2):193–201. doi: 10.2174/1573411054021619.
  • Chan, C.-H., R. Yusoff, G.-C. Ngoh, and F. W.-L. Kung. 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography. A. 1218 (37):6213–25. doi: 10.1016/j.chroma.2011.07.040.
  • Charoensiddhi, S., C. Franco, P. Su, and W. Zhang. 2015. Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. Journal of Applied Phycology. 27 (5):2049–58. doi: 10.1007/s10811-014-0476-2.
  • Chemat, F., and M. K. Khan. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry. 18:813–35.
  • Chemat, F., N. Rombaut, A.-G. Sicaire, A. Meullemiestre, A.-S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry. 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Chen, F., Q. Zhang, H. Gu, and L. Yang. 2016. An approach for extraction of kernel oil from Pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity. Journal of Chromatography A. 1471:68–79. doi: 10.1016/j.chroma.2016.10.037.
  • Chen, R., S. Li, C. Liu, S. Yang, and X. Li. 2012. Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves. Process Biochemistry. 47 (12):2040–50. doi: 10.1016/j.procbio.2012.07.022.
  • Chen, S., H. Chen, J. Tian, J. Wang, Y. Wang, and L. Xing. 2014. Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk. Carbohydrate Polymers. 101:332–41. doi: 10.1016/j.carbpol.2013.09.046.
  • Chen, Y., X. Gu, S.-Q. Huang, J. Li, X. Wang, and J. Tang. 2010. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities. International Journal of Biological Macromolecules. 46 (4):429–35. doi: 10.1016/j.ijbiomac.2010.02.003.
  • Cheng, X.-L., J.-Y. Wan, P. Li, and L.-W. Qi. 2011. Ultrasonic/microwave assisted extraction and diagnostic ion filtering strategy by liquid chromatography–quadrupole time-of-flight mass spectrometry for rapid characterization of flavonoids in Spatholobus suberectus. Journal of Chromatography A. 1218 (34):5774–86. doi: 10.1016/j.chroma.2011.06.091.
  • Cheng, Z., H. Song, Y. Yang, Y. Liu, Z. Liu, H. Hu, and Y. Zhang. 2015. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. International Journal of Biological Macromolecules. 76:161–8.
  • Choudhari, S. M., and L. Ananthanarayan. 2007. Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry. 102 (1):77–81. doi: 10.1016/j.foodchem.2006.04.031.
  • Cravotto, G., L. Boffa, S. Mantegna, P. Perego, M. Avogadro, and P. Cintas. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry. 15 (5):898–902. doi: 10.1016/j.ultsonch.2007.10.009.
  • Cravotto, G., and P. Cintas. 2007. The combined use of microwaves and ultrasound: Improved tools in process chemistry and organic synthesis. Chemistry - A European Journal. 13 (7):1902–9. doi: 10.1002/chem.200601845.
  • de Moura, J. N., K. Campbell, A. Mahfuz, S. Jung, C. E. Glatz, and L. Johnson. 2008. Enzyme-assisted aqueous extraction of oil and protein from soybeans and cream de-emulsification. Journal of the American Oil Chemists' Society. 85 (10):985–95. doi: 10.1007/s11746-008-1282-2.
  • Delgado, A. E., L. Y. Zheng and D.-W. Sun. 2009. Influence of Ultrasound on Freezing Rate of Immersion-frozen Apples. Food and Bioprocess Technology. 2 (3):263–270. doi: 10.1007/s11947-008-0111-9.
  • Dhobi, M., V. Mandal, and S. Hemalatha. 2009. Optimization of microwave assisted extraction of bioactive flavonolignan-silybinin. Journal of Chemical Metrology. 3:13.
  • Dominguez, H., M. Nunez, and J. Lema. 1995. Enzyme-assisted hexane extraction of soya bean oil. Food Chemistry. 54:223–31.
  • Gai, Q.-Y., J. Jiao, P.-S. Mu, W. Wang, M. Luo, C.-Y. Li, Y.-G. Zu, F.-Y. Wei, and Y.-J. Fu. 2013. Microwave-assisted aqueous enzymatic extraction of oil from Isatis indigotica seeds and its evaluation of physicochemical properties, fatty acid compositions and antioxidant activities. Industrial Crops and Products. 45:303–11. doi: 10.1016/j.indcrop.2012.12.050.
  • Galan, A.-M., I. Calinescu, A. Trifan, C. Winkworth-Smith, M. Calvo-Carrascal, C. Dodds, and E. Binner. 2017. New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chemical Engineering and Processing: Process Intensification. 116:29–39. doi: 10.1016/j.cep.2017.03.006.
  • Giacometti, J., D. Bursać Kovačević, P. Putnik, D. Gabrić, T. Bilušić, G. Krešić, V. Stulić, F. J. Barba, F. Chemat, G. Barbosa-Cánovas, and A. Režek Jambrak. 2018. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International. 113:245–62. doi: 10.1016/j.foodres.2018.06.036.
  • Gómez-García, R., G. C. Martínez-Ávila, and C. N. Aguilar. 2012. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) residues. 3 Biotech. 2 (4):297–300. doi: 10.1007/s13205-012-0055-7.
  • Haider, W., B. Sultana, M. Mushtaq, and I. A. Bhatti. 2018. Multi-response optimization of enzyme-assisted maceration to enhance the yield and antioxidant activity of Cassia fistula pods extracts. Journal of Food Measurement and Characterization. 12 (4):2685–94. doi: 10.1007/s11694-018-9886-1.
  • Hossain, M. B., N. P. Brunton, A. Patras, B. Tiwari, C. P. O’Donnell, A. B. Martin-Diana, and C. Barry-Ryan. 2012. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics Sonochemistry. 19 (3):582–90. doi: 10.1016/j.ultsonch.2011.11.001.
  • J. Mason, T., F. Chemat, and M. Vinatoru. 2011. The extraction of natural products using ultrasound or microwaves. Current Organic Chemistry. 15:237–47. doi: 10.2174/138527211793979871.
  • Jacotet-Navarro, M., N. Rombaut, A. S. Fabiano-Tixier, M. Danguien, A. Bily, and F. Chemat. 2015. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrasonics Sonochemistry. 27:102–9. doi: 10.1016/j.ultsonch.2015.05.006.
  • Jiao, J., Y.-J. Fu, Y.-G. ZU, M. Luo, W. Wang, L. Zhang, and J. Li. 2012. Enzyme-assisted microwave hydro-distillation essential oil from Fructus forsythia, chemical constituents, and its antimicrobial and antioxidant activities. Food Chemistry. 134 (1):235–43. doi: 10.1016/j.foodchem.2012.02.114.
  • Jiao, J., Z.-G. Li, Q.-Y. Gai, X.-J. Li, F.-Y. Wei, Y.-J. Fu, and W. Ma. 2014. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chemistry. 147:17–24. doi: 10.1016/j.foodchem.2013.09.079.
  • Kaderides, K., L. Papaoikonomou, M. Serafim, and A. M. Goula. 2019. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification. 137:1–11. doi: 10.1016/j.cep.2019.01.006.
  • Kaur, A., S. Singh, R. S. Singh, W. Schwarz, and M. Puri. 2010. Hydrolysis of citrus peel naringin by recombinant α‐L‐rhamnosidase from Clostridium stercorarium. Journal of Chemical Technology & Biotechnology. 85 (10):1419–22. doi: 10.1002/jctb.2433.
  • Kiani, H., D.-W. Sun and Z. Zhang. 2013. Effects of Processing Parameters on the Convective Heat Transfer Rate During Ultrasound Assisted Low Temperature Immersion Treatment of A Stationary Sphere. Journal of Food Engineering. 115 (3):384–390. doi: 10.1016/j.jfoodeng.2012.10.029.
  • Kiani, H., D.-W. Sun and Z. Zhang. 2012a. The Effect of Ultrasound Irradiation on the Convective Heat Transfer Rate During Immersion Cooling of A Stationary Sphere. Ultrasonics Sonochemistry. 19 (6):1238–1245. doi: 10.1016/j.ultsonch.2012.04.009.
  • Kiani, H., D.-W. Sun, A. Delgado and Z. Zhang. 2012b. Investigation of the Effect of Power Ultrasound on the Nucleation of Water during Freezing of Agar Gel Samples in Tubing Vials. Ultrasonics Sonochemistry. 19 (3):576–581. doi: 10.1016/j.ultsonch.2011.10.009.
  • Kiani, H., Z. Zhang, A. Delgado and D.-W. Sun. 2011. Ultrasound Assisted Nucleation of Some Liquid and Solid Model Foods during Freezing. Food Research International. 44 (9):2915–2921. doi: 10.1016/j.foodres.2011.06.051.
  • Ladole, M. R., R. R. Nair, Y. D. Bhutada, V. D. Amritkar, and A. B. Pandit. 2018. Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry. 48:453–62. doi: 10.1016/j.ultsonch.2018.06.013.
  • Laroze, L., C. Soto, and M. E. Zúñiga. 2010. Phenolic antioxidants extraction from raspberry wastes assisted by-enzymes. Electronic Journal of Biotechnology. 13 (6):0–12. doi: 10.2225/vol13-issue6-fulltext-12.
  • Li, B., and D.-W. Sun. 2002. Effect of Power Ultrasound on Freezing Rate during Immersion Freezing. Journal of Food Engineering. 55 (3):277–282. doi: 10.1016/S0260-8774(02)00102-4.
  • Li, J., Y.-G. ZU, M. Luo, C.-B. Gu, C.-J. Zhao, T. Efferth, and Y.-J. Fu. 2013. Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation. Food Chemistry. 138 (4):2152–8. doi: 10.1016/j.foodchem.2012.12.011.
  • Li, Y., Y. Zhang, X. Sui, Y. Zhang, H. Feng, and L. Jiang. 2014. Ultrasound-assisted aqueous enzymatic extraction of oil from perilla (Perilla frutescens L.) seeds. CyTA-Journal of Food. 12 (1):16–21. doi: 10.1080/19476337.2013.782070.
  • Lianfu, Z., and L. Zelong. 2008. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry. 15 (5):731–7. doi: 10.1016/j.ultsonch.2007.12.001.
  • Liew, S. Q., G. C. Ngoh, R. Yusoff, and W. H. Teoh. 2016. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International Journal of Biological Macromolecules. 93:426–35. doi: 10.1016/j.ijbiomac.2016.08.065.
  • Liu, Y., G. Gong, J. Zhang, S. Jia, F. Li, Y. Wang, and S. Wu. 2014. Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydrate Polymers. 110:278–84. doi: 10.1016/j.carbpol.2014.03.040.
  • Long, J.-J., Y.-J. Fu, Y.-G. ZU, J. Li, W. Wang, C.-B. Gu, and M. Luo. 2011. Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes. Bioresource Technology. 102 (21):9991–6. doi: 10.1016/j.biortech.2011.07.104.
  • Lou, Z., H. Wang, S. Zhu, S. Chen, M. Zhang, and Z. Wang. 2012. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Analytica Chimica Acta. 716:28–33.
  • Luo, X., R. Bai, D. Zhen, Z. Yang, D. Huang, H. Mao, X. Li, H. Zou, Y. Xiang, K. Liu., et al. 2019. Response surface optimization of the enzyme-based ultrasound-assisted extraction of acorn tannins and their corrosion inhibition properties. Industrial Crops and Products. 129:405–13. doi: 10.1016/j.indcrop.2018.12.029.
  • Mandal, V., Y. Mohan, and S. Hemalatha. 2007. Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews. 1:7–18.
  • Marathe, S. J., S. B. Jadhav, S. B. Bankar, K. Kumari Dubey, and R. S. Singhal. 2019. Improvements in the extraction of bioactive compounds by enzymes. Current Opinion in Food Science. 25:62–72. doi: 10.1016/j.cofs.2019.02.009.
  • Marić, M., A. N. Grassino, Z. Zhu, F. J. Barba, M. Brnčić, and S. Rimac Brnčić. 2018. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology. 76:28–37. doi: 10.1016/j.tifs.2018.03.022.
  • Mehmood, A., M. Ishaq, L. Zhao, S. Yaqoob, B. Safdar, M. Nadeem, M. Munir, and C. Wang. 2019. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrasonics Sonochemistry. 51:12–9. doi: 10.1016/j.ultsonch.2018.10.013.
  • Menezes Maciel Bindes, M., M. Hespanhol Miranda Reis, V. Luiz Cardoso, and D. C. Boffito. 2019. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrasonics Sonochemistry. 51:111–9. doi: 10.1016/j.ultsonch.2018.10.014.
  • Moreira, S. A., E. M. C. Alexandre, M. Pintado, and J. A. Saraiva. 2019. Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Research International. 115:177–90. doi: 10.1016/j.foodres.2018.08.046.
  • Nadar, S. S., P. Rao, and V. K. Rathod. 2018. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International. 108:309–30. doi: 10.1016/j.foodres.2018.03.006.
  • Nag, S., and N. Sit. 2018. Optimization of ultrasound assisted enzymatic extraction of polyphenols from pomegranate peels based on phytochemical content and antioxidant property. Journal of Food Measurement and Characterization. 12 (3):1734–43. doi: 10.1007/s11694-018-9788-2.
  • Nguyen, T., and V. Le. 2013. Effects of ultrasound on cellulolytic activity of cellulase complex. International Food Research Journal. 20:557–63.
  • Oh, M. J., J. Lee, S. Seo, S. Yoon, M. S. Seo, S. Y. Park, H.-S. Kim, D.-W. Ha, S. Lee, and Y. J. Jo. 2018. Vortex pinning in artificially layered Ba(Fe,Co)2As2 film. Cryogenics. 92:1–4. doi: 10.1016/j.cryogenics.2018.03.006.
  • Pan, Z., W. Qu, H. Ma, G. G. Atungulu, and T. H. Mchugh. 2011. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry. 18 (5):1249–57. doi: 10.1016/j.ultsonch.2011.01.005.
  • Passos, C. P., S. Yilmaz, C. M. Silva, and M. A. Coimbra. 2009. Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chemistry. 115 (1):48–53.
  • Peanparkdee, M., and S. Iwamoto. 2019. Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends in Food Science & Technology. 86:109–17. doi: 10.1016/j.tifs.2019.02.041.
  • Pereira, D. T. V., A. G. Tarone, C. B. B. Cazarin, G. F. Barbero, and J. Martínez. 2019. Pressurized liquid extraction of bioactive compounds from grape marc. Journal of Food Engineering. 240:105–13. doi: 10.1016/j.jfoodeng.2018.07.019.
  • Pettinato, M., A. A. Casazza, and P. Perego. 2019. The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. Food and Bioproducts Processing. 114:227–34. doi: 10.1016/j.fbp.2019.01.006.
  • Pimentel-Moral, S., I. Borrás-Linares, J. Lozano-Sánchez, D. Arráez-Román, A. Martínez-Férez, and A. Segura-Carretero. 2018. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. Journal of Pharmaceutical and Biomedical Analysis. 156:313–22. doi: 10.1016/j.jpba.2018.04.050.
  • Pimentel-Moral, S., I. Borrás-Linares, J. Lozano-Sánchez, D. Arráez-Román, A. Martínez-Férez, and A. Segura-Carretero. 2019. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. The Journal of Supercritical Fluids. 147:213–21. doi: 10.1016/j.supflu.2018.11.005.
  • Pingret, D., A. S. Fabiano-Tixier, and F. Chemat. 2013. Ultrasound-assisted extraction. Natural Product Extraction: Principles and Applications. 21:89.
  • Ptichkina, N., O. Markina, and G. Rumyantseva. 2008. Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocolloids. 22 (1):192–5. doi: 10.1016/j.foodhyd.2007.04.002.
  • Puri, M., A. Kaur, W. H. Schwarz, S. Singh, and J. Kennedy. 2011. Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. International Journal of Biological Macromolecules. 48 (1):58–62. doi: 10.1016/j.ijbiomac.2010.09.012.
  • Puri, M., D. Sharma, and C. J. Barrow. 2012. Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology. 30 (1):37–44. doi: 10.1016/j.tibtech.2011.06.014.
  • Putnik, P., Ž. Kresoja, T. Bosiljkov, A. Režek Jambrak, F. J. Barba, J. M. Lorenzo, S. Roohinejad, D. Granato, I. Žuntar, and D. Bursać Kovačević. 2019. Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemistry. 279:150–61. doi: 10.1016/j.foodchem.2018.11.131.
  • Putnik, P., J. M. Lorenzo, F. J. Barba, S. Roohinejad, A. Režek Jambrak, D. Granato, D. Montesano, and D. Bursać Kovačević. 2018. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods. 7 (7):106. doi: 10.3390/foods7070106.
  • Redondo, D., M. E. Venturini, E. Luengo, J. Raso, and E. Arias. 2018. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science & Emerging Technologies. 45:335–43. doi: 10.1016/j.ifset.2017.12.004.
  • Rodsamran, P., and R. Sothornvit. 2019. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Bioscience. 28:66–73. doi: 10.1016/j.fbio.2019.01.017.
  • Rostagno, M. A., and J. M. Prado. 2013. Natural product extraction: Principles and applications. London, UK: Royal Society of Chemistry.
  • Sánchez-Madrigal, M. Á., S. L. Viesca-Nevárez, A. Quintero-Ramos, C. A. Amaya-Guerra, C. O. Meléndez-Pizarro, J. C. Contreras-Esquivel, and R. Talamás-Abbud. 2018. Optimization of the enzyme-assisted extraction of fructans from the wild sotol plant (Dasylirion wheeleri). Food Bioscience. 22:59–68. doi: 10.1016/j.fbio.2018.01.008.
  • Sereshti, H., R. Heidari, and S. Samadi. 2014. Determination of volatile components of saffron by optimised ultrasound-assisted extraction in tandem with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Food Chemistry. 143:499–505. doi: 10.1016/j.foodchem.2013.08.024.
  • Setyaningsih, W., I. E. Saputro, C. A. Carrera, and M. Palma. 2019. Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry. 288:221–7. doi: 10.1016/j.foodchem.2019.02.107.
  • Sharayei, P., E. Azarpazhooh, S. Zomorodi, and H. S. Ramaswamy. 2019. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT. 101:342–50. doi: 10.1016/j.lwt.2018.11.031.
  • Shirsath, S., S. Sonawane, and P. Gogate. 2012. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chemical Engineering and Processing: Process Intensification. 53:10–23. doi: 10.1016/j.cep.2012.01.003.
  • Shu, Y. Y., M. Y. Ko, and Y. S. Chang. 2003. Microwave-assisted extraction of ginsenosides from ginseng root. Microchemical Journal. 74 (2):131–9. doi: 10.1016/S0026-265X(02)00180-7.
  • Singh, A., G. R. Nair, P. Liplap, Y. Gariepy, V. Orsat, and V. Raghavan. 2014. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels. Antioxidants. 3 (1):99–113. doi: 10.3390/antiox3010099.
  • Song, J., Q. Yang, W. Huang, Y. Xiao, D. Li, and C. Liu. 2018. Optimization of trans lutein from pumpkin (Cucurbita moschata) peel by ultrasound-assisted extraction. Food and Bioproducts Processing. 107:104–12. doi: 10.1016/j.fbp.2017.10.008.
  • Sun, D.-W., and B. Li. 2003. Microstructural Change of Potato Tissues Frozen by Ultrasound-Assisted Immersion Freezing. Journal of Food Engineering. 57 (4):337–345. doi: 10.1016/S0260-8774(02)00354-0.
  • Sun, H., C. Li, Y. Ni, L. Yao, H. Jiang, X. Ren, Y. Fu, and C. Zhao. 2019. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity. Carbohydrate Polymers. 206:557–64. doi: 10.1016/j.carbpol.2018.11.010.
  • Tao, Y., and D.-W. Sun. 2015. Enhancement of Food Processes by Ultrasound: A Review. Critical Reviews in Food Science and Nutrition. 55 (4):570–594. doi: 10.1080/10408398.2012.667849.
  • Tao, Y., Z. Zhang and D.-W. Sun. 2014a. Experimental and Modeling Studies of Ultrasound-Assisted Release of Phenolics from Oak Chips into Model Wine. Ultrasonics Sonochemistry. 21 (5):1839–1848. doi: 10.1016/j.ultsonch.2014.03.016.
  • Tao, Y., Z. Zhang and D.-W. Sun. 2014b. Kinetic Modeling of Ultrasound-Assisted Extraction of Phenolic Compounds from Grape Marc: Influence of Acoustic Energy Density and Temperature. Ultrasonics Sonochemistry. 21 (4):1461–1469. doi: 10.1016/j.ultsonch.2014.01.029.
  • Tao, Y., D. Wu, Q.-A. Zhang and D.-W. Sun. 2014c. Ultrasound-Assisted Extraction of Phenolics from Wine Lees: Modeling, Optimization and Stability of Extracts during Storage. Ultrasonics Sonochemistry. 21 (2):706–715. doi: 10.1016/j.ultsonch.2013.09.005.
  • Tchabo, W., Y. Ma, F. N. Engmann, and H. Zhang. 2015. Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Industrial Crops and Products. 63:214–25. doi: 10.1016/j.indcrop.2014.09.053.
  • Tiwari, B. K. 2015. Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry. 71:100–9. doi: 10.1016/j.trac.2015.04.013.
  • Vázquez, M. B., L. R. Comini, R. E. Martini, S. N. Montoya, S. Bottini, and J. L. Cabrera. 2014. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrasonics Sonochemistry. 21:478–84. doi: 10.1016/j.ultsonch.2013.08.023.
  • Vilkhu, K., R. Mawson, L. Simons, and D. Bates. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innovative Food Science & Emerging Technologies. 9:161–9. doi: 10.1016/j.ifset.2007.04.014.
  • Vinatoru, M., T. J. Mason, and I. Calinescu. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry. 97:159–78. doi: 10.1016/j.trac.2017.09.002.
  • Wang, J., B. Sun, Y. Liu, and H. Zhang. 2014. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chemistry. 150:482–8. doi: 10.1016/j.foodchem.2013.10.121.
  • Wang, L., and C. L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology. 17:300–12. doi: 10.1016/j.tifs.2005.12.004.
  • Wen, C., J. Zhang, H. Zhang, C. S. Dzah, M. Zandile, Y. Duan, H. Ma, and X. Luo. 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry. 48:538–49. doi: 10.1016/j.ultsonch.2018.07.018.
  • Wijesinghe, W. A. J. P., and Y.-J. Jeon. 2012. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia. 83 (1):6–12. doi: 10.1016/j.fitote.2011.10.016.
  • Wu, D., T. Gao, H. Yang, Y. Du, C. Li, L. Wei, T. Zhou, J. Lu, and H. Bi. 2015. Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from Nitraria tangutorun Bobr. juice by-products. Industrial Crops and Products. 66:229–38.
  • Wu, H., J. Zhu, W. Diao, and C. Wang. 2014. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydrate Polymers. 113:314–24. doi: 10.1016/j.carbpol.2014.07.025.
  • Xu, Y., L. Zhang, Y. Yang, X. Song, and Z. Yu. 2015. Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant. Carbohydrate Polymers. 117:895–902. doi: 10.1016/j.carbpol.2014.10.032.
  • Yang, J.-S., T.-H. Mu, and M.-M. Ma. 2019. Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chemistry. 289:351–9.
  • Yang, Y.-C., J. Li, Y.-G. ZU, Y.-J. Fu, M. Luo, N. Wu, and X.-L. Liu. 2010. Optimisation of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chemistry. 122 (1):373–80. doi: 10.1016/j.foodchem.2010.02.061.
  • Yin, C., X. Fan, Z. Fan, D. Shi, and H. Gao. 2018. Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity. International Journal of Biological Macromolecules. 111:446–54. doi: 10.1016/j.ijbiomac.2018.01.007.
  • Zhang, G., M. Hu, L. He, P. Fu, L. Wang, and J. Zhou. 2013. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food and Bioproducts Processing. 91 (2):158–68. doi: 10.1016/j.fbp.2012.09.003.
  • Zhang, L., S. Guo, M. Wang, and L. He. 2015. PEG-based ultrasound-assisted enzymatic extraction of polysaccharides from Ginkgo biloba leaves. International Journal of Biological Macromolecules. 80:644–50. doi: 10.1016/j.ijbiomac.2015.07.023.
  • Zheng, L. Y., and D.-W. Sun. 2006. Innovative Applications of Power Ultrasound during Food Freezing Processes - A Review. Trends in Food Science & Technology. 17 (1):16–23. doi: 10.1016/j.tifs.2005.08.010.
  • Zhu, Z., S. Li, J. He, R. Thirumdas, D. Montesano, and F. J. Barba. 2018. Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS2 profile. Food Research International. 111:291–8.
  • Zhu, Z., Z. Chen, Q. Zhou and D.-W. Sun. 2018a. Freezing Efficiency and Quality Attributes as Affected by Voids in Plant Tissues during Ultrasound-Assisted Immersion Freezing. Food and Bioprocess Technology. 11(9):1615–1626. doi: 10.1007/s11947-018-2103-8.
  • Zhu, Z., D.-W. Sun, Z. Zhang, Y. Li and L. Cheng. 2018b. Effects of Micro-Nano Bubbles on the Nucleation and Crystal Growth of Sucrose and Maltodextrin Solutions during Ultrasound-Assisted Freezing Process. LWT - Food Science and Technology. 92:404–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.