3,903
Views
127
CrossRef citations to date
0
Altmetric
Reviews

The perspectives of natural deep eutectic solvents in agri-food sector

, , , , , & show all

References

  • Abbott, A. P., D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed. 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society 9:9142–7. doi: 10.1021/ja048266j.
  • Aissaoui, T., Y. Benguerba, and I. M. AlNashef. 2017. Theoretical investigation on the microstructure of triethylene glycol based deep eutectic solvents: COSMO-RS and TURBOMOLE prediction. Journal of Molecular Structure 1141:451–6. doi: 10.1016/j.molstruc.2017.04.009.
  • Altamash, T., M. S. Nasser, Y. Elhamarnah, M. Magzoub, R. Ullah, B. Anaya, S. Aparicio, and M. Atilhan. 2017. Gas solubility and rheological behavior of natural deep eutectic solvents (NADES) via combined experimental and molecular simulation techniques. Chemistryselect 2:7278–95. doi: 10.1002/slct.201701223.
  • Altamash, T., M. S. Nasser, Y. Elhamarnah, M. Magzoub, R. Ullah, H. Qiblawey, S. Aparicio, and M. Atilhan. 2018. Gas solubility and rheological behavior study of betaine and alanine based natural deep eutectic solvents (NADES). Journal of Molecular Liquids 256:286–95. doi: 10.1016/j.molliq.2018.02.049.
  • Anastas, P., and N. Eghbali. 2010. Green chemistry: Principles and practice. Chemical Society Reviews 39 (1):301–12. doi: 10.1039/B918763B.
  • Arain, M. B., E. Yilmaz, and M. Soylak. 2016. Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt. Journal of Molecular Liquids 224:538–43. doi: 10.1016/j.molliq.2016.10.005.
  • Armenta, S., S. Garrigues, and M. de la Guardia. 2015. The role of green extraction techniques in green analytical chemistry. TrAC Trends in Analytical Chemistry 71:2–8. doi: 10.1016/j.trac.2014.12.011.
  • Aroso, I. M., A. Paiva, R. L. Reis, A. Rita, and C. Duarte. 2017. Natural deep eutectic solvents from choline chloride and betaine – Physicochemical properties. Journal of Molecular Liquids 241:654–61. doi: 10.1016/j.molliq.2017.06.051.
  • Ashworth, C. R., R. P. Matthews, T. Welton, and P. A. Hunt. 2016. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Physical Chemistry Chemical Physics 18 (27):18145–60. doi: 10.1039/C6CP02815B.
  • Azizi, N., T. Soleymani, and M. Mahmoudi. 2017. Multicomponent domino reactions in deep eutectic solvent: An efficient strategy to synthesize multisubstituted cyclohexa-1, 3-dienamines. Journal of Molecular Liquids 246:221–4. doi: 10.1016/j.molliq.2017.09.049.
  • Bajkacz, S., and J. Adamek. 2018. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Analytical Methods 11 (5):1330–4. doi: 10.1007/s12161-017-1118-5.
  • Bajkacz, S., and J. Adamek. 2017. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 168:329–35. doi: 10.1016/j.talanta.2017.02.065.
  • Bakirtzi, C., K. Triantafyllidou, and D. P. Makris. 2016. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants 3 (3):120–7. doi: 10.1016/j.jarmap.2016.03.003.
  • Benlebna, M., M. Ruesgas-Ramón, B. Bonafos, G. Fouret, F. Casas, C. Coudray, E. Durand, M. Cruz Figueroa-Espinoza, and C. Feillet-Coudray. 2018. Toxicity of natural deep eutectic solvent betaine:glycerol in rats. Journal of Agricultural and Food Chemistry 66 (24):6205–12. doi: 10.1021/acs.jafc.8b01746.
  • Bi, W., M. Tian, and K. H. Row. 2013. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. Journal of Chromatography A 1285:22–30. doi: 10.1016/j.chroma.2013.02.041.
  • Bosiljkov, T., F. Dujmić, M. Cvjetko Bubalo, J. Hribar, R. Vidrih, M. Brnčić, E. Zlatic, I. Radojčić Redovniković, and S. Jokić. 2017. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food and Bioproducts Processing 102:195–203. doi: 10.1016/j.fbp.2016.12.005.
  • Castro, V. I. B., R. Craveiro, J. M. Silva, R. L. Reis, A. Paiva, and C. A. R. Duarte. 2018. Natural deep eutectic systems as alternative nontoxic cryoprotective agents. Cryobiology 83:15–26. doi: 10.1016/j.cryobiol.2018.06.010.
  • Cao, X., Z. Jiang, W. Cui, Y. Wang, and P. Yang. 2016. Rheological properties of municipal sewage sludge: Dependency on solid concentration and temperature. Procedia Environmental Sciences 31:113–21. doi: 10.1016/j.proenv.2016.02.016.
  • Cardellini, F., M. Tiecco, R. Germani, G. Cardinali, L. Corte, L. Roscini, and N. Spreti. 2014. Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: Characterization of their properties and their toxicity. RSC Advances 4 (99):55990–6002. doi: 10.1039/C4RA10628H.
  • Chemat, F., M. A. Vian, and G. Cravotto. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 13 (7):8615–27. doi: 10.3390/ijms13078615.
  • Choi, Y. H., J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I. W. C. E. Arends, G.-J. Witkamp, and R. Verpoorte. 2011. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiology 156 (4):1701–5. doi: 10.1104/pp.111.178426.
  • Cicci, A., G. Sed, and M. Bravi. 2017. Potential of choline chloride–based natural deep eutectic solvents (NaDES) in the extraction of microalgal metabolites. Chemical Engineering Transactions 57:61–6.
  • Craveiro, R., I. Aroso, V. Flammia, T. Carvalho, M. T. Viciosa, M. Dionísio, S. Barreiros, R. L. Reis, A. R. C. Duarte, and A. Paiva. 2016. Properties and thermal behavior of natural deep eutectic solvents. Journal of Molecular Liquids 215:534–40. doi: 10.1016/j.molliq.2016.01.038.
  • Cui, Q., X. Peng, X.-H. Yao, Z.-F. Wei, M. Luo, W. Wang, C.-J. Zhao, Y.-J. Fu, and Y.-G. Zu. 2015. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Separation and Purification Technology 150:63–72. doi: 10.1016/j.seppur.2015.06.026.
  • Cunha, S. C., and J. O. Fernandes. 2018. Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry 105:225–39. doi: 10.1016/j.trac.2018.05.001.
  • Cvjetko Bubalo, M., S. Vidović, I. Radojčić Redovniković, and S. Jokić. 2015. Green solvents for green technologies. Journal of Chemical Technology & Biotechnology 90:1631–9. doi: 10.1002/jctb.4668.
  • Dai, Y., E. Rozema, R. Verpoorte, and Y. H. Choi. 2016. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. Journal of Chromatography A 1434:50–6. doi: 10.1016/j.chroma.2016.01.037.
  • Dai, Y., G.-J. Witkamp, R. Verpoorte, and Y. H. Choi. 2013a. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Analytical Chemistry 85 (13):6272–8. doi: 10.1021/ac400432p.
  • Dai, Y., G.-J. Witkamp, R. Verpoorte, and Y. H. Choi. 2015. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chemistry 187:14–9. doi: 10.1016/j.foodchem.2015.03.123.
  • Dai, Y., J. van Spronsen, G.-J. Witkamp, R. Verpoorte, and Y. H. Choi. 2013b. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta 766:61–8. doi: 10.1016/j.aca.2012.12.019.
  • Dai, Y., J. van Spronsen, G.-J. Witkamp, R. Verpoorte, and Y. H. Choi. 2013c. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. Journal of Natural Products 76 (11):2162–73. doi: 10.1021/np400051w.
  • Dai, Y., R. Verpoorte, and Y. H. Choi. 2014. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry 159:116–21. doi: 10.1016/j.foodchem.2014.02.155.
  • de los Ángeles Fernández, M., J. Boiteux, M. Espino, F. J. V. Gomez, and M. F. Silva. 2018a. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Analytica Chimica Acta 1038:1–10. doi: 10.1016/j.aca.2018.07.059.
  • de los Ángeles Fernández, M., M. Espino, F. J. V. Gomez, and M. F. Silva. 2018b. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chemistry 239:671–8. doi: 10.1016/j.foodchem.2017.06.150.
  • Destandau, E., T. Michel, and C. Elfakir. 2013. Microwave-assisted extraction. In Natural product extraction: Principles and applications, edited by M. A. Rostagno and J. M. Prado, 113–56. Cambridge, UK: The Royal Society of Chemistry.
  • Dietz, C. H. J. T., J. T. Creemers, M. A. Meuleman, C. Held, G. Sadowski, M. van Sint Annaland, F. Gallucci, and M. C. Kroon. 2019. Determination of the total vapor pressure of hydrophobic deep eutectic solvents: Experiments and perturbed-chain statistical associating fluid theory modeling. ACS Sustainable Chemistry & Engineering 7:4047–57. doi: 10.1021/acssuschemeng.8b05449.
  • Duan, L., L.-L. Dou, L. Guo, P. Li, and E.-H. Liu. 2016. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chemistry & Engineering 4 (4):2405–11. doi: 10.1021/acssuschemeng.6b00091.
  • Durand, E., J. Lecomte, R. Upasani, B. Chabi, C. Bayrasy, B. Baréa, E. Jublanc, M. J. Clarke, D. J. Moore, J. Crowther, et al. 2017. Evaluation of the ROS inhibiting activity and mitochondrial targeting of phenolic compounds in fibroblast cells model system and enhancement of efficiency by natural deep eutectic solvent (NADES) formulation. Pharmaceutical Research 34 (5):1134–46. doi: 10.1007/s11095-017-2124-4.
  • Eisenbrand, G., B. Pool-Zobel, V. Baker, M. Balls, B. J. Blaauboer, A. Boobis, A. Carere, S. Kevekordes, J.-C. Lhuguenot, R. Pieters, and J. Kleiner. 2002. Methods of in vitro toxicology. Food and Chemical Toxicology 40 (2–3):193–236.
  • Elhamarnah, Y. A., M. Nasser, H. Qiblawey, A. Benamor, M. Atilhan, and S. Aparicio. 2019. A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents. Journal of Molecular Liquids 277:932–58. doi: 10.1016/j.molliq.2019.01.002.
  • Espino, M., M. de, los Ángeles Fernández, F. J. V. Gomez, J. Boiteux, and M. Fernanda Silva. 2018. Green analytical chemistry metrics: Towards a sustainable phenolics extraction from medicinal plants. Microchemical Journal 141:438–43. doi: 10.1016/j.microc.2018.06.007.
  • European Commission. 2006. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Official Journal of European Union 364:5–24 and Successive Amendments. http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32006R1881.
  • European Parliament resolution (2011/2175(INI)). 2012. European Parliament resolution of 19 January 2012 on how to avoid food wastage: Strategies for a more efficient food chain in the EU (2011/2175(INI)). Official Journal of European Union 227:25–32. https://publications.europa.eu/en/publication-detail/-/publication/b2a48b16-fe76-11e2-a352-01aa75ed71a1.
  • Faggian, M., S. Sut, B. Perissutti, V. Baldan, I. Grabnar, and S. Dall’Acqua. 2016. Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules 21 (11):1531–42. doi: 10.3390/molecules21111531.
  • Farajzadeh, M. A., M. R. A. Mogaddam, and M. Aghanassab. 2016. Deep eutectic solvent-based dispersive liquid–liquid microextraction. Analytical Methods 8 (12):2576–83. doi: 10.1039/C5AY03189C.
  • Farias, F. O., F. H. B. L. Sosa, I. Mafra, J. A. P. Coutinho, and M. R. Mafra. 2017. Study of the pseudo-ternary aqueous two-phase systems of deep eutectic solvent (choline chloride:sugars) + K2HPO4+ water. Fluid Phase Equilibria 448:143–51. doi: 10.1016/j.fluid.2017.05.018.
  • Florindo, C., F. Lima, B. D. Ribeiro, and I. M. Marrucho. 2019. Deep eutectic solvents: Overcoming XXI century challenges. Current Opinion in Green and Sustainable Chemistry 18:31–6. doi: 10.1016/j.cogsc.2018.12.003.
  • Florindo, C., F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, and I. M. Marrucho. 2014. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chemistry & Engineering 2 (10):2416–25. doi: 10.1021/sc500439w.
  • Florindo, C., L. Romero, I. Rintoul, L. C. Branco, and I. M. Marrucho. 2018. From phase change materials to green solvents: Hydrophobic low viscous fatty acid–based deep eutectic solvents. ACS Sustainable Chemistry & Engineering 6:3888–95. doi: 10.1021/acssuschemeng.7b04235.
  • Gałuszka, A., Z. M. Migaszewski, P. Konieczka, and J. Namieśnik. 2012. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry 37:61–72. doi: 10.1016/j.trac.2012.03.013.
  • García, A., E. Rodríguez-Juan, G. Rodríguez-Gutiérrez, J. J. Rios, and J. Fernández-Bolaños. 2016. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry 197:554–61. doi: 10.1016/j.foodchem.2015.10.131.
  • García, G., S. Aparicio, R. Ullah, and M. Atilhan. 2015. Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy & Fuels 29:2616–44. doi: 10.1021/ef5028873.
  • Ghanemi, K., M.-A. Navidi, M. Fallah-Mehrjardi, and A. Dadolahi-Sohrab. 2014. Ultra-fast microwave-assisted digestion in choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, Ni and Zn in marine biological samples. Analytical Methods 6 (6):1774–81. doi: 10.1039/C3AY41843J.
  • Gómez, A. V., C. C. Tadini, A. Biswas, M. Buttrum, S. Kim, V. M. Boddu, and H. N. Cheng. 2019. Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). LWT 107:79–88. doi: 10.1016/j.lwt.2019.02.052.
  • Gomez, F. J. V., A. Spisso, and M. F. Silva. 2017. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of natural deep eutectic solvents and graphene oxide. Electrophoresis 38 (21):2704–11. doi: 10.1002/elps.201700173.
  • Gomez, F. J. V., M. Espino, M. A. Fernández, and M. F. Silva. 2018. A greener approach to prepare natural deep eutectic solvents. Chemistryselect 3:6122–5. doi: 10.1002/slct.201800713.
  • Gomez, F. J. V., M. Espino, M. de los Angeles Fernandez, J. Raba, and M. F. Silva. 2016. Enhanced electrochemical detection of quercetin by natural deep eutectic solvents. Analytica Chimica Acta 936:91–6. doi: 10.1016/j.aca.2016.07.022.
  • González, C. G., N. R. Mustafa, E. G. Wilson, R. Verpoorte, and Y. H. Choi. 2017. Application of natural deep eutectic solvents for the “green” extraction of vanillin from vanilla pods. Flavour and Fragrance Journal 33:1–6. doi: 10.1002/ffj.3425.
  • Gutiérrez, M. C., M. L. Ferrer, C. R. Mateo, and F. del Monte. 2009. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25 (10):5509–15. doi: 10.1021/la900552b.
  • Hassan, S. H. A., S. W. van Ginkel, M. A. M. Hussein, R. Abskharon, and S. E. Oh. 2016. Toxicity assessment using different bioassays and microbial biosensors. Environment International 92–93:106–18. doi: 10.1016/j.envint.2016.03.003.
  • Hayyan, M., A. Hashim, A. Hayyan, M. A. Al-Saadi, I. M. Alnashef, M. E. S. Mirghani, and O. K. Saheed. 2013. Are deep eutectic solvents benign or toxic? Chemosphere 90 (7):2193–5. doi: 10.1016/j.chemosphere.2012.11.004.
  • Hayyan, M., Y. P. Mbous, C. Y. Looi, W. F. Wong, A. Hayyan, Z. Salleh, and O. Mohd-Ali. 2016. Natural deep eutectic solvents: Cytotoxic profile. SpringerPlus 5 (1):913–25. doi: 10.1186/s40064-016-2575-9.
  • Hou, X.-D., Q.-P. Liu, T. J. Smith, N. Li, and M.-H. Zong. 2013. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS One 8 (3):e59145. doi: 10.1371/journal.pone.0059145.
  • Huang, Y., F. Feng, J. Jiang, Y. Qiao, T. Wu, J. Voglmeir, and Z.-G. Chen. 2017. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chemistry 221:1400–5. doi: 10.1016/j.foodchem.2016.11.013.
  • Huang, Y., F. Feng, Z.-G. Chen, T. Wu, and Z.-H. Wang. 2018. Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chemistry 244:260–5. doi: 10.1016/j.foodchem.2017.10.060.
  • Jablonský, M., A. Škulcová, A. Malvis, and J. Šima. 2018. Extraction of value-added components from food industry based and agroforest biowastes by deep eutectic solvents. Journal of Biotechnology 282:46–66. doi: 10.1016/j.jbiotec.2018.06.349.
  • Jeliński, T., and P. Cysewski. 2018. Application of a computational model of natural deep eutectic solvents utilizing the COSMO-RS approach for screening of solvents with high solubility of rutin. Journal of Molecular Modeling 24 (7):180–97. doi: 10.1007/s00894-018-3700-1.
  • Jeong, K. M., J. Ko, J. Zhao, Y. Jin, D. E. Yoo, S. Y. Han, and J. Lee. 2017. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. Journal of Cleaner Production 151:87–95. doi: 10.1016/j.jclepro.2017.03.038.
  • Jeong, K. M., M. S. Lee, M. W. Nam, J. Zhao, Y. Jin, D.-K. Lee, S. W. Kwon, J. H. Jeong, and J. Lee. 2015. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. Journal of Chromatography A 1424:10–7. doi: 10.1016/j.chroma.2015.10.083.
  • Kallel, F., D. Driss, F. Chaari, L. Belghith, F. Bouaziz, R. Ghorbel, and S. E. Chaabouni. 2014. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products 62:34–41. doi: 10.1016/j.indcrop.2014.07.047.
  • Karimi, M., S. Dadfarnia, A. Mohammad, H. Shabani, F. Tamaddon, and D. Azadi. 2015. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and pre- concentraion of lead and cadmium in edible oils. Talanta 144:648–54. doi: 10.1016/j.talanta.2015.07.021.
  • Kumar, A. K., B. S. Parikh, and M. Pravakar. 2016. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environmental Science and Pollution Research 23 (10):9265–75. doi: 10.1007/s11356-015-4780-4.
  • Kumar, A. K., B. S. Parikh, E. Shah, L. Z. Liu, and M. A. Cotta. 2016. Cellulosic ethanol production from green solvent-pretreated rice straw. Biocatalysis and Agricultural Biotechnology 7:14–23. doi: 10.1016/j.bcab.2016.04.008.
  • Kumar, A. K., S. Sharma, E. Shah, and A. Patel. 2018. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: A case study. Journal of Molecular Liquids 260:313–22. doi: 10.1016/j.molliq.2018.03.107.
  • Laitinen, O., T. Suopaja, O. Monika, and H. Liimatainen. 2017. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Applied Materials & Interfaces 9:25029–37. doi: 10.1021/acsami.7b06304.
  • Lapeña, D., L. Lomba, M. Artal, C. Lafuente, and B. Giner. 2019. The NADES glyceline as a potential green solvent: A comprehensive study of its thermophysical properties and effect of water inclusion. Journal of Chemical Thermodynamics 128:164–72. doi: 10.1016/j.jct.2018.07.031.
  • Li, N., Wang, Y. K. Xu, Y. Huang, Q. Wen, and X. Ding. 2016. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein. Talanta 152:23–32. doi: 10.1016/j.talanta.2016.01.042.
  • Liu, W., K. Zhang, Y. Qin, and J. Yu. 2017. A simple and green ultrasonic-assisted liquid–liquid microextraction technique based on deep eutectic solvents for the HPLC analysis of sesamol in sesame oils. Analytical Methods 9 (28):4184–9. doi: 10.1039/C7AY01033H.
  • Liu, Y., J. B. Friesen, J. B. McAlpine, D. C. Lankin, S.-N. Chen, and G. F. Pauli. 2018. Natural deep eutectic solvents: Properties, applications, and perspectives. Journal of Natural Products 81 (3):679–90. doi: 10.1021/acs.jnatprod.7b00945.
  • Lores, H., V. Romero, I. Costas, C. Bendicho, and I. Lavilla. 2017. Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilisation of proteins: Application to gluten determination by immunoassay. Talanta 162:453–9. doi: 10.1016/j.talanta.2016.10.078.
  • Lucarini, M., A. Durazzo, A. Romani, M. Campo, G. Lombardi-Boccia, and F. Cecchini. 2018. Bio-based compounds from grape seeds: A biorefinery approach. Molecules 23 (8):1888–900. doi: 10.3390/molecules23081888.
  • Mano, F., I. M. Aroso, S. Barreiros, P. Borges, R. L. Reis, A. R. C. Duarte, and A. Paiva. 2015. Production of poly(vinyl alcohol) (PVA) fibers with encapsulated natural deep eutectic solvent (NADES) using electrospinning. ACS Sustainable Chemistry & Engineering 3 (10):2504–9. doi: 10.1021/acssuschemeng.5b00613.
  • Mbous, Y. P., M. Hayyan, W. F. Wong, C. Y. Looi, and M. A. Hashim. 2017. Unraveling the cytotoxicity and metabolic pathways of binary natural deep eutectic solvent systems. Scientific Reports 7 (1):41257–71. doi: 10.1038/srep41257.
  • Milano, F., L. Giotta, M. R. Guascito, A. Agostiano, S. Sblendorio, L. Valli, and V. Capriati. 2017. Functional enzymes in nonaqueous environment: The case of photosynthetic reaction centers in deep eutectic solvents. ACS Sustainable Chemistry & Engineering 5:7768–76. doi: 10.1021/acssuschemeng.7b01270.
  • Mouden, S., P. G. L. Klinkhamer, Y. H. Choi, and K. A. Leiss. 2017. Towards eco-friendly crop protection: Natural deep eutectic solvents and defensive secondary metabolites. Phytochemistry Reviews 16 (5):935–51. doi: 10.1007/s11101-017-9502-8.
  • Mukhopadhyay, S., S. Mukherjee, A. Hayyan, M. Hayyan, M. A. Hashim, and B. Sen Gupta. 2016. Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin. Journal of Contaminant Hydrology 194:17–23. doi: 10.1016/j.jconhyd.2016.09.007.
  • Mulia, K., E. Krisanti, F. Terahadi, and S. Putri. 2015. Selected natural deep eutectic solvents for the extraction of α-Mangostin from mangosteen (Garcinia mangostana L.) pericarp. International Journal of Technology 6 (7):1211–20. doi: 10.14716/ijtech.v6i7.1984.
  • Mulia, K., F. Muhammad, and E. Krisanti. 2016a. Extraction of vitexin from binahong (Anredera cordifolia (Ten.) steenis leaves using betaine-1,4 butanediol natural deep eutectic solvent (NADES). The International Conference on Chemistry, Chemical Process and Engineering, Yogyakarta, Indonesia, 15–16 November.
  • Mulia, K., S. Putri, E. Krisanti, and Nasruddin. 2016b. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture. The International Conference on Chemistry, Chemical Process and Engineering, Yogyakarta, Indonesia, 15–16 November.
  • Murador, D. C., L. M. de Souza Mesquita, N. Vannuchi, A. R. C. Braga, and V. V. de Rosso. 2019. Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: Advantages over conventional organic solvents. Current Opinion in Food Science 26:25–34. doi: 10.1016/j.cofs.2019.03.002.
  • Nađpal, J. D., M. M. Lesjak, Z. O. Mrkonjić, T. M. Majkić, D. D. Četojević-Simin, M. M. Mimica-Dukić, and I. N. Beara. 2018. Phytochemical composition and in vitro functional properties of three wild rose hips and their traditional preserves. Food Chemistry 241:290–300. doi: 10.1016/j.foodchem.2017.08.111.
  • Nam, M. W., J. Zhao, M. Sang Lee, J. Hoon Jeong, and J. Lee. 2015. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chemistry 17 (3):1718–27. doi: 10.1039/C4GC01556H.
  • Ng, M. H., Y. M. Choo, M. A. Hashim, and N. S. Jayakumar. 2015. Performance of choline-based deep eutectic solvents in the extraction of tocols from crude palm oil. Journal of the American Oil Chemists’ Society 92:1709–16. doi: 10.1007/s11746-015-2720-6.
  • Paiva, A., A. A. Matias, and A. R. C. Duarte. 2018. How do we drive deep eutectic systems towards an industrial reality? Current Opinion in Green and Sustainable Chemistry 11:81–5. doi: 10.1016/j.cogsc.2018.05.010.
  • Paiva, A., Craveiro, R. I. Aroso, M. Martins, R. L. Reis, A. Rita, and C. Duarte. 2014. Natural deep eutectic solvents − Solvents for the 21st century. ACS Sustainable Chemistry & Engineering 4:1063–71. doi: 10.1021/sc500096j.
  • Pena-Pereira, F., A. Kloskowski, and J. Namieśnik. 2015. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A generation of eco-friendly alternatives. Green Chemistry 17 (7):3687–705. doi: 10.1039/C5GC00611B.
  • Peng, X., M.-H. Duan, X.-H. Yao, Y.-H. Zhang, C.-J. Zhao, Y.-G. Zu, and Y.-J. Fu. 2016. Green extraction of five target phenolic acids from Lonicerae japonicae flos with deep eutectic solventc. Separation and Purification Technology 157:249–57. doi: 10.1016/j.seppur.2015.10.065.
  • Piemontese, L., F. Perna, A. Logrieco, V. Capriati, and M. Solfrizzo. 2017. Deep eutectic solvents as novel and effective extraction media for quantitative determination of Ochratoxin A in wheat and derived products. Molecules 22 (1):121–30. doi: 10.3390/molecules22010121.
  • Qi, X.-L., X. Peng, Y.-Y. Huang, L. Li, Z.-F. Wei, Y.-G. Zu, and Y.-J. Fu. 2015. Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Industrial Crops and Products 70:142–8. doi: 10.1016/j.indcrop.2015.03.026.
  • Radošević, K., J. Železnjak, M. Cvjetko Bubalo, I. Radojčić Redovniković, I. Slivac, and V. Gaurina Srček. 2016a. Comparative in vitro study of cholinium-based ionic liquids and deep eutectic solvents toward fish cell line. Ecotoxicology and Environmental Safety 131:30–6. doi: 10.1016/j.ecoenv.2016.05.005.
  • Radošević, K., M. C. Bubalo, V. G. Srček, D. Grgas, T. L. Dragičević, and I. R. Redovniković. 2015. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicology and Environmental Safety 112:46–53. doi: 10.1016/j.ecoenv.2014.09.034.
  • Radošević, K., N. Ćurko, V. Gaurina Srček, M. Cvjetko Bubalo, M. Tomašević, K. Kovačević Ganić, and I. Radojčić Redovniković. 2016b. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT - Food Science and Technology 73:45–51. doi: 10.1016/j.lwt.2016.05.037.
  • Rajan, M., A. Prabhavathy, and U. Ramesh. 2015. Natural deep eutectic solvent extraction media for Zingiber officinale Roscoe: The study of chemical compositions, antioxidants and antimicrobial activities. The Natural Products Journal 5 (1):3–13. doi: 10.2174/221031550501150414094719.
  • Ramón, M. R., M. C. Figueroa-Espinoza, and E. Durand. 2017. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. Journal of Agricultural and Food Chemistry 65:3591–601. doi: 10.1021/acs.jafc.7b01054.
  • Renshaw, R. C., G. A. Dimitrakis, J. P. Robinson, and S. W. Kingman. 2019. The relationship of dielectric response and water activity in food. Journal of Food Engineering 244:80–90. doi: 10.1016/j.jfoodeng.2018.08.037.
  • Ribeiro, B. D., C. Florindo, L. C. Iff, M. A. Z. Coelho, and I. M. Marrucho. 2015. Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustainable Chemistry & Engineering 3:2469–77. doi: 10.1021/acssuschemeng.5b00532.
  • Rozema, E., A. D. van Dam, H. C. M. Sips, R. Verpoorte, O. C. Meijer, S. Kooijman, and Y. H. Choi. 2015. Extending pharmacological dose-response curves for salsalate with natural deep eutectic solvents. RSC Advances 5:61398–401. doi: 10.1039/C5RA10196D.
  • Rüther, T., K. R. Harris, M. D. Horne, M. Kanakubo, T. Rodopoulos, J. P. Veder, and L. A. Woolf. 2013. Transport, electrochemical and thermophysical properties of two Ndonor-functionalised ionic liquids. Chemistry - A European Journal 19 (52):17733–44. doi: 10.1002/chem.201302258.
  • Santana, A. P. R., D. F. Andrade, J. A. Mora-Vargas, C. D. B. Amaral, A. Oliveira, and M. H. Gonzalez. 2019. Natural deep eutectic solvents for sample preparation prior to elemental analysis by plasma-based techniques. Talanta 199:361–9. doi: 10.1016/j.talanta.2019.02.083.
  • Savi, L. K., D. Carpiné, N. Waszczynskyj, R. H. Ribani, and C. W. Isidoro Haminiuk. 2019. Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents. Fluid Phase Equilibria 488:40–7. doi: 10.1016/j.fluid.2019.01.025.
  • Schuur, B., T. Brouwer, D. Smink, and L. M. J. Sprakel. 2019. Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry 18:57–65. doi: 10.1016/j.cogsc.2018.12.009.
  • Shamseddin, A., C. Crauste, E. Durand, P. Villeneuve, G. Dubois, T. Durand, J. Vercauteren, and F. Veas. 2017. Resveratrol formulated with a natural deep eutectic solvent inhibits active matrix metalloprotease-9 in hormetic conditions. European Journal of Lipid Science and Technology 119 (11):1700171. doi: 10.1002/ejlt.201700171.
  • Silva, J. M., R. L. Reis, A. Paiva, and A. R. C. Duarte. 2018. Design of functional therapeutic deep eutectic solvents based on choline chloride and ascorbic acid. ACS Sustainable Chemistry & Engineering 6 (8):10355–63. doi: 10.1021/acssuschemeng.8b01687.
  • Sut, S., M. Faggian, V. Baldan, G. Poloniato, I. Castagliuolo, I. Grabnar, B. Perissutti, P. Brun, F. Maggi, D. Voinovich, et al. 2017. Natural deep eutectic solvents (NADES) to enhance berberine absorption: An in vivo pharmacokinetic study. Molecules 22 (11):1921–32. doi: 10.3390/molecules22111921.
  • Tang, B., W. Bi, H. Zhang, and K. H. Row. 2014. Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis obtusa leaves. Chromatographia 77 (3–4):373–7. doi: 10.1007/s10337-013-2607-3.
  • Tang, X., M. Zuo, Z. Li, H. Liu, C. Xiong, and X. Zeng. 2017. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. Chemistry and Sustainability 10:2696–706. doi: 10.1002/cssc.201700457.
  • Taslim, I. L., R. Manurung, A. Winarta, and A. D. Ramadhani. 2016. Biodiesel production from ethanolysis of DPO using deep eutectic solvent (DES) based choline chloride – Ethylene glycol as co-solvent. The International Conference on Chemistry, Chemical Process and Engineering, Yogyakarta, Indonesia, 15–16 November.
  • Tiwari, B. K. 2015. Ultrasound: A clean, green extraction technology. TRAC - Trends in Analytical Chemistry 71:100–9. doi: 10.1016/j.trac.2015.04.013.
  • Tomšik, A., B. Pavlić, J. Vladić, M. Ramić, J. Brindza, and S. Vidović. 2016. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry 29:502–11. doi: 10.1016/j.ultsonch.2015.11.005.
  • Troter, D., M. Zlatkovic, D. Djokic-Stojanovic, S. Konstantinovic, and Z. Todorovic. 2016. Citric acid-based deep eutectic solvents: Physical properties and their use as cosolvents in sulphuric acid-catalysed ethanolysis of oleic acid. Advanced Technologies 5 (1):53–65. doi: 10.5937/savteh1601053T.
  • van den Bruinhorst, A., P. Kouris, J. Timmer, M. H. J. M. de Croon, and M. C. Kroon. 2016. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids. Natural Products Chemistry and Research 4:1–5.
  • van Osch, D. J. G. P., C. H. J. T. Dietz, J. van Spronsen, M. C. Kroon, F. Gallucci, M. van Sint Annaland, and R. Tuinier. 2019. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustainable Chemistry & Engineering 7:2933–42. doi: 10.1021/acssuschemeng.8b03520.
  • van Osch, D. J. G. P., L. F. Zubeir, A. van den Bruinhorst, M. A. Rocha, and M. C. Kroon. 2015. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chemistry 17 (9):4518–21. doi: 10.1039/C5GC01451D.
  • Wang, M., J. Wang, Y. Zhang, Q. Xia, W. Bi, X. Yang, and Y. Chen. 2016. Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. Journal of Chromatography A 1443:262–6. doi: 10.1016/j.chroma.2016.03.061.
  • Wang, M., J. Wang, Y. Zhou, M. Zhang, Q. Xia, W. Bi, and D. D. Y. Chen. 2017a. Ecofriendly mechanochemical extraction of bioactive compounds from plants with deep eutectic solvents. ACS Sustainable Chemistry & Engineering 5 (7):6297–303. doi: 10.1021/acssuschemeng.7b01378.
  • Wang, T., J. Jiao, Q.-Y. Gai, P. Wang, N. Guo, L.-L. Niu, and Y.-J. Fu. 2017b. Enhanced and green extraction polyphenols and furanocoumarins from fig (Ficus carica L.) leaves using deep eutectic solvents. Journal of Pharmaceutical and Biomedical Analysis 145:339–45. doi: 10.1016/j.jpba.2017.07.002.
  • Wei, Z., X. Qi, T. Li, M. Luo, W. Wang, Y. Zu, and Y. Fu. 2015a. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Separation and Purification Technology 149:237–44. doi: 10.1016/j.seppur.2015.05.015.
  • Wei, Z.-F., X.-Q. Wang, X. Peng, W. Wang, C.-J. Zhao, Y.-G. Zu, and Y.-J. Fu. 2015b. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Industrial Crops and Products 63:175–81. doi: 10.1016/j.indcrop.2014.10.013.
  • Wen, Q., J. Chen, Y. Tang, J. Wang, and Z. Yang. 2015. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 132:63–9. doi: 10.1016/j.chemosphere.2015.02.061.
  • Xin, R., S. Qi, C. Zeng, F. I. Khan, B. Yang, and Y. Wang. 2017. A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties. Food Chemistry 217:560–7. doi: 10.1016/j.foodchem.2016.09.012.
  • Xu, K., Y. Wang, Y. Huang, N. Li, and Q. Wen. 2015. A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Analytica Chimica Acta 864:9–20. doi: 10.1016/j.aca.2015.01.026.
  • Yan, Y. C., W. Rashmi, M. Khalid, K. Shahbaz, T. C. S. M. Gupta, and N. Mase. 2017. Potential application of deep eutectic solvents in heat transfer application. Journal of Engineering Science and Technology 12:1–14.
  • Yang, T.-X., L.-Q. Zhao, J. Wang, G. Song, H. Liu, H. Cheng, and Z. Yang. 2017. Improving whole-cell biocatalysis by addition of deep eutectic solvents and natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering 5:5713–22. doi: 10.1021/acssuschemeng.7b00285.
  • Yousefi, S. M., F. Shemirani, and S. A. Ghorbanian. 2017. Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: Application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique. Talanta 168:73–81. doi: 10.1016/j.talanta.2017.03.020.
  • Zahrina, I., M. Nasikin, E. Krisanti, and K. Mulia. 2018. Deacidification of palm oil using betaine monohydrate-based natural deep eutectic solvents. Food Chemistry 240:490–5. doi: 10.1016/j.foodchem.2017.07.132.
  • Zeng, Q., Y. Wang, Y. Huang, X. Ding, J. Chen, and K. Xu. 2014. Deep eutectic solvents as novel extraction media for protein partitioning. The Analyst 139 (10):2565–73. doi: 10.1039/c3an02235h.
  • Zhang, H., Y. Wang, K. Xu, N. Li, Q. Wen, Q. Yang, and Y. Zhou. 2016. Ternary and binary deep eutectic solvents as a novel extraction media for protein partitioning. Analytical Methods 8 (46):8196–207. doi: 10.1039/C6AY01860B.
  • Zhang, L., and M. Wang. 2017. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International Journal of Biological Macromolecules 95:675–81. doi: 10.1016/j.ijbiomac.2016.11.096.
  • Zhao, B.-Y., P. Xu, F.-X. Yang, H. Wu, M.-H. Zong, and W.-Y. Lou. 2015. Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from Sophora japonica. ACS Sustainable Chemistry & Engineering 3 (11):2746–55. doi: 10.1021/acssuschemeng.5b00619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.