708
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Combination of levulinic acid and sodium dodecyl sulfate on inactivation of foodborne microorganisms: A review

, & ORCID Icon

References

  • Alakomi, H. L., E. Skytta, M. Saarela, T. Mattila-Sandholm, K. Latva-Kala, and Helander, I. M. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol. 66(5):2001–2005. doi: 10.1128/AEM.66.5.2001-2005.2000.
  • Alali, W. Q., C. L. Hofacre, G. F. Mathis, G. Faltys, S. C. Ricke, and Doyle, M. P. (2013). Effect of non-pharmaceutical compounds on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Food Control 31(1):125–128. doi: 10.1016/j.foodcont.2012.10.001.
  • Anderson, D. J., M. J. Day, N. J. Russell, and White, G. F. (1990). Die-away kinetic analysis of the capacity of epilithic and planktonic bacteria from clean and polluted river water to biodegrade sodium dodecyl sulfate. Appl. Environ. Microbiol. 56:758–763.
  • Aydin, A., J. L. Cannon, T. Zhao, and Doyle, M. P. (2013). Efficacy of a levulinic acid plus sodium dodecyl sulfate (SDS)-based sanitizer on inactivation of influenza a virus on eggshells. Food Environ. Virol. 5(4):215–219. doi: 10.1007/s12560-013-9129-x.
  • Banat, I. M., R. S. Makkar, and Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53(5):495–508. doi: 10.1007/s002530051648.
  • Beuchat, L. R., D. A. Mann, and Alali, W. Q. (2012). Evaluation of sanitizers for inactivating Salmonella on in-shell pecans and pecan nutmeats. J. Food Prot. 75(11):1930–1938. doi: 10.4315/0362-028X.JFP-12-133.
  • Beuchat, L. R., D. A. Mann, and Alali, W. Q. (2013). Efficacy of sanitizers in reducing Salmonella on pecan nutmeats during cracking and shelling. J. Food Prot. 76(5):770–778. doi: 10.4315/0362-028X.JFP-12-541.
  • Bolton, S. L., G. Kotwal, M. A. Harrison, S. E. Law, J. A. Harrison, and Cannon, J. L. (2013). Sanitizer efficacy against murine norovirus, a surrogate for human norovirus, on stainless steel surfaces when using three application methods. Appl. Environ. Microbiol. 79(4):1368–1377. doi: 10.1128/AEM.02843-12.
  • Bozell, J. J., L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, and Jarnefeld, J. L. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recy 28(3–4):227–239. doi: 10.1016/S0921-3449(99)00047-6.
  • Byelashov, O. A., P. A. Kendall, K. E. Belk, J. A. Scanga, and Sofos, J. N. (2008). Control of Listeria monocytogenes on vacuum-packaged frankfurters sprayed with lactic acid alone or in combination with sodium lauryl sulfate. J. Food Prot. 71(4):728–734. doi: 10.4315/0362-028X-71.4.728.
  • Cannon, J. L., A. Aydin, A. N. Mann, S. L. Bolton, T. Zhao, and Doyle, M. P. (2012). Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates. J. Food Prot. 75(8):1532–1535. doi: 10.4315/0362-028X.11-572.
  • Carpenter, C. E., J. V. Smith, and Broadbent, J. R. (2011). Efficacy of washing meat surfaces with 2% levulinic, acetic, or lactic acid for pathogen decontamination and residual growth inhibition. Meat Sci. 88(2):256–260. doi: 10.1016/j.meatsci.2010.12.032.
  • Chandra, V., M. Torres, and Ortega, Y. R. (2014). Efficacy of wash solutions in recovering Cyclospora cayetanensis, Cryptosporidium parvum, and Toxoplasma gondii from basil. J. Food Prot. 77(8):1348–1354. doi: 10.4315/0362-028X.JFP-13-381.
  • Chen, D. and Zhao, T. (2018). Organic acids, detergents, and their combination for inactivation of foodborne pathogens and spoilage microorganisms. In: Natural and Bio-based Antimicrobials for Food Applications, pp. 63–85. Fan, X., Ngo H., and Wu, C., Ed. American Chemical Society, Washington, DC.
  • Chen, D., T. Zhao, and Doyle, M. P. (2014). Transfer of foodborne pathogens during mechanical slicing and their inactivation by levulinic acid-based sanitizer on slicers. Food Microbiol. 38:263–269. doi: 10.1016/j.fm.2013.10.004.
  • Chen, D., T. Zhao, and Doyle, M. P. (2015a). Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate. Int. J. Food Microbiol. 207:1–7. doi: 10.1016/j.ijfoodmicro.2015.04.026.
  • Chen, D., T. Zhao, and Doyle, M. P. (2015b). Single- and mixed-species biofilm formation by Escherichia coli O157:H7 and Salmonella, and their sensitivity to levulinic acid plus sodium dodecyl sulfate. Food Control 57:48–53. doi: 10.1016/j.foodcont.2015.04.006.
  • Cords, B. R., S. L. Burnett, J. Hilgren, M. Finley, and Magnuson, J. (2005). Sanitizers: halogens, surface-active agents, and peroxides. In: Antimicrobials in Foods, pp. 507–572. Davidson, P. M., Sofos, J. N., and Branen, A. L., Ed. CRC Press, Boca Raton, FL.
  • Doyle, M. P. and Zhao, T. (2014). Antimicrobial composition and use as food treatment. U.S. 8,722,123, filed May 13, 2014, and issued May 13, 2014
  • Erickson, M. C., J.-Y. Liao, M. Y. Habteselassie, and Cannon, J. L. (2018). Inactivation of Escherichia coli O157:H7 and Salmonella during washing of contaminated gloves in levulinic acid and sodium dodecyl sulfate solutions. Food Microbiol. 73:275–281. doi: 10.1016/j.fm.2018.01.024.
  • Eswaranandam, S., N. S. Hettiarachchy, and Johnson, M. G. (2004). Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J. Food Sci. 69(3):FMS79–FMS84. doi: 10.1111/j.1365-2621.2004.tb13375.x.
  • Frank, J. F. (2001). Microbial attachment to food and food contact surfaces. Adv. Food Nutr. Res. 43:319–370.
  • Gibson, H., R. Elton, W. Peters, and Holah, J. T. (1995). Surface and suspension testing: conflict or complementary. Int. Biodeter. Biodegrad. 36(3–4):375–384. doi: 10.1016/0964-8305(95)00096-8.
  • Guan, W., L. Huang, and Fan, X. (2010). Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceberg lettuce during storage in modified atmosphere package. J. Food Sci. 75(8):S435–S440. doi: 10.1111/j.1750-3841.2010.01786.x.
  • Gurtler, J. B., A. M. Smelser, B. A. Niemira, T. Z. Jin, X. Yan, and Geveke, D. J. (2012). Inactivation of Salmonella enterica on tomato stem scars by antimicrobial solutions and vacuum perfusion. Int. J. Food Microbiol. 159(2):84–92. doi: 10.1016/j.ijfoodmicro.2012.08.014.
  • Hancock, R. E. W. and Rozek, A. (2002). Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 206(2):143–149. doi: 10.1111/j.1574-6968.2002.tb11000.x.
  • Helander, I. M., H. L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E. J. Smid, L. G. M. Gorris, and von Wright, A. (1998). Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46(9):3590–3595. doi: 10.1021/jf980154m.
  • Helander, I. M., A. von Wright, and Mattila-Sandholm, T. M. (1997). Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria. Trends Food Sci. Technol. 8(5):146–150. doi: 10.1016/S0924-2244(97)01030-3.
  • Howett, M. K., Neely, E. B., N. D. Christensen, B. Wigdahl, F. C. Krebs, D. Malamud, S. D. Patrick, M. D. Pickel, P. A. Welsh, C. A. Reed, et al. (1999). A broad-spectrum microbicide with virucidal activity against sexually transmitted viruses. Antimicrob. Agents Chemother. 43(2):314–421. doi: 10.1128/AAC.43.2.314.
  • King, D. A., S. D. Shackelford, N. Kalchayanand, and Wheeler, T. L. (2012). Sampling and aging effects on beef longissimus color stability measurements. J. Anim. Sci. 90(10):3596–3605. doi: 10.2527/jas.2011-4871.
  • Kreske, A. C., K. Bjornsdottir, F. Breidt, Jr., and Hassan, H. (2008). Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions. J. Food Prot. 71(12):2404–2409. doi: 10.4315/0362-028X-71.12.2404.
  • Li, L., S. Molin, L. Yang, and Ndoni, S. (2013). Sodium dodecyl sulfate (SDS)-loaded nanoporous polymer as anti-biofilm surface coating material. Int. J. Mol. Sci. 14(2):3050–3064. doi: 10.3390/ijms14023050.
  • Liu, C., Y. Huang, and Chen, H. (2015). Inactivation of Escherichia coli O157:H7 and Salmonella enterica on blueberries in water using ultraviolet light. J. Food Sci. 80(7):M1532–M1537. doi: 10.1111/1750-3841.12910.
  • Liu, F., L. Du, T. Zhao, P. Zhao, and Doyle, M. P. (2017). Effects of phenyllactic acid as sanitizing agent for inactivation of Listeria monocytogenes biofilms. Food Control 78:72–78. doi: 10.1016/j.foodcont.2017.02.050.
  • Magnone, J. P., P. J. Marek, A. Sulakvelidze, and Senecal, A. G. (2013). Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. J. Food Prot. 76(8):1336–1341. doi: 10.4315/0362-028X.JFP-12-517.
  • McEldowney, S. and Fletcher, M. (1986). Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl. Environ. Microbiol. 52(3):460–465.
  • Mohamed, H. M. H., and Abdel-Naeem, H. H. S. (2018). Enhancing the bactericidal efficacy of lactic acid against Salmonella typhimurium attached to chicken skin by sodium dodecyl sulphate addition. LWT - Food Sci. Technol. 87:464–469. doi: 10.1016/j.lwt.2017.09.022.
  • Nesbitt, W. E., R. J. Doyle, and Taylor, K. G. (1982). Hydrophobic interactions and the adherence of Streptococcus sanguis to hydroxylapatite. Infect. Immun. 38(2):637–644. doi: 10.1016/0378-1097(82)90002-7.
  • Neu, T. R. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 60(1):151–166.
  • Ortega, Y. R., M. P. Torres, and Tatum, J. M. (2011). Efficacy of levulinic acid-sodium dodecyl sulfate against Encephalitozoon intestinalis, Escherichia coli O157:H7, and Cryptosporidium parvum. J. Food Prot. 74(1):140–144. doi: 10.4315/0362-028X.JFP-10-104.
  • Otzen, D. (2011). Protein–surfactant interactions: a tale of many states. Biochim. Biophys. Acta 1814(5):562–591. doi: 10.1016/j.bbapap.2011.03.003.
  • Piret, J., A. Desormeaux, and Bergeron, M. G. (2002). Sodium lauryl sulfate, a microbicide effective against enveloped and nonenveloped viruses. Curr. Drug Targets 3(1):17–30.
  • Predmore, A. and Li, J. (2011). Enhanced removal of a human norovirus surrogate from fresh vegetables and fruits by a combination of surfactants and sanitizers. Appl. Environ. Microbiol. 77(14):4829–4838. doi: 10.1128/AEM.00174-11.
  • Raybaudi-Massilia, R. M., J. Mosqueda-Melgar, A. Sobrino-Lopez, R. Soliva-Fortuny, and Martin-Belloso, O. (2009). Use of malic acid and other quality stabilizing compounds to assure the safety of fresh-cut “fuji” apples by inactivation of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7. J. Food Safety 29(2):236–252. doi: 10.1111/j.1745-4565.2009.00153.x.
  • Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 82(4):632–639. doi: 10.1093/ps/82.4.632.
  • Rigotti, R. T., J. A. F. Corrêa, N. J. L. Maia, G. Cesaro, E. A. R. Rosa, R. E. F. D. Macedo, and Luciano, F. B. (2017). Combination of natural antimicrobials and sodium dodecyl sulfate for disruption of biofilms formed by contaminant bacteria isolated from sugarcane mills. Innov. Food Sci. Emerg. Technol. 41(Supplement C):26–33. doi: 10.1016/j.ifset.2017.01.007.
  • Rosen, M. J. and Kunjappu, J. T. (2012). Wetting and its modification by surfactants. In: Surfactants and Interfacial Phenomena, pp. 272–307. Rosen, M. J. and Kunjappu, J. T., Ed. John Wiley & Sons, Hoboken, NJ.
  • Stelzleni, A. M., A. Ponrajan, and Harrison, M. A. (2013). Effects of buffered vinegar and sodium dodecyl sulfate plus levulinic acid on Salmonella typhimurium survival, shelf-life, and sensory characteristics of ground beef patties. Meat Sci. 95(1):1–7. doi: 10.1016/j.meatsci.2013.04.023.
  • Tamblyn, K. C. and Conner, D. E. (1997). Bactericidal activity of organic acids in combination with transdermal compounds against Salmonella typhimurium attached to broiler skin. Food Microbiol. 14(5):477–484. doi: 10.1006/fmic.1997.0112.
  • Thompson, R. L., C. E. Carpenter, S. Martini, and Broadbent, J. R. (2008). Control of Listeria monocytogenes in ready-to-eat meats containing sodium levulinate, sodium lactate, or a combination of sodium lactate and sodium diacetate. J. Food Sci. 73(5):M239–M244. doi: 10.1111/j.1750-3841.2008.00786.x.
  • Vasavada, M., C. E. Carpenter, D. P. Cornforth, and Ghorpade, V. (2003). Sodium levulinate and sodium lactate effects on microbial growth and stability of fresh pork and turkey sausages. J. Muscle Foods 14(2):119–129. doi: 10.1111/j.1745-4573.2003.tb00694.x.
  • Wang, B. Y., J. Hong, S. G. Ciancio, T. Zhao, and Doyle, M. P. (2012). A novel formulation effective in killing oral biofilm bacteria. J. Int. Acad. Periodontol. 14(3):56–61.
  • Webb, C. C., L. E. Davey, M. C. Erickson, and Doyle, M. P. (2013). Evaluation of levulinic acid and sodium dodecyl sulfate as a sanitizer for use in processing Georgia-grown cantaloupes. J. Food Prot. 76(10):1767–1772. doi: 10.4315/0362-028X.JFP-13-057.
  • Webb, C. C., M. C. Erickson, L. E. Davey, and Doyle, M. P. (2015a). Effectiveness of levulinic acid and sodium dodecyl sulfate employed as a sanitizer during harvest or packing of cantaloupes contaminated with Salmonella poona. Int. J. Food Microbiol. 207(Supplement C):71–76. doi: 10.1016/j.ijfoodmicro.2015.04.041.
  • Webb, C. C., M. C. Erickson, L. E. Davey, and Doyle, M. P. (2015b). Evaluation of single or double hurdle sanitizer applications in simulated field or packing shed operations for cantaloupes contaminated with Listeria monocytogenes. Agriculture 5(2):231–244. doi: 10.3390/agriculture5020231.
  • Williams, J. and Payne, W. J. (1964). Enzymes induced in a bacterium by growth on sodium dodecyl sulfate. Appl. Microbiol. 12:360–362.
  • Zaki, H. M. B. A., H. M. H. Mohamed, and El-Sherif, A. M. A. (2015). Improving the antimicrobial efficacy of organic acids against Salmonella enterica attached to chicken skin using SDS with acceptable sensory quality. LWT - Food Sci. Technol. 64(2):558–564. doi: 10.1016/j.lwt.2015.06.012.
  • Zhao, T., P. Zhao, J. L. Cannon, and Doyle, M. P. (2011). Inactivation of Salmonella in biofilms and on chicken cages and preharvest poultry by levulinic acid and sodium dodecyl sulfate. J. Food Prot. 74(12):2024–2030. doi: 10.4315/0362-028X.JFP-11-197.
  • Zhao, T., P. Zhao, and Doyle, M. P. (2009). Inactivation of Salmonella and Escherichia coli O157:H7 on lettuce and poultry skin by combinations of levulinic acid and sodium dodecyl sulfate. J. Food Prot. 72(5):928–936. doi: 10.4315/0362-028X-72.5.928.
  • Zhao, T., P. Zhao, and Doyle, M. P. (2010). Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on alfalfa seeds by levulinic acid and sodium dodecyl sulfate. J. Food Prot. 73(11):2010–2017. doi: 10.4315/0362-028X-73.11.2010.
  • Zhou, Z., S. Zuber, F. Cantergiani, S. Butot, D. Li, T. Stroheker, F. Devlieghere, A. Lima, U. Piantini, and Uyttendaele, M. (2017). Inactivation of viruses and bacteria on strawberries using a levulinic acid plus sodium dodecyl sulfate based sanitizer, taking sensorial and chemical food safety aspects into account. Int. J. Food Microbiol. 257(Supplement C):176–182. doi: 10.1016/j.ijfoodmicro.2017.06.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.