3,644
Views
110
CrossRef citations to date
0
Altmetric
Reviews

Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review

, , , , , ORCID Icon & show all

References

  • Adhikari, A., R. M. Syamaladevi, K. Killinger, and S. S. Sablani. 2015. Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces. International Journal of Food Microbiology 210:136–42. doi: 10.1016/j.ijfoodmicro.2015.06.018.
  • Afari, G. K., Y. C. Hung, C. H. King, and A. Hu. 2016. Reduction of Escherichia coli O157: H7 and salmonella typhimurium DT 104 on fresh produce using an automated washer with near neutral electrolyzed (NEO) water and ultrasound. Food Control 63:246–54. doi: 10.1016/j.foodcont.2015.11.038.
  • Agriopoulou, S., A. Koliadima, G. Karaiskakis, and J. Kapolos. 2016. Kinetic study of aflatoxins' degradation in the presence of ozone. Food Control 61:221–6. doi: 10.1016/j.foodcont.2015.09.013.
  • Agüero, M. V., R. J. Jagus, O. Martín-Belloso, and R. Soliva-Fortuny. 2016. Surface decontamination of spinach by intense pulsed light treatments: Impact on quality attributes. Postharvest Biology and Technology 121:118–25. doi: 10.1016/j.postharvbio.2016.07.018.
  • Aguiló-Aguayo, I., F. Charles, C. M. Renard, D. Page, and F. Carlin. 2013. Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology 86:29–36. doi: 10.1016/j.postharvbio.2013.06.011.
  • Al-Rousan, W. M., A. N. Olaimat, T. M. Osaili, A. A. Al-Nabulsi, R. Y. Ajo, and R. A. Holley. 2018. Use of acetic and citric acids to inhibit Escherichia coli O157: H7, salmonella typhimurium and Staphylococcus aureus in tabbouleh salad. Food Microbiology 73:61–6. doi: 10.1016/j.fm.2018.01.001.
  • Alwi, N. A., and A. Ali. 2014. Reduction of Escherichia coli O157, Listeria monocytogenes and Salmonella enterica sv. Typhimurium populations on fresh-cut bell pepper using gaseous ozone. Food Control 46:304–11. doi: 10.1016/j.foodcont.2014.05.037.
  • Arjunan, K., V. Sharma, and S. Ptasinska. 2015. Effects of atmospheric pressure plasmas on isolated and cellular DNA—a review. International Journal of Molecular Sciences 16 (2):2971–3016. doi: 10.3390/ijms16022971.
  • Baier, M., J. Foerster, U. Schnabel, D. Knorr, J. Ehlbeck, W. B. Herppich, and O. Schlüter. 2013. Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biology and Technology 84:81–7. doi: 10.1016/j.postharvbio.2013.03.022.
  • Bao, R., A. Fan, X. Hu, X. Liao, and F. Chen. 2016. Effects of high pressure processing on the quality of pickled radish during refrigerated storage. Innovative Food Science & Emerging Technologies 38:206–12. doi: 10.1016/j.ifset.2016.10.009.
  • Baptista, I., R. P. Queirós, Â. Cunha, S. M. Rocha, J. A. Saraiva, and A. Almeida. 2015. Evaluation of resistance development and viability recovery by toxigenic and non-toxigenic Staphylococcus aureus strains after repeated cycles of high hydrostatic pressure. Food Microbiology 46:515–20. doi: 10.1016/j.fm.2014.09.016.
  • Bárdos, L., and H. Baránková. 2010. Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Films 518 (23):6705–13. doi: 10.1016/j.tsf.2010.07.044.
  • Beristaín-Bauza, S., A. Martínez-Niño, A. P. Ramírez-González, R. Ávila-Sosa, H. Ruíz-Espinosa, I. I. Ruiz-López, and C. E. Ochoa-Velasco. 2018. Inhibition of salmonella typhimurium growth in coconut (cocos nucifera L.) water by hurdle technology. Food Control 92:312–8. doi: 10.1016/j.foodcont.2018.05.010.
  • Bermúdez-Aguirre, D., and G. V. Barbosa-Cánovas. 2013. Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control 29 (1):82–90. doi: 10.1016/j.foodcont.2012.05.073.
  • Bermúdez-Aguirre, D., E. Wemlinger, P. Pedrow, G. Barbosa-Cánovas, and M. Garcia-Perez. 2013. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 34 (1):149–57. doi: 10.1016/j.foodcont.2013.04.022.
  • Bhargava, K., D. S. Conti, S. R. da Rocha, and Y. Zhang. 2015. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiology 47:69–73. doi: 10.1016/j.fm.2014.11.007.
  • Bi, X., J. Wu, Y. Zhang, Z. Xu, and X. Liao. 2011. High pressure carbon dioxide treatment for fresh-cut carrot slices. Innovative Food Science & Emerging Technologies 12 (3):298–304. doi: 10.1016/j.ifset.2011.04.001.
  • Bialka, K. L., and A. Demirci. 2008. Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. Journal of Food Science 73 (5):M201–M207. doi: 10.1111/j.1750-3841.2008.00743.x.
  • Bilek, S. E., and F. Turantaş. 2013. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. International Journal of Food Microbiology 166 (1):155–62. doi: 10.1016/j.ijfoodmicro.2013.06.028.
  • Botondi, R., F. De Sanctis, N. Moscatelli, A. M. Vettraino, C. Catelli, and F. Mencarelli. 2015. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chemistry 188:641–7. doi: 10.1016/j.foodchem.2015.05.029.
  • Bridges, D. F., B. Rane, and V. C. Wu. 2018. The effectiveness of closed-circulation gaseous chlorine dioxide or ozone treatment against bacterial pathogens on produce. Food Control 91:261–7. doi: 10.1016/j.foodcont.2018.04.004.
  • Brodowska, A. J., A. Nowak, and K. Śmigielski. 2018. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: an overview. Critical Reviews in Food Science and Nutrition 58 (13):2176–201. doi: 10.1080/10408398.2017.1308313.
  • Brodowska, A. J., K. Śmigielski, A. Nowak, A. Czyżowska, and A. Otlewska. 2015. The impact of ozone treatment in dynamic bed parameters on changes in biologically active substances of juniper berries. PLoS One 10 (12):e0144855. doi: 10.1371/journal.pone.0144855.
  • Center for Science in Public Interest (CSPI) 2015. A review of foodborne illness in the U.S. From 2004–2013. Outbreak Alert! http://cspinet.org/reports/outbreak-alert-2015.pdf/, Accessed 26th Feb 2018.
  • Centers for Disease Control and Prevention (CDC) 2017. Foodborne germs and illnesses. Available at https://www.cdc.gov/foodsafety/foodborne-germs.html, Accessed date: 19 January 2017.
  • Chen, C., W. Hu, Y. He, A. Jiang, and R. Zhang. 2016. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology 111:126–31. doi: 10.1016/j.postharvbio.2015.08.005.
  • Chen, S., H. Wang, R. Wang, Q. Fu, and W. Zhang. 2018. Effect of gaseous chlorine dioxide (ClO2) with different concentrations and numbers of treatments on controlling berry decay and rachis browning of table grape. Journal of Food Processing and Preservation 42 (7):e13662. doi: 10.1111/jfpp.13662.
  • Chen, X., S. J. Xue, J. Shi, M. Kostrzynska, J. Tang, E. Guévremont, S. Villeneuve, and M. Mondor. 2018. Red cabbage washing with acidic electrolyzed water: effects on microbiological and physicochemical properties. Food Quality and Safety 2:229–237 doi: 10.20944/preprints201808.0470.v1.
  • Chen, H., Y. Zhang, and Q. Zhong. 2019a. Potential of acidified sodium benzoate as an alternative wash solution of cherry tomatoes: Changes of quality, background microbes, and inoculated pathogens during storage at 4 and 21° C post-washing. Food Microbiology 82:111–8. doi: 10.1016/j.fm.2019.01.013.
  • Chen, L., H. Zhang, Q. Liu, X. Pang, X. Zhao, and H. Yang. 2019b. Sanitising efficacy of lactic acid combined with low-concentration sodium hypochlorite on Listeria innocua in organic broccoli sprouts. International Journal of Food Microbiology 295:41–8. doi: 10.1016/j.ijfoodmicro.2019.02.014.
  • Chomkitichai, W., A. Chumyam, P. Rachtanapun, J. Uthaibutra, and K. Saengnil. 2014. Reduction of reactive oxygen species production and membrane damage during storage of ‘daw’ longan fruit by chlorine dioxide. Scientia Horticulturae 170:143–9. doi: 10.1016/j.scienta.2014.02.036.
  • Clark, M., J. Hill, and D. Tilman. 2018. The diet, health, and environment trilemma. Annual Review of Environment and Resources 43 (1):109–34. doi: 10.1146/annurev-environ-102017-025957.
  • Critzer, F. J., K. Kelly-Wintenberg, S. L. South, and D. A. Golden. 2007. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. Journal of Food Protection 70 (10):2290–6. doi: 10.4315/0362-028X-70.10.2290.
  • Daş, E., G. C. Gürakan, and A. Bayındırlı. 2006. Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella Enteritidis on cherry tomatoes. Food Microbiology 23 (5):430–8. doi: 10.1016/j.fm.2005.08.002.
  • David, T., and C. Michael. 2014. Global diets link environmental sustainability and human health. Nature 515 (7528):518–22.
  • de Oliveira, K. Á. R., L. R. R. Berger, S. A. de Araújo, M. P. S. Câmara, and E. L. de Souza. 2017. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit colletotrichum species and anthracnose development in mango cultivar tommy atkins. Food Microbiology 66:96–103. doi: 10.1016/j.fm.2017.04.012.
  • Deng, L. Z., A. S. Mujumdar, Q. Zhang, X. H. Yang, J. Wang, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32.
  • Di Pasqua, R., G. Mauriello, G. Mamone, and D. Ercolini. 2013. Expression of DnaK, HtpG, GroEL and Tf chaperones and the corresponding encoding genes during growth of Salmonella Thompson in presence of thymol alone or in combination with salt and cold stress. Food Research International 52 (1):153–9. doi: 10.1016/j.foodres.2013.02.050.
  • Dong, P., M. Kong, J. Yao, Y. Zhang, X. Liao, X. Hu, and Y. Zhang. 2013. The effect of high hydrostatic pressure on the microbiological quality and physicochemical properties of lotus root during refrigerated storage. Innovative Food Science & Emerging Technologies 19:79–84. doi: 10.1016/j.ifset.2013.03.004.
  • Donsì, F., E. Marchese, P. Maresca, G. Pataro, K. D. Vu, S. Salmieri, M. Lacroix, and G. Ferrari. 2015. Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biology and Technology 106:21–32. doi: 10.1016/j.postharvbio.2015.02.006.
  • ERCO 2012. Chlorine dioxide solution whims controlled product – Material Safety Data Sheet. http://www.ercoworldwide.com/wp-content/uploads/MSDS-Chlorine-Dioxide-Solution-Rev-1.pdf. Accessed May 23, 2019.
  • Fernandes, P. M., T. Domitrovic, C. M. Kao, and E. Kurtenbach. 2004. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Letters 556 (1-3):153–60. doi: 10.1016/S0014-5793(03)01396-6.
  • Fernández, A., E. Noriega, and A. Thompson. 2013. Inactivation of Salmonella enterica serovar typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology 33 (1):24–9. doi: 10.1016/j.fm.2012.08.007.
  • Ferrentino, G., N. Calliari, A. Bertucco, and S. Spilimbergo. 2014. Validation of a mathematical model for predicting high pressure carbon dioxide inactivation kinetics of Escherichia coli spiked on fresh cut carrot. The Journal of Supercritical Fluids 85:17–23. doi: 10.1016/j.supflu.2013.10.015.
  • Ferrentino, G., D. Komes, and S. Spilimbergo. 2015. High-power ultrasound assisted high-pressure carbon dioxide pasteurization of fresh-cut coconut: a microbial and physicochemical study. Food and Bioprocess Technology 8 (12):2368–82. doi: 10.1007/s11947-015-1582-0.
  • Ferrentino, G., and S. Spilimbergo. 2011. High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks. Trends in Food Science & Technology 22 (8):427–41. doi: 10.1016/j.tifs.2011.04.009.
  • Fischer, G. 2018. Transforming the global food system. Nature 562 (7728):501–2. doi: 10.1038/d41586-018-07094-6.
  • Foley, J. A., N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O'Connell, D. K. Ray, P. C. West, et al. 2011. Solutions for a cultivated planet. Nature 478 (7369):337–42., doi: 10.1038/nature10452.
  • Food Drug Admin (FDA) 1996. Code of Federal Regulations. 21CFR179.41. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.41.
  • Garcia, A., J. R. Mount, and P. M. Davidson. 2003. Ozone and chlorine treatment of minimally processed lettuce. Journal of Food Science 68 (9):2747–51. doi: 10.1111/j.1365-2621.2003.tb05799.x.
  • García, S., and N. Heredia. 2017. Microbiological safety of fruit and vegetables in the field, during harvest, and packaging: A global issue. In Global food security and wellness, 27–48. New York, NY: Springer.
  • Garcia-Gonzalez, L., A. H. Geeraerd, S. Spilimbergo, K. Elst, L. Van Ginneken, J. Debevere, J. F. Van Impe, and F. Devlieghere. 2007. High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. International Journal of Food Microbiology 117 (1):1–28. doi: 10.1016/j.ijfoodmicro.2007.02.018.
  • Gayán, E., S. Condón, and I. Álvarez. 2014. Biological aspects in food preservation by ultraviolet light: a review. Food and Bioprocess Technology 7 (1):1–20. doi: 10.1007/s11947-013-1168-7.
  • Gil, M. I., M. V. Selma, F. López-Gálvez, and A. Allende. 2009. Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology 134 (1-2):37–45. doi: 10.1016/j.ijfoodmicro.2009.05.021.
  • Gomes, C., R. G. Moreira, and E. Castell‐Perez. 2011. Radiosensitization of salmonella spp. and listeria spp. in ready-to-eat baby spinach leaves. Journal of Food Science 76 (1):E141–E148. doi: 10.1111/j.1750-3841.2010.01904.x.
  • Gómez-López, V. M., M. I. Gil, and A. Allende. 2017. A novel electrochemical device as a disinfection system to maintain water quality during washing of ready to eat fresh produce. Food Control 71:242–7. doi: 10.1016/j.foodcont.2016.07.001.
  • Gómez-López, V. M., P. Ragaert, J. Debevere, and F. Devlieghere. 2007. Pulsed light for food decontamination: a review. Trends in Food Science & Technology 18 (9):464–73. doi: 10.1016/j.tifs.2007.03.010.
  • Gómez, P. L., D. M. Salvatori, A. García-Loredo, and S. M. Alzamora. 2012. Pulsed light treatment of cut apple: dose effect on color, structure, and microbiological stability. Food and Bioprocess Technology 5 (6):2311–22. doi: 10.1007/s11947-011-0598-3.
  • Gómez, P. L., J. Welti-Chanes, and S. M. Alzamora. 2011. Hurdle technology in fruit processing. Annual Review of Food Science and Technology 2 (1):447–65. doi: 10.1146/annurev-food-022510-133619.
  • Goodburn, C., and C. A. Wallace. 2013. The microbiological efficacy of decontamination methodologies for fresh produce: a review. Food Control 32 (2):418–27. doi: 10.1016/j.foodcont.2012.12.012.
  • Graça, A., D. Santo, C. Quintas, and C. Nunes. 2017. Growth of Escherichia coli, Salmonella enterica and listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘rocha’ fresh-cut pears. Food Control 77:41–9. doi: 10.1016/j.foodcont.2017.01.017.
  • Gu, B., X. Zhang, X. Bai, B. Fu, and D. Chen. 2019. Four steps to food security for swelling cities. Nature 566 (7742):31–3. doi: 10.1038/d41586-019-00407-3.
  • Gupta, S., S. Chatterjee, J. Vaishnav, V. Kumar, P. S. Variyar, and A. Sharma. 2012. Hurdle technology for shelf stable minimally processed french beans (Phaseolus vulgaris): a response surface methodology approach. Lwt - Food Science and Technology 48 (2):182–9. doi: 10.1016/j.lwt.2012.03.010.
  • Han, Y., R. H. Linton, S. S. Nielsen, and P. E. Nelson. 2001. Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7 °C. Journal of Food Protection 64 (11):1730–8. doi: 10.4315/0362-028X-64.11.1730.
  • Hao, J., H. Li, Y. Wan, and H. Liu. 2015. Combined effect of acidic electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW) on the microbial reduction of fresh-cut cilantro. Food Control 50:699–704. doi: 10.1016/j.foodcont.2014.09.027.
  • Hati, S., S. Mandal, P. S. Minz, S. Vij, Y. Khetra, B. P. Singh, and D. Yadav. 2012. Electrolyzed oxidized water (EOW): non-thermal approach for decontamination of food borne microorganisms in food industry. Food and Nutrition Sciences 03 (06):760. doi: 10.4236/fns.2012.36102.
  • Helander, I. M., H. L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E. J. Smid, L. G. M. Gorris, and A. von Wright. 1998. Characterization of the action of selected essential oil components on gram-negative bacteria. Journal of Agricultural and Food Chemistry 46 (9):3590–5. doi: 10.1021/jf980154m.
  • Hertwig, C., N. Meneses, and A. Mathys. 2018. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends in Food Science & Technology 77:131–42. doi: 10.1016/j.tifs.2018.05.011.
  • Horvitz, S., and M. J. Cantalejo. 2014. Application of ozone for the postharvest treatment of fruits and vegetables. Critical Reviews in Food Science and Nutrition 54 (3):312–39.
  • Huang, Y., and H. Chen. 2014. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiology 40:1–8. doi: 10.1016/j.fm.2013.11.017.
  • Huang, K., S. Wrenn, R. Tikekar, and N. Nitin. 2018. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. Journal of Food Engineering 224:95–104. doi: 10.1016/j.jfoodeng.2017.11.043.
  • Huang, H. W., S. J. Wu, J. K. Lu, Y. T. Shyu, and C. Y. Wang. 2017. Current status and future trends of high-pressure processing in food industry. Food Control 72:1–8. doi: 10.1016/j.foodcont.2016.07.019.
  • Hwang, H. J., C. I. Cheigh, and M. S. Chung. 2017. Construction of a pilot-scale continuous-flow intense pulsed light system and its efficacy in sterilizing sesame seeds. Innovative Food Science & Emerging Technologies 39:1–6. doi: 10.1016/j.ifset.2016.10.017.
  • Ignat, A., L. Manzocco, M. Maifreni, I. Bartolomeoli, and M. C. Nicoli. 2014. Surface decontamination of fresh-cut apple by pulsed light: effects on structure, colour and sensory properties. Postharvest Biology and Technology 91:122–7. doi: 10.1016/j.postharvbio.2014.01.005.
  • Isman, B., and H. Biyik. 2009. The aflatoxin contamination of fig fruits in aydin city (Turkey). Journal of Food Safety 29 (2):318–30. doi: 10.1111/j.1745-4565.2009.00159.x.
  • Issa-Zacharia, A., Y. Kamitani, N. Miwa, H. Muhimbula, and K. Iwasaki. 2011. Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22 (3-4):601–607. doi: 10.1016/j.foodcont.2010.10.011.
  • Jeong, J., J. Y. Kim, and J. Yoon. 2006. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environmental Science & Technology 40 (19):6117–22. doi: 10.1021/es0604313.
  • Jiang, T., S. Luo, Q. Chen, L. Shen, and T. Ying. 2010. Effect of integrated application of gamma irradiation and modified atmosphere packaging on physicochemical and microbiological properties of shiitake mushroom (Lentinus edodes). Food Chemistry 122 (3):761–7. doi: 10.1016/j.foodchem.2010.03.050.
  • Joshi, B., R. G. Moreira, B. Omac, and M. E. Castell-Perez. 2018. A process to decontaminate sliced fresh cucumber (Cucumis sativus) using electron beam irradiation. Lwt 91:95–101. doi: 10.1016/j.lwt.2018.01.034.
  • Kang, J. H., and K. B. Song. 2018. Inhibitory effect of plant essential oil nanoemulsions against Listeria monocytogenes, Escherichia coli O157: H7, and salmonella typhimurium on red mustard leaves. Innovative Food Science & Emerging Technologies 45:447–54. doi: 10.1016/j.ifset.2017.09.019.
  • Keklik, N. M., K. Krishnamurthy, and A. Demirci. 2012. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In Microbial decontamination in the food industry, 344–69. Sawston: Woodhead Publishing.
  • Khadre, M. A., A. E. Yousef, and J. G. Kim. 2001. Microbiological aspects of ozone applications in food: a review. Journal of Food Science 66 (9):1242–52. doi: 10.1111/j.1365-2621.2001.tb15196.x.
  • Khalili, R., N. Ayoobian, M. Jafarpour, and B. Shirani. 2017. The effect of gamma irradiation on the properties of cucumber. Journal of Food Science and Technology 54 (13):4277–83. doi: 10.1007/s13197-017-2899-7.
  • Khan, I., C. N. Tango, S. Miskeen, B. H. Lee, and D. H. Oh. 2017. Hurdle technology: a novel approach for enhanced food quality and safety—a review. Food Control 73:1426–44. doi: 10.1016/j.foodcont.2016.11.010.
  • Kim, S. Y., D. H. Kang, J. K. Kim, Y. G. Ha, J. Y. Hwang, T. Kim, and S. H. Lee. 2011. Antimicrobial activity of plant extracts against salmonella typhimurium, Escherichia coli O157: H7, and Listeria monocytogenes on fresh lettuce. Journal of Food Science 76 (1):M41–M46. doi: 10.1111/j.1750-3841.2010.01926.x.
  • Kim, S., H. Lee, J. H. Ryu, and H. Kim. 2017. Inactivation of Bacillus cereus spores on red chili peppers using a combined treatment of aqueous chlorine dioxide and hot‐air drying. Journal of Food Science 82 (8):1892–7. doi: 10.1111/1750-3841.13771.
  • Kim, J. E., Y. J. Oh, M. Y. Won, K. S. Lee, and S. C. Min. 2017. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology 62:112–23. doi: 10.1016/j.fm.2016.10.006.
  • Kim, J. G., A. E. Yousef, and S. Dave. 1999. Application of ozone for enhancing the microbiological safety and quality of foods: a review. Journal of Food Protection 62 (9):1071–87.
  • Knorr, D., A. Froehling, H. Jaeger, K. Reineke, O. Schlueter, and K. Schoessler. 2011. Emerging technologies in food processing. Annual Review of Food Science and Technology 2:203–35. doi: 10.1146/annurev.food.102308.124129.
  • Koh, P. C., M. A. Noranizan, R. Karim, and Z. A. N. Hanani. 2016. Microbiological stability and quality of pulsed light treated cantaloupe (Cucumis melo L. reticulatus cv. Glamour) based on cut type and light fluence. Journal of Food Science and Technology 53 (4):1798–810. doi: 10.1007/s13197-015-2139-y.
  • Koutchma, T., L. J. Forney, and C. L. Moraru (Eds.). 2009. Ultraviolet light in food technology: principles and applications. In UV processing effects on quality of foods, 103–123. Boca Raton, FL: CRC Press.
  • Krishnamurthy, K.,. J. C. Tewari, J. Irudayaraj, and A. Demirci. 2010. Microscopic and spectroscopic evaluation of inactivation of Staphylococcus aureus by pulsed UV light and infrared heating. Food and Bioprocess Technology 3 (1):93. doi: 10.1007/s11947-008-0084-8.
  • Kwon, S. J., Y. Chang, and J. Han. 2017. Oregano essential oil-based natural antimicrobial packaging film to inactivate Salmonella enterica and yeasts/molds in the atmosphere surrounding cherry tomatoes. Food Microbiology 65:114–21. doi: 10.1016/j.fm.2017.02.004.
  • Lacombe, A., B. A. Niemira, J. B. Gurtler, X. Fan, J. Sites, G. Boyd, and H. Chen. 2015. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology 46:479–84. doi: 10.1016/j.fm.2014.09.010.
  • Lee, H., L. R. Beuchat, J. H. Ryu, and H. Kim. 2018. Inactivation of salmonella typhimurium on red chili peppers by treatment with gaseous chlorine dioxide followed by drying. Food Microbiology 76:78–82. doi: 10.1016/j.fm.2018.04.016.
  • Lee, H., M. J. Ha, H. M. Shahbaz, J. U. Kim, H. Jang, and J. Park. 2018. High hydrostatic pressure treatment for manufacturing of red bean powder: a comparison with the thermal treatment. Journal of Food Engineering 238:141–7. doi: 10.1016/j.jfoodeng.2018.06.016.
  • Lee, N. Y., C. Jo, D. H. Shin, W. G. Kim, and M. W. Byun. 2006. Effect of gamma-irradiation on pathogens inoculated into ready-to-use vegetables. Food Microbiology 23 (7):649–56. doi: 10.1016/j.fm.2005.12.001.
  • Lee, H., J. E. Kim, M. S. Chung, and S. C. Min. 2015. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology 51:74–80. doi: 10.1016/j.fm.2015.05.004.
  • Leistner, L., and L. G. Gorris. 1995. Food preservation by hurdle technology. Trends in Food Science & Technology 6 (2):41–6. doi: 10.1016/S0924-2244(00)88941-4.
  • Lieberman, M. A., and A. J. Lichtenberg. 2005. Principles of plasma discharges and materials processing, 2nd ed., 165–203. New York: Wiley.
  • Lindsay, D., V. S. Brözel, J. F. Mostert, and A. von Holy. 2002. Differential efficacy of a chlorine dioxide-containing sanitizer against single species and binary biofilms of a dairy-associated Bacillus cereus and a Pseudomonas fluorescens isolate. Journal of Applied Microbiology 92 (2):352–61. doi: 10.1046/j.1365-2672.2002.01538.x.
  • Liu, R. H. 2013. Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition (Bethesda, Md.) 4 (3):384S–92S. doi: 10.3945/an.112.003517.
  • Liu, C., T. Ma, W. Hu, M. Tian, and L. Sun. 2016. Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh‐cut apple. International Journal of Food Science & Technology 51 (5):1099–109. doi: 10.1111/ijfs.13078.
  • Liu, Q., C. S. C. Tan, H. Yang, and S. Wang. 2017. Treatment with low-concentration acidic electrolysed water combined with mild heat to sanitise fresh organic broccoli (brassica oleracea). Lwt - Food Science and Technology 79:594–600. doi: 10.1016/j.lwt.2016.11.012.
  • Liu, Q., J. E. Wu, Z. Y. Lim, A. Aggarwal, H. Yang, and S. Wang. 2017. Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1H NMR spectroscopy. Lwt - Food Science and Technology 79:428–36. doi: 10.1016/j.lwt.2017.01.066.
  • Liu, Q., J. E. Wu, Z. Y. Lim, S. Lai, N. Lee, and H. Yang. 2018. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. International Journal of Food Microbiology 271:24–32. doi: 10.1016/j.ijfoodmicro.2018.02.014.
  • Llano, K. R. A., A. R. Marsellés-Fontanet, O. Martín-Belloso, and R. Soliva-Fortuny. 2016. Impact of pulsed light treatments on antioxidant characteristics and quality attributes of fresh-cut apples. Innovative Food Science & Emerging Technologies 33:206–15. doi: 10.1016/j.ifset.2015.10.021.
  • López-Velasco, G., A. Tomás-Callejas, A. Sbodio, F. Artés-Hernández, and T. V. Suslow. 2012. Chlorine dioxide dose, water quality and temperature affect the oxidative status of tomato processing water and its ability to inactivate salmonella. Food Control 26 (1):28–35. doi: 10.1016/j.foodcont.2011.12.016.
  • Lou, F., H. Neetoo, H. Chen, and J. Li. 2015. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods. Annual Review of Food Science and Technology 6 (1):389–409. doi: 10.1146/annurev-food-072514-104609.
  • Lung, H. M., Y. C. Cheng, Y. H. Chang, H. W. Huang, B. B. Yang, and C. Y. Wang. 2015. Microbial decontamination of food by electron beam irradiation. Trends in Food Science & Technology 44 (1):66–78. doi: 10.1016/j.tifs.2015.03.005.
  • Mahendran, R., K. R. Ramanan, F. J. Barba, J. M. Lorenzo, O. López-Fernández, P. E. Munekata, S. Roohinejad, A. S. Sant'Ana, and B. K. Tiwari. 2019. Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends in Food Science & Technology 88:67–79. doi: 10.1016/j.tifs.2019.03.010.
  • Mahmoud, B. S. 2010. The effects of X-ray radiation on Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on whole roma tomatoes. Food Microbiology 27 (8):1057–63. doi: 10.1016/j.fm.2010.07.009.
  • Mahmoud, B. S., G. Bachman, and R. H. Linton. 2010. Inactivation of Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves by X-ray. Food Microbiology 27 (1):24–8. doi: 10.1016/j.fm.2009.07.004.
  • Maisanaba, S., M. Llana-Ruiz-Cabello, D. Gutiérrez-Praena, S. Pichardo, M. Puerto, A. I. Prieto, A. Jos, and A. M. Cameán. 2017. New advances in active packaging incorporated with essential oils or their main components for food preservation. Food Reviews International 33 (5):447–515. doi: 10.1080/87559129.2016.1175010.
  • Manzocco, L., S. Da Pieve, A. Bertolini, I. Bartolomeoli, M. Maifreni, A. Vianello, and M. C. Nicoli. 2011. Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biology and Technology 61 (2-3):165–71. doi: 10.1016/j.postharvbio.2011.03.003.
  • Maresca, P., and G. Ferrari. 2017. Modeling of the microbial inactivation by high hydrostatic pressure freezing. Food Control 73:8–17. doi: 10.1016/j.foodcont.2016.05.047.
  • Millan-Sango, D., E. Garroni, C. Farrugia, J. F. Van Impe, and V. P. Valdramidis. 2016. Determination of the efficacy of ultrasound combined with essential oils on the decontamination of salmonella inoculated lettuce leaves. Lwt 73:80–7. doi: 10.1016/j.lwt.2016.05.039.
  • Millan-Sango, D., E. Sammut, J. F. Van Impe, and V. P. Valdramidis. 2017. Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. Lwt 78:90–6. doi: 10.1016/j.lwt.2016.12.015.
  • Miller, F. A., C. L. Silva, and T. R. Brandão. 2013. A review on ozone-based treatments for fruit and vegetables preservation. Food Engineering Reviews 5 (2):77–106. doi: 10.1007/s12393-013-9064-5.
  • Min, S. C., S. H. Roh, B. A. Niemira, G. Boyd, J. E. Sites, J. Uknalis, and X. Fan. 2017. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiology 65:1–6. doi: 10.1016/j.fm.2017.01.010.
  • Misra, N. N., and C. Jo. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 64:74–86.
  • Misra, N. N., S. K. Pankaj, A. Segat, and K. Ishikawa. 2016. Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology 55:39–47. doi: 10.1016/j.tifs.2016.07.001.
  • Misra, N. N., S. Patil, T. Moiseev, P. Bourke, J. P. Mosnier, K. M. Keener, and P. J. Cullen. 2014. In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering 125:131–8. doi: 10.1016/j.jfoodeng.2013.10.023.
  • Misra, N. N., B. K. Tiwari, K. S. M. S. Raghavarao, and P. J. Cullen. 2011. Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews 3 (3-4):159–70. doi: 10.1007/s12393-011-9041-9.
  • Molnár, H., I. Bata-Vidács, E. Baka, Z. Cserhalmi, S. Ferenczi, R. Tömösközi-Farkas, N. Adányi, and A. Székács. 2018. The effect of different decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika. Food Control 83:131–40. doi: 10.1016/j.foodcont.2017.04.032.
  • Mols, M., and T. Abee. 2011. Bacillus cereus responses to acid stress. Environmental Microbiology 13 (11):2835–43.
  • Moore-Neibel, K., C. Gerber, J. Patel, M. Friedman, D. Jaroni, and S. Ravishankar. 2013. Antimicrobial activity of oregano oil against antibiotic-resistant Salmonella enterica on organic leafy greens at varying exposure times and storage temperatures. Food Microbiology 34 (1):123–129. doi: 10.1016/j.fm.2012.12.001.
  • Moosekian, S. R., S. Jeong, B. P. Marks, and E. T. Ryser. 2012. X-ray irradiation as a microbial intervention strategy for food. Annual Review of Food Science and Technology 3 (1):493–510. doi: 10.1146/annurev-food-022811-101306.
  • Moreira, R. G., and M. E. Castell-Perez. 2012. Chapter 7: Irradiation applications in fruit and other fresh produce processing. In Advances in fruit processing technologies, ed. S. Rodrigues, F. André Narciso Fernandes, 203–214. Boca Raton, FL: CRC Press.
  • Mukhopadhyay, S., K. Sokorai, D. O. Ukuku, X. Fan, M. Olanya, and V. Juneja. 2019. Effects of pulsed light and sanitizer wash combination on inactivation of Escherichia coli O157:H7, microbial loads and apparent quality of spinach leaves. Food Microbiology 82:127–34. doi: 10.1016/j.fm.2019.01.022.
  • Mukhopadhyay, S., D. O. Ukuku, and V. K. Juneja. 2015. Effects of integrated treatment of nonthermal UV-C light and different antimicrobial wash on Salmonella enterica on plum tomatoes. Food Control 56:147–54. doi: 10.1016/j.foodcont.2015.03.020.
  • Mukhopadhyay, S., D. O. Ukuku, V. Juneja, and X. Fan. 2014. Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157: H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control 44:110–7. doi: 10.1016/j.foodcont.2014.03.027.
  • Nadas, A., M. Olmo, and J. M. Garcia. 2003. Growth of Botrytis cinerea and strawberry quality in ozone-enriched atmospheres. Journal of Food Science 68 (5):1798–802. doi: 10.1111/j.1365-2621.2003.tb12332.x.
  • Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, and V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel, Switzerland) 6 (12):1451–74. doi: 10.3390/ph6121451.
  • Neal, J. A., M. Marquez-Gonzalez, E. Cabrera-Diaz, L. M. Lucia, C. A. O'Bryan, P. G. Crandall, S. C. Ricke, and A. Castillo. 2012. Comparison of multiple chemical sanitizers for reducing Salmonella and Escherichia coli O157: H7 on spinach (spinacia oleracea) leaves. Food Research International 45 (2):1123–8. doi: 10.1016/j.foodres.2011.04.011.
  • Neetoo, H., S. Nekoozadeh, Z. Jiang, and H. Chen. 2011. Application of high hydrostatic pressure to decontaminate green onions from salmonella and Escherichia coli O157:H7. Food Microbiology 28 (7):1275–83. doi: 10.1016/j.fm.2011.05.005.
  • Netramai, S., T. Kijchavengkul, V. Sakulchuthathip, and M. Rubino. 2016. Antimicrobial efficacy of gaseous chlorine dioxide against Salmonella enterica typhimurium on grape tomato (Lycopersicon esculentum). International Journal of Food Science & Technology 51 (10):2225–32. doi: 10.1111/ijfs.13209.
  • Ngnitcho, P. F. K., I. Khan, C. N. Tango, M. S. Hussain, and D. H. Oh. 2017. Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innovative Food Science & Emerging Technologies 43:68–76. doi: 10.1016/j.ifset.2017.07.033.
  • Niemira, B. A. 2012. Cold plasma decontamination of foods. Annual Review of Food Science and Technology 3:125–42. doi: 10.1146/annurev-food-022811-101132.
  • Niemira, B. A. 2017. Chapter 14 safety and quality of irradiated fruits and vegetables. In Fruit preservation: Novel and conventional technologies, ed. Rosenthal, 399–416. New York: Springer.
  • Ochoa-Velasco, C. E., M. C. Díaz-Lima, R. Ávila-Sosa, I. I. Ruiz-López, E. Corona-Jiménez, P. Hernández-Carranza, A. López-Malo, and J. A. Guerrero-Beltrán. 2018. Effect of UV-C light on Lactobacillus rhamnosus, salmonella typhimurium, and Saccharomyces cerevisiae kinetics in inoculated coconut water: Survival and residual effect. Journal of Food Engineering 223:255–61. doi: 10.1016/j.jfoodeng.2017.10.010.
  • Ogata, N. 2007. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 46 (16):4898–911. doi: 10.1021/bi061827u.
  • Olaimat, A. N., and R. A. Holley. 2012. Factors influencing the microbial safety of fresh produce: a review. Food Microbiology 32 (1):1–19. doi: 10.1016/j.fm.2012.04.016.
  • Ölmez, H., and U. Kretzschmar. 2009. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Lwt - Food Science and Technology 42 (3):686–93. doi: 10.1016/j.lwt.2008.08.001.
  • Oner, M. E. Demirci, A. 2016. Chapter 33 - Ozone for Food Decontamination: Theory and Applications. In Handbook of hygiene control in the food industry, 2nd ed., 491–501 Woodhead Publishing Series in Food Science, Technology and Nutrition. Sawston: Woodhead Publishing
  • Park, S. H., M. R. Choi, J. W. Park, K. H. Park, M. S. Chung, S. Ryu, and D. H. Kang. 2011. Use of organic acids to inactivate Escherichia coli O157: H7, salmonella typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. Journal of Food Science 76 (6):M293–M298. doi: 10.1111/j.1750-3841.2011.02205.x.
  • Park, S. H., and D. H. Kang. 2017. Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens. Food Control 81:88–95. doi: 10.1016/j.foodcont.2017.05.015.
  • Park, M. H., and J. G. Kim. 2015. Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology 100:109–12. doi: 10.1016/j.postharvbio.2014.09.013.
  • Pascual, A., I. Llorca, and A. Canut. 2007. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends in Food Science & Technology 18:S29–S35. doi: 10.1016/j.tifs.2006.10.006.
  • Pasquali, F., A. C. Stratakos, A. Koidis, A. Berardinelli, C. Cevoli, L. Ragni, R. Mancusi, G. Manfreda, and M. Trevisani. 2016. Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 60:552–9. doi: 10.1016/j.foodcont.2015.08.043.
  • Pataro, G., M. Sinik, M. M. Capitoli, G. Donsì, and G. Ferrari. 2015. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies 30:103–11. doi: 10.1016/j.ifset.2015.06.003.
  • Patrignani, F., L. Siroli, D. I. Serrazanetti, F. Gardini, and R. Lanciotti. 2015. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science & Technology 46 (2):311–9. doi: 10.1016/j.tifs.2015.03.009.
  • Patrignani, F., L. Siroli, D. I. Serrazanetti, F. Gardini, and R. Lanciotti. 2015. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends in Food Science & Technology 46 (2):311–9. doi: 10.1016/j.tifs.2015.03.009.
  • Pereira, R. N., and A. A. Vicente. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43 (7):1936–43. doi: 10.1016/j.foodres.2009.09.013.
  • Perry, J. J., and A. E. Yousef. 2011. Decontamination of raw foods using ozone-based sanitization techniques. Annual Review of Food Science and Technology 2 (1):281–98. doi: 10.1146/annurev-food-022510-133637.
  • Pleitner, A. M., V. Trinetta, M. T. Morgan, R. L. Linton, and H. F. Oliver. 2014. Transcriptional and phenotypic responses of Listeria monocytogenes to chlorine dioxide. Applied and Environmental Microbiology 80 (9):2951–63. doi: 10.1128/AEM.00004-14.
  • Praeger, U., W. B. Herppich, and K. Hassenberg. 2018. Aqueous chlorine dioxide treatment of horticultural produce: Effects on microbial safety and produce quality–a review. Critical Reviews in Food Science and Nutrition 58 (2):318–33. doi: 10.1080/10408398.2016.1169157.
  • Prakash, A., R. Baskaran, N. Paramasivam, and V. Vadivel. 2018. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: a review. Food Research International 111:509–23. doi: 10.1016/j.foodres.2018.05.066.
  • Rahman, S. M. E., T. Ding, and D. H. Oh. 2010. Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. International Journal of Food Microbiology 139 (3):147–53. doi: 10.1016/j.ijfoodmicro.2010.03.020.
  • Rahman, S. M. E., I. Khan, and D. H. Oh. 2016. Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Comprehensive Reviews in Food Science and Food Safety 15 (3):471–90. doi: 10.1111/1541-4337.12200.
  • Ramos, B., F. A. Miller, T. R. Brandão, P. Teixeira, and C. L. Silva. 2013. Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies 20:1–15. doi: 10.1016/j.ifset.2013.07.002.
  • Ramos-Villarroel, A. Y., O. Martín-Belloso, and R. Soliva-Fortuny. 2015. Combined effects of malic acid dip and pulsed light treatments on the inactivation of Listeria innocua and Escherichia coli on fresh-cut produce. Food Control 52:112–8. doi: 10.1016/j.foodcont.2014.12.020.
  • Rendueles, E., M. K. Omer, O. Alvseike, C. Alonso-Calleja, R. Capita, and M. Prieto. 2011. Microbiological food safety assessment of high hydrostatic pressure processing: a review. Lwt - Food Science and Technology 44 (5):1251–60. doi: 10.1016/j.lwt.2010.11.001.
  • Rico, D., A. B. Martin-Diana, J. M. Barat, and C. Barry-Ryan. 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in Food Science & Technology 18 (7):373–86. doi: 10.1016/j.tifs.2007.03.011.
  • Rodoni, L. M., M. J. Zaro, J. H. Hasperué, A. Concellón, and A. R. Vicente. 2015. UV-C treatments extend the shelf life of fresh-cut peppers by delaying pectin solubilization and inducing local accumulation of phenolics. Lwt - Food Science and Technology 63 (1):408–14. doi: 10.1016/j.lwt.2015.03.042.
  • Rowan, N. J. 2019. Pulsed light as an emerging technology to cause disruption for food and adjacent industries–quo vadis?. Trends in Food Science & Technology 88:316–32. doi: 10.1016/j.tifs.2019.03.027.
  • Rowan, N. J., V. P. Valdramidis, and V. M. Gomez-Lopez. 2015. A review of quantitative methods to describe efficacy of pulsed light generated inactivation data that embraces the occurrence of viable but non culturable state microorganisms. Trends in Food Science & Technology 44 (1):79–92. doi: 10.1016/j.tifs.2015.03.006.
  • Rux, G., R. Gelewsky, O. Schlüter, and W. B. Herppich. 2019. High hydrostatic pressure effects on membrane-related quality parameters of fresh radish tubers. Postharvest Biology and Technology 151:1–9. doi: 10.1016/j.postharvbio.2019.01.007.
  • Sagong, H. G., S. Y. Lee, P. S. Chang, S. Heu, S. Ryu, Y. J. Choi, and D. H. Kang. 2011. Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, salmonella typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology 145 (1):287–92. doi: 10.1016/j.ijfoodmicro.2011.01.010.
  • Santo, D., A. Graça, C. Nunes, and C. Quintas. 2016. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. International Journal of Food Microbiology 231:10–5. doi: 10.1016/j.ijfoodmicro.2016.04.023.
  • Santo, D., A. Graça, C. Nunes, and C. Quintas. 2018. Escherichia coli and Cronobacter sakazakii in ‘tommy atkins’ minimally processed mangos: survival, growth and effect of UV-C and electrolyzed water. Food Microbiology 70:49–54. doi: 10.1016/j.fm.2017.09.008.
  • São José, J. F. B., and M. C. D. Vanetti. 2012. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica typhimurium on cherry tomatoes. Food Control 24 (1–2):95–9.
  • Scallan, E., R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M. A. Widdowson, S. L. Roy, J. L. Jones, and P. M. Griffin. 2011. Foodborne illness acquired in the United States—major pathogens. Emerging Infectious Diseases 17 (1):7–15. doi: 10.3201/eid1701.09-1101p1.
  • Scharff, R. L. 2012. Economic burden from health losses due to foodborne illness in the United States. Journal of Food Protection 75 (1):123–31. doi: 10.4315/0362-028X.JFP-11-058.
  • Severino, R., K. D. Vu, F. Donsì, S. Salmieri, G. Ferrari, and M. Lacroix. 2014. Antimicrobial effects of different combined non-thermal treatments against Listeria monocytogenes in broccoli florets. Journal of Food Engineering 124:1–10. doi: 10.1016/j.jfoodeng.2013.09.026.
  • Seymour, I. J., D. Burfoot, R. L. Smith, L. A. Cox, and A. Lockwood. 2002. Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology 37 (5):547–57. doi: 10.1046/j.1365-2621.2002.00613.x.
  • Shafiee-Jood, M., and X. Cai. 2016. Reducing food loss and waste to enhance food security and environmental sustainability. Environmental Science & Technology 50 (16):8432–43. doi: 10.1021/acs.est.6b01993.
  • Shah, N. N. A. K., R. Shamsudin, R. A. Rahman, and N. M. Adzahan. 2016. Fruit juice production using ultraviolet pasteurization: a review. Beverages 2 (3):1–20. doi: 10.3390/beverages2030022.
  • Sharma, A., G. Collins, and A. Pruden. 2009. Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. Journal of Applied Microbiology 107 (5):1440–9. doi: 10.1111/j.1365-2672.2009.04323.x.
  • Singh, N., R. K. Singh, A. K. Bhunia, and R. L. Stroshine. 2002. Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157: H7 on lettuce and baby carrots. Lwt - Food Science and Technology 35 (8):720–9. doi: 10.1006/fstl.2002.0933.
  • Sinha, R. P., and D. P. Häder. 2002. UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1 (4):225–36. doi: 10.1039/b201230h.
  • Sommers, C. H., J. E. Sites, and M. Musgrove. 2010. Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces. Journal of Food Safety 30 (2):470–9. doi: 10.1111/j.1745-4565.2010.00220.x.
  • Spilimbergo, S.,. D. Komes, A. Vojvodic, B. Levaj, and G. Ferrentino. 2013. High pressure carbon dioxide pasteurization of fresh-cut carrot. The Journal of Supercritical Fluids 79:92–100. doi: 10.1016/j.supflu.2012.12.002.
  • Springmann, M., M. Clark, D. Mason-D’Croz, K. Wiebe, B. L. Bodirsky, L. Lassaletta, W. de Vries, S. J. Vermeulen, M. Herrero, K. M. Carlson, et al. 2018. Options for keeping the food system within environmental limits. Nature 562 (7728):519–25. doi: 10.1038/s41586-018-0594-0.
  • Sun, X., B. Zhou, Y. Luo, C. Ference, E. Baldwin, K. Harrison, and J. Bai. 2017. Effect of controlled-release chlorine dioxide on the quality and safety of cherry/grape tomatoes. Food Control 82:26–30. doi: 10.1016/j.foodcont.2017.06.021.
  • Sy, K. V., M. B. Murray, M. D. Harrison, and L. R. Beuchat. 2005. Evaluation of gaseous chlorine dioxide as a sanitizer for killing salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and yeasts and molds on fresh and fresh-cut produce. Journal of Food Protection 68 (6):1176–87. doi: 10.4315/0362-028X-68.6.1176.
  • Tamburini, S., P. Foladori, G. Ferrentino, S. Spilimbergo, and O. Jousson. 2014. Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide. Journal of Applied Microbiology 117 (2):440–50. doi: 10.1111/jam.12528.
  • Ter Beek, A., B. J. Keijser, A. Boorsma, A. Zakrzewska, R. Orij, G. J. Smits, and S. Brul. 2008. Transcriptome analysis of sorbic acid-stressed Bacillus subtilis reveals a nutrient limitation response and indicates plasma membrane remodeling. Journal of Bacteriology 190 (5):1751–1761. doi: 10.1128/JB.01516-07.
  • Tiwari, B. K. 2014. Chapter 17 - New chemical and biochemical hurdles. In Emerging Technologies for Food Processing, 2nd ed., 313–325. London: Academic Press
  • Tonello, C. 2011. Case studies on high-pressure processing of foods. In Nonthermal processing technologies for food, ed. Q.H. Zhang, G.V. Barbosa-Canovas, V.M. Balasubramiam, C.P. Dunne, D.F. Farkas, and J.T.C. Yuan, 37–50. Hoboken, NJ: Wiley-Blackwell.
  • US Food Drug Admin (FDA) 2017. CRF-Code of federal regulations title 21. Sec. 173.300 Chlorine dioxide. http://www.accessdata.fda.gov/scripts/cdrh/ cfdocs/cfcfr/CFRSearch.cfm?fr = 173.300/. Accessed 18 April 2018.
  • Valdivia-Nájar, C. G., O. Martín-Belloso, and R. Soliva-Fortuny. 2018. Impact of pulsed light treatments and storage time on the texture quality of fresh-cut tomatoes. Innovative Food Science & Emerging Technologies 45:29–35. doi: 10.1016/j.ifset.2017.08.007.
  • Valverde, M. T., F. Marín-Iniesta, and L. Calvo. 2010. Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality. Journal of Food Engineering 98 (4):421–8. doi: 10.1016/j.jfoodeng.2010.01.022.
  • Venta, M. B., S. S. C. Broche, I. F. Torres, M. G. Pérez, E. V. Lorenzo, Y. R. Rodriguez, and S. M. Cepero. 2010. Ozone application for postharvest disinfection of tomatoes. Ozone: Science & Engineering 32 (5):361–71. doi: 10.1080/01919512.2010.508100.
  • Wang, C. Y., H. W. Huang, C. P. Hsu, and B. B. Yang. 2016. Recent advances in food processing using high hydrostatic pressure technology. Critical Reviews in Food Science and Nutrition 56 (4):527–40. doi: 10.1080/10408398.2012.745479.
  • Willett, W., J. Rockström, B. Loken, M. Springmann, T. Lang, S. Vermeulen, T. Garnett, D. Tilman, F. DeClerck, A. Wood, et al. 2019. Food in the anthropocene: the EAT-Lancet commission on healthy diets from sustainable food systems. The Lancet 393 (10170):447–92. doi: 10.1016/S0140-6736(18)31788-4.
  • Winter, T., J. Winter, M. Polak, K. Kusch, U. Mäder, R. Sietmann, J. Ehlbeck, S. van Hijum, K. Weltmann, M. Hecker, and H. Kusch. 2011. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Proteomics 11 (17):3518–30. doi: 10.1002/pmic.201000637.
  • Yang, Y.,. F. Meier, L. J. Ann, W. Yuan, P. S. V. Lee, H. J. Chung, and H. G. Yuk. 2013. Overview of recent events in the microbiological safety of sprouts and new intervention technologies. Comprehensive Reviews in Food Science and Food Safety 12 (3):265–80. doi: 10.1111/1541-4337.12010.
  • Yun, J., R. Yan, X. Fan, J. Gurtler, and J. Phillips. 2013. Fate of E. coli O157: H7, salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light. International Journal of Food Microbiology 166 (3):356–63. doi: 10.1016/j.ijfoodmicro.2013.07.021.
  • Zhang, C., W. Cao, Y. C. Hung, and B. Li. 2016. Disinfection effect of slightly acidic electrolyzed water on celery and cilantro. Food Control 69:147–52. doi: 10.1016/j.foodcont.2016.04.039.
  • Zhang, J., S. Lai, and H. Yang. 2018. Physicochemical and antibacterial effects of sodium bicarbonate and brine water on the electrolysed water generated by a portable sanitising unit. Lwt 98:524–32. doi: 10.1016/j.lwt.2018.08.048.
  • Zhang, M., J. K. Oh, L. Cisneros-Zevallos, and M. Akbulut. 2013. Bactericidal effects of nonthermal low-pressure oxygen plasma on S. Typhimurium LT2 attached to fresh produce surfaces. Journal of Food Engineering 119 (3):425–32. doi: 10.1016/j.jfoodeng.2013.05.045.
  • Zhang, J., H. Yang, and J. Z. Y. Chan. 2018. Development of portable flow‐through electrochemical sanitizing unit to generate near neutral electrolyzed water. Journal of Food Science 83 (3):780–90. doi: 10.1111/1750-3841.14080.
  • Zhang, J., S. Zhou, R. Chen, and H. Yang. 2017. Development of a portable electrolytic sanitising unit for the production of neutral electrolysed water. Lwt - Food Science and Technology 82:207–15. doi: 10.1016/j.lwt.2017.04.020.
  • Zhao, L., M. Y. Zhao, C. P. Phey, and H. Yang. 2019. Efficacy of low concentration acidic electrolysed water and levulinic acid combination on fresh organic lettuce (Lactuca sativa var. Crispa L.) and its antimicrobial mechanism. Food Control 101:241–50. doi: 10.1016/j.foodcont.2019.02.039.
  • Zhou, L., X. Bi, Z. Xu, Y. Yang, and X. Liao. 2015. Effects of high-pressure CO2 processing on flavor, texture, and color of foods. Critical Reviews in Food Science and Nutrition 55 (6):750–68. doi: 10.1080/10408398.2012.677871.
  • Zhou, C. L., W. Liu, J. Zhao, C. Yuan, Y. Song, D. Chen, Y. Y. Ni, and Q. H. Li. 2014. The effect of high hydrostatic pressure on the microbiological quality and physical–chemical characteristics of pumpkin (Cucurbita maxima duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies 21:24–34. doi: 10.1016/j.ifset.2013.11.002.
  • Zhou, G. H., X. L. Xu, and Y. Liu. 2010. Preservation technologies for fresh meat - a review. Meat Science 86 (1):119–28. doi: 10.1016/j.meatsci.2010.04.033.
  • Ziuzina, D., S. Patil, P. J. Cullen, K. M. Keener, and P. Bourke. 2014. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology 42:109–16. doi: 10.1016/j.fm.2014.02.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.